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                    Abstract 

   The purpose of this paper is to solve the single-bullet duel in 
which either silent or noisy is uncertain and the accuracy functions 
are arbitrary. It will be found the model in this paper is an  ex-
tension of the single-bullet duels : silent, noisy, and silent-noisy duels.

   1. Introduction 

   In this paper we genelarize the single-bullet duel in the work of Dresher [1] and 

Karlin [3] to include the possibility that either silent or noisy is uncertain, under 

the arbitrary accuracy functions. 

   Two duelists, player I and II, starting at time t=0 (at a distance 2 apart), walk 

toward each other at a constant (unit) speed with no opportunity for retreat, they 

will reach other at time t=1. Both are each allowed to fire only once. The accuracies 
of firing are described by the accuracy function Ai(x)=--the probability of I's hitting 

his opponent if he fires at time x (at a distance 2(1—x)). Similarly, A2(y) is defined 

for the player II. These functions are continuous and monotonically increasing on 

[0, 1] with A1(0)-=A2(0)-=0 and A1(1)=A2(1)=-1. Let the payoff be ±1 to the surviving 
duelist and 0 to each duelist if both survives or neither survives. Each selects a time 

(distance) to fire. 
   As in all games, we need to describe the information available to the players. 

If a duelist is informed about his opponent's firings as soon as they take place, we 

usually call the duel a noisy duel. If neither duelist ever learns when or whether 

his opponent has fired, we usually call the duel a silent duel. A duel with silent and 

noisy bullets is called a silent-noisy duel. 
   There are four interesting papers which genelarized the single bullet duel men-

tioned above. Fox and Kimerdorf [2] solved the noisy duel with arbitrary accuracy 
functions and arbitrary numbers of bullets for both players. Restrepo [4] solved the 

silent case under the same assumptions. Styszynski [5] solved the silent vs. noisy 

duel when the accuracy functions are arbitrary, the silent player has n bullets and
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the noisy player has one. Sweat [6] genelarized the single-bullet noisy duel to include 

the possibility that one of the duelists has imperfect ability to perceive his opponent. 

Furtheremore, Teraoka analized the duels with uncertain existence of the bullet for 

silent [7, 8] noisy  [9], and silent-noisy [10] cases. 

   Thinking the duels over, a duelist does not know whether his opponent possesses 

silent bullets or noisy bullets, so that it is natural to suppose the model in which 

either silent or noisy is uncertain. In this paper we shall examine the simplest case 

where each has only one bullet. 
   Section 2 presents our model suggested from the simplest assumptions mentioned 

above, that is, a single-bullet duel in which the state (silent or noisy) variable is a 

random variable with bivariate Bernoulli Distribution. In Section 3 we shall prepare 

two lemmas which are useful to derive our main results, one is given by Karlin [3] 

and the other will be proved by the author. The optimal strategies and the value 

of the game will be shown in Section 4. In section 5 it will be found that our main 
result covers the results for silent, noisy, and silent-noisy cases of the single-bullet 

duel. Section 6 deals with a simple example when A1(t)=A2(t)-=t.

   2. The model 

   Both players are informed of the accuracy functions described in section 1. We 

also assume that the accuracy functions Al and A2 possess continuous derivatives 
with respect to t, which are denoted by A2(t) and Aat), and their first derivatives 

are strictly positive in [0, 1). 

   Furthermore we assume that each duelist is received a gun with only one bullet 

by their umpire. However, both duelists do not know whether their bullets are silent 

or noisy. Let define 0i as follows : 

               0i={ 1 } if player isbullet is                                             silent 

       0{silent 
                                                 and let (01i 02) is a random variable with bivariate Bernoulli distribution given as 

Table 1. The inner part of this double-entry table shows the joint distribution of 

01 and 02. Let r be the correlation coefficient of 01 and 02, then r=-d1-/                                                                  PiqiP2q2 

That is to say 0i denote the number of silencers fitted to player i's gun. Thus we 

have the expected payoff to player I for each (01, 02) and its probability as Table 2,

      Table 1. Bivariate Bernoulli Distribution 

0<pi=1— qi<1, o�laj� -Vpiqip2q, , 0._____Ial<min (p1q2, p2q1) 

   0210 1                                    ' Marginal 

 01(silent) (noisy):Distribution                               

!  1 (silent) P
1P2+d Piqz— d 1 PI 

 0 (noisy) q1P2—d 9192+d 1ch 

  Marginal 

                 1 

 DistributionP2q2l i
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           Table 2. Expected Payoff to  I for (0k, 02) and Its Probability 

                                     Expected Payoff to I 
(01, 02) Probability           x<yi x=yx>y 
(1, 1) P1P2+d A1(x)—A2(Y)+A1(x) A2 (3) Al (x) A2 (X) Ai(x) A2 (Y) —Ai(x) A2 (3') 

(1, 0)P1q2— d Ai(x)—A2(Y) +A1(x)A2(y) Al (X) A2 (X) 1-2A2(y) 

(0, 1) 911)2— d 2A1(x) —1Ai (X) — A2 (X) Ai (X) A2 (Y) Al (X) A2 (Y) 

(0, 0) 9192+d2A1 (X) —1Ai(x) — A2 (x) 1— 2A2 (3)

since the payoff is +1 to the surviving duelist and 0 to each duelist if both survives 

or neither survives. 

   After all, we get payoff kernel M(x, y) to player I as follows : 

              p1

A)-2(Ax)2(Y)+Ai(x)A2(Y)} +(1--pol2A,(x)-11 x< y ( 1 ) M(x, y)=  {x=y               p2 {A1(x)—A2(y)—A1(x)A2(y)} +(1—p2) {1-2A2(y)} x> y 

We observe that M(x, y) is independent of d, so that this game is unchanged even 

if d=0, that is, 01 and 02 are independent. Furthermore it is found that M(x, y) 

consists of a linear combination of the expected payoff for silent duel and one for 

noisy duel whose positive proportions are p1 and 1—p1 when X < Yy p2 and 1—P2 

when x> y, and arbitrary numbers when x--=y. 

   This game is a two-person zero-sum game defined on the unit square in which 

the pure strategy spaces, 0� x�1 for player I and 0._y�I for player II, represent the 

possible times during which a certain action can be taken. Each selects a time 

(distance) to fire in [0, 1], given that he survives. The maximum weakness to each 
duelist is to play noisy duelist when he has fired first and failed to beat his opponent. 

Our payoff kernel M(x, y) shows the above situations. 

   Throughout this paper, we suppose that I and II use mixed strategies (distribu-

tion functions), F(x) and G(y), respectively, and we shall employ notations on ex-

pectation of Mx, y) defined on the unit square as follows : 

      I 

          M(F, G)-=lM(x, y)dF(x)dG(y), and 
                                 00 

  11 

            M(x, G)=-
0                   .M(x, y)dG(y);M(F, y)--=-M(x, y)dF(x). 

 0 Furthermore we shall define two functions hi(-) and Ilk) by 

            A; (t)  ( 2 )Mt),                  (2— p1- p2) {A1(t)-1- A2(0-11 +(pi+ p2)A,(t)A2(t) 

                               for to<t-1, {i, il = {1, 2}, 

( 3 )Ui(z)-=-exp[—C{(2—P1—P2)+(pi+p2)Ai(olhi(OCIti 

                                         a 

                                        for to<a�z�1, i----1, 2,



72 Y. TERAOKA

where to is a unique root of equation 

             (2—p1—p2) {A1(t)+A2(t)-1} +(p,+ P2)Ai(t)A,(t)=0 

in the interval [0, 1], and a is some number which will be given in Section 4.

   3. Preliminary lemmas 

   In this section we shall prepare two lemmas which are useful to Section 4. 

Lemma 1 deals with a property of the optimal strategies for certain classes of tim-

ing games, which is given by Karlin [3]. Lemma 2 presents a property of function 

Ui(.) which will be used to determie the mixed strategies in Section 4. 

   LEMMA 1. Let M(x, y) be kernels of the form 

                        M(x, y).=                              K(x,y) x<y                  {x -= y                              L(x, y) x> y 

which satisfy the following conditions: 

   (a) The functions K(x, y) and L(x, y) are defined over the closed triangles 0�x 
�  y _.- 1 and 0� y � x�1, respectively. Furthermore, they possess continuous second 

partial derivatives defined in their respective closed triangles. 

  (b) K(1, 1)>0(1)>L(1, 1) and K(0, 0)�0(0).-L(0, 0). 

   (c) Kx(x, y)>0 and Lx(x, y)>0 for x<1, 

      Ky(x, y)<0 and Ly(x, y)<0 for y<1 

(in their respective domains of definition). 
   Then the optimal strategies F*(x), G*(y) of zero-sum game M(x, y) exists uniquely 

and take the following form: densities f*(x), g*(y) over a common support [a, 1] and 
a possible jump at 1 for one of the two players, and then 

(4)M(x, G*).:_v*�M(F*, y) for 0__x, y�1 

( 5 )M(x, G*)--_=v*-_--M(F*, y) for a�x, y�1 

   PROOF. See Karlin's work, Chapter 5. 
   LEMMA 2. Given any z> to, 

          rif(2—Pi—P2)±(Pi+P2)Ai(01 hi(t)dt I 00 as 1 I to, i=1, 2, 
so that 

          expE—C{(2—P1—P2)+(Pi+P2)Ai(t)} hi(t)dt] i 0 as 1 I to 
                         1 and this exponential form is a non-increasing function with respect to z for any fixed 

l E (to, 1).
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   PROOF. We shall prove the case where i=1 and j=2. Since  t>t,, 

                  1(2— P1— P2)-F(P1+P2)A1(t)} X2(0  
            (2— pi— p2) fA1(t)+A2(t)-11 +(pi+ P2)Ai(t)A2(t) 

                     1(2—P1—P2)4-(P1 + P2)Ai(to)} A2(t)  
                 (2—p1—P2) lAi(t)+ A2(t)-1} +(pi+ P011i(t)A2(t) • 

Now we get 

                   1(2—P1— + P2)Ai(to)} A2(t)  

           lim (2-1,1—P2) {NO+ A2(t)-11 +(p1+ P2)Ai(t)A2(t)             t-to  1(2—P1—P2)+(P1+P2)111(t0)} A2(t)  

             \ (2— pi— p2) 1,41(to)+ A2(t)-11 +(P1H-P2)A1(to)A2(t) 

      =lim (2—p1—p2) 1A1(to)+A2(t)-11 +(p1+ P2)Ai(to)A2(t)  
        t-to (2—P1—P2)1141(0+ A2(t)-11+(p1+ p2)A1(t)A2(t) 

       =lim (2— pi— P2)A'2(t)+(Pi+ P2)Ai(to)A'2(t)  
        t•to (2— P1— P2) lAat)+ A'2(t)} + (pi+ P2) IAX0A2(t)+ AIWA/2(01 

                  (2—p1 P2),Cto)+(P1+ P2)A1(1-0)11'2(1-0)  
         (2— pi— P2) lievi(to)+ A'2(t0)} +(Pi+ P2){AXto)A2(1-0)+ A1(to)A2(t0)} 

                     {(2—P1—P2)±(P1+P2)241(t0)} A2(to)  
             =-- 

                                                         {(2— PP2)+(pi+ P0111(4)1 AXto)-F{(2-1i1—P2)-1-(P1+P2)A2(t0)} Ai(to)->0 

Hence, there exists sE(4, z) such that for any tE (to, s) 

   1(2---Pi—P2)+(P1+P2)A1(01 h1(t) 

           {(2—p1— P2)+(Pi+ P2)Ai(t0)} A2(t)  
            P2)A1(t)± A2(t) 1+ (p1+ P2)Ai(t)A2(t) 

       1 1(2— P1— P2)+(Pi +P2),41(1-0)} 1V2(1-0)  
        2 1(2— pi— P2)-1—(Pi+ P2)Asi(t0)} A'2(t0)H-- 1(2-131—P2)+(P1+N)A2(01 Ai(to) 

              {(2—P1—P2) ±(P ± P2)111(t0)} A2(t)  
         (2— p1— p2) lA1(to)+A2(0-11 +(P1+P2)241(4)A2(t) 

Then 

  C{(2— p1— (01Ii1(t)dt    to— p)+(p+p)A121211 

      -=UsYS1(2- P1- P2)-F(Pi+ P2)Ai(t)},hi(t)dt 

    t 

      1 1(2—P1—P2)+(P1+P2)A1(to)} A2(t0)       > 

1(2—p1—P2)+(P1+P2)A1(t.)} A2(t0)+1(2—P1—P2)+(P1+P2)A2(t0)} Ai(t0) 

               {(2— pi— p2)+(Pi+P2)A1(01 A2(t)                                             dt 
         to (2—p1— P2){Ai(to)+A.,(t)-11 +(Pi+ P2)Ai(to),42(t) 

               1(2—P1—P2)-E(Pi+P2)A,(01 A'2(t)                                           dt        +Cs (2— p1— p2) {A1(t)+A2(t)-1} -F(P1+P2)A1(t)A2(t)
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 X ln(  (2— p1-1)2){111(t0)+A2(s)-11 ±(Pi+ P2)Ai(to)A,(s)  )                                                             =00 

            (2—p1—p2) Illi(to)+ Ado)-11 +(iii-FP2)Ai(to)A2(to) 

This completes the proof of Lemma 2.

   4. The solution 

   The kernel (1) clearly satisfies conditions in Lemma 1. Supposing that F(x) 
consists of a density part f(x)>0 over an interval [a, 1) and a mass part a at x=1, 
and G(y) consists of a density part g(y)>0 over the same interval and a mass part 

p at y=1, we get 

( 6 ) M(F, 3))= [pi {A1(x)—A2(y)+A1(x)A2(y)} +0— pi) 12A1(x)-111f(x)dx 

                             a 

             +C Cp2{A1(x)— A2(Y)— Ai(x)A2(Y)} +(1—p2) 11-2A2(Y)Ilf(x)d x 

                           Y 

                +a[1-2A2(y)], (1-- y <1 
and 

( 7) M(x, G)---=aCp2{A1(x)— A2(Y)— Ai(x)A2(Y)} +(1—p2){1-2A2(y)} ]g(y)d y 

              -FrCPI 1,41(x)— A2(Y)+ Ai(x)A2(Y)}-F(1—P1){2A1(x)-1}1g(y)dy 

                              . 

                + p[2A,(x)-11, a�_ x <1. 
Since 

( 8)M(F, y)-----v, a �y_�1; M(x, G)==v, a __x�1 and 4=0. 

We obtain two integral equations. Differentiation of the first equation in ( 8) with 

respect to y followed by the normalization condition yf(x)dx-Fa=1 gives 

                                                                            a 

    [(2---P1—P2){,211(Y)+A2(Y)-11 +(P1-FP2)A1(Y)A2(Y)lf(Y) 

     =H/y1y\/rYCl\           aP1—.CyP2A2)f(x)dx—QaPil,P2)Ai(x)f(x)dx+2]A;(Y) • 
Hence M(F, y) is independent of y for yE[a, 1] if 

(9)'(s)  

       0:2—Di+CyP2)f(x)dx±(Di—CyP2)Ai(x)f(x)dx —2 
             A-'2(Y)  

           ,— 

                (2—p1 — PO lA1(y)+,42(y)-11 +(/)1-FP2)A1(y)A2(y) 

which yields 

(10) {(2—P1—P2)+-(1)1-FP2)A1(y)If(y)  

       (J:21Yap1+KP2)f(x)dx+Wap1llP2)Ai(x)f(x)d x —2
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                       {(2--P1—P2)+(P1+P2)A1(Y)} A2(Y)  
                 (2—1,, P2)1Ai(y)+ A2(y)-11 --F(P1-FP2)A1(Y)A2(Y) 

Integrating (10), we obtain 

         ctypi+.riN)f(x)dx+6aYPI—CyP2)Ai(x)f(x)d 
               {(2—P1—P2)±(PIH-P2)Ai(t)} A'2(t) expdd .                 a (2— — P2) {NO+ A2(0-11 +(Pi+ P2)A,(0A2(t) 

Differentiation with respect to y yields 

           {(2--/31—P2)-1-(P1d-P2)A1(Y)If(y) 

                        P2)-F(P1+ P2)A1(J1)} h1(y) 

              x exp CY {(2 P1— P2)-F(Pi+ POICt)} h i(t)dt] . 
                                          a Hence we have 

(11) f(x)=4,111(x) exP a{(2—P1—P2)±(P1+P2)A1(t)} hi(t)dt] for X E [a, 1) , 
where k1=—k',. 

   A similar argument on the second equation in (8) gives 

(12) g(y),---k2h 2(Y) exP a{(2—Pi—P2)+(Pid-P2)Ai(t)} hi(t)dti for y[a, 1) . 
We have proved the following: 

   LEMMA 3. The densities f*(x) and g* (y) over a common support [a,1] of the 

optimal strategies for (1) take the following form: 

       {0[0, a) 

                       * 

        f(x)—I- for xe{ ; 
                  kihi(x)U,(x)Co, 1) 

       {0CO, a)         g*(y)—_ for y e{ ,                   k2h2(y)U2(y)Ca, 1) 

where k1 and k2 are some positive constants. 
   The next lemma is trivial but is useful to determine 1?1, k2, and the value of 

game v*. 
   LEMMA 4. For to<l�_u_l. 

            {(2— P1— P2)±(Pid-P2)11i(x)} f(x)dx=k,{U,(1)—Ui(u)} ; 

           cu           j
i 1(2-1,1— P2)+(pid p2)A2(y)} g(Y)d.Y=k2{112(1)—U2(u)} 

where f(x) and g(y) are given as (11) and (12), respectively.
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   LEMMA 5. Two constants k1 of  f*(x) and k2 of g*(y) stated in Lemma 3 take the 

following from: 

(13)2(P1-1-ap,)                                         for aE(t„ 1)              P
i+P2U1(1) ;p2±P2p+iu1SP,(11)) 

   PROOF. Inserting (11) in ( 9 ) to make f*(x) a solution of the original equation, 

we obtain 

                 k1h1(y)U1(y) = hi(y) for yEEa, 1), 
       k1{1—U I(Y)} +P2.1 {1- Ai(x)} f(x)dx —2 

                                         a since the denominater in ( 9 ) equals to 

                                                        ri 

         al(2—P1—P2)±(P3.+P2)Ai(x)}f(x)dx+ P2){l-111(4} f(x)d 

              =k1lU1(a)—U1(Y)1+1,2 {1— Ai(x)} f(x)dx-2 

                                                            a which is given by Lemma 4. Thus we get 

(14) k1=2—p41 {1—Ai(x)}f(x)dx for a E (to, 1) . 
Furthermore Lemma 4 yields 

                  1  (15)a11-111(x)If(x)dx=Pl+ P2[2.if(x)dx—k1{1—U1(1)}1 
substituting (15) in (14), we have the first equation in (13). 

   A similar argument on g*(y) shows the second equation in (13). This completes 
the proof of lemma 5. 

   LEMMA 6. There exists a(to, 1) uniquely such that 

                   a=1—F(1-0)�0 ; j3=1—G(1-0)�0 

which are mass parts at 1. Then a and j9 are given by 

                    Pi+ P2U1(1)-2/3151 h1(x)U1(x)dx 
    �-0 ; 

                  P1+ P2U1(1)±2P2f h1(x)U1(x)dx 

                                                             a 

                     P2-4-A.U2(1)-2p2f1 h2(y)U2(y)dy 
     43'� 0 , 

                   P2+P1t12(1)+2P1fi ah2(Y)U2(Y)d 
for such an appropriate a E (t0, 1). 

   PROOF. First we shall prove the existence of a E(to, 1) such that 1—F(1-0)�_0. 

F(1-0) is a strictly decreasing function with respect to a and F(1-0)=0 at a=1-0. 

Now we get the following inequality :
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(16) F(1-0)=1f(x)dx>—,V {(2—P1—P2)+(Pi+P2)A1(x)If(x)dx 
     aa 

    = 
22                   {I i(a) U1(1)} = {1 U,(1)}, for a E (t„1), 

since Lemma 4 holds. Lemma 2 and Lemma 5 suggest that 

     iP2  (17) F(1-0)> k {1 U1(1)}1+a-1 as ato. 
               2 

A similar argument on G(1-0) gives 

     2Pi  (18)G(1-0)>k {1 U2(1)}
2                                1+13-�1 as a i t1,   2 

showing the proof of the first part in Lemma 6. 
   Here we shall determine a and 13 for an appropriate a E(t„ 1). Since F(1-0) 

=1—a, we obtain 

                   2(P1±aP2)  
‘C117,(x)Ui(x)dx=1—a                   P1+p2u1(1)a 

so that we get the statement of the second part in Lemma 6. 

   This completes the proof of Lemma 6. 

   LEMMA 7. The value of the game v* is given by 

                2 {1 — A2(a)}                             P1+P2U2(1) }-1 a=0 
                —2 {1 —Ai(a)}                            P1d-P2U1(1) 1+1 if P=O. 

   PROOF. Equation (8) shows ap=0 and 

(19)v*=M(F*, y)=M(F*, a) for all yE[a, 1] 

                  =M(x, G*)=M(a, G*) for all xE[a, 1]. 

If a=0, the first equation yields 

(20) v*=.fiCP2 fAi(x)— A2(a)— Ai(x)A2(a)} +(l—p2){1-2A2(a)}1f*(x)dx 

                      a 

                                   i 

         = P2 {1-C 
                     a—A2(a)}A1(x)f*(x)dx—p2{1—A2(a)} +1-2A2(a) 

since equation (6) holds. Furthermore Lemma 4 gives 

                2—pi—P2+(Pi-FP2) Ai(x)f*(x)dx=k1{1—U1(1)} 

                                                       a which shows 

 (21)A1(x)f*(x)dx=                      Pi2 F+P2 L P1+p2u1(1){1—U1(1)}+1 . 

 Substituting (21) into (20), we have
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               2{1— A2(a)}pip2u-ui(i)}       v —pd+1-2A2(a) 
                  p1+p2 L p1-Fp2u1(1) 

              2 {1—A2(0}  r  p1p2{1—u-1(1)}  +pi]-1 
                 p1+p2L± P2U1(1) 

            =2 11— A2(01 {1. 
                        Pi+p2u,(1) 

The similar argument on the second equation in (19) gives 

                 v* = — 211 — Ai(a {P2 }-}-1 
                             P2+Piu2(1) 

   This completes the proof of Lemma 7. 

   According to Lemma 1 the optimal strategies for the payoff kernel (1) exist 

uniquely, and two integral equations in ( 8 ) have unique solutions under appropriate 
boundary conditions, respectively. Hence we shall conclude this section by asserting 

Theorem 1, since Lemma 6 suggest that 

                                                                      1 

                                   1              F(1-0)H. f*(x)dx=1; G(1-0)=.fg*(y)dy=1    aa 

have unique roots, respectively. 

   THEOREM Let a1 and a2 be the unique roots of equations 

                      ah1(x)U1(x)dx=P1+P2U1(1); 

                 2P41 h2(y)U2(y)dY—P2+ Pi U2(1) 
                                      a in the interval (t0, 1), respectively, where to is the unique root of equation 

             (2— pl—P2)1A1(0+A2(0-11 +(P1+P2)A1(t)A2(t)=-0 . 

And let a =max (a1, a2). 

   Then optimal strategies F*(x) for I and G*(y) for II of zero-sum game (1) are the 

following mixed strategies: 

        0, 0�x�a 

                F*(x)= 
                         kihi(t)U,(t)dtd-aIi(x), a�x�1; 

                                           a 

        0, 0�y<a 

               G*(y)= 
k2h2(t)U2(t)dt+ i3Ii(Y), a y�1 , 

                                      a where I1(z) is the unit-step function at z=1, coefficients k1 and k2 are given by 

                                    2(P2-F iSPi)                         k
i=                      2(p1+ap2)k2=                     P

id-P2U1(1)P2+P1U2(1) ' 

and mass parts a and j3 are determined as
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 P1  +P2U1(1)-2Pifi  h  j(X)U1(  X)d  X 

 a  

  a=, 

                   Pi+ P 21-11(1)+2P2S1h ,(x)U,(x)d x 

                                                         a 

                  P2+P1u2(1)-2Nfah2(y)u2(y)dy 
      t9---                  N+Piu2(1)+24h2(Y)U2(Y)dy ' 

                                                             a which have the following properties: 

     => a1>a2 

             a=- = 0 and p= = if a= a i= a 2 

  { 

       >,jk)a2>a1 
The value of the game v* is 

               2 {1— A2(a)} { 
         v*=Pi+PP:U,(1)}-1 if a=a1 

            —2{1—A2(a)}                        1 P2+pP211/2(1)1+1 if a=a2

   5. The special cases 

   The purpose of this section is to assert that the classical results of the single-
bullet duel in the works of Dresher [1] and Karlin [3] are the special cases when 

Pi=P2 ---' 1, PI=P2—*0, and (p1, p2) --> (1, 0), which are called as silent duel, noisy duel, 
and silent-noisy duel, respectively. 

   (i) The Case Where p1=p2—“. 
   Letting p1=p2 —p 1, we have 

          hi(t)= 40/ f2A1WA2(t)} for 0<t�1, {i, A = {1, 2} 
and 

            U i(z)=A;(a)1 A;(z) for 0<a =_<_.z.<1, {i, j} = {1, 2}, 

so that a1 and a2 are the unique roots of equations 

       1+ 1  cl  AZ(t)dt;1+ 1 (c1  A1(t) dt            A
2(a)—Ja A1(t) {A2(t)} 2Ai(a) J a {A1(t)} 2 A2(t) 

in the interval (0, 1), respectively. Thus we conclude the following. 

                 a ,max (a 1, a 2) , 

                               0,                                               0�x<a 

                F*(X)=---z k1A2(a)N2(t)  

  { 

                    .)a 2A1(t){112(t)} 2                                          dt-l-al,(x), a �_x__ 1 ; 

                               0,                                                    0�_y<a 

             G*(Y)= cY ,A,(a)Ai(t) 
                    J a 2A2(t) {AM} 2   le                                               dt+ Pii(Y), a.,_.- y-,____1 ,
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 ki-=2(1+a)/{1-FA2(a)}  ; k2=2(14-43)/{1+A1(a)}, 

                1- A2(a)— A2(a)f[A2(t)/A1(t){A2(t)} 2idt 
              a= 

               A+ A2(a)- F A2(a)fLLV2(t)/ Ai(t) {A2(t)}21dt 

                                                               a 

                1+ Ai(a)— Ai(a)fluiat)/A2(t){Ai(t)} 21 dt 
  18=a                 a + Ai(a)± NOS' Ellat)/ A2(t){Ai(t)} 21dt 

                                                              a and 

                    {1-3A2(a)} {1±A2(a)} if a=a1 
                    v*= 

                    {1-3111(a)}/{1+A1(a)} if a=a2, 

in the sence of limitting point. 

   It is found that the above conclusions are the soution of single-bullet silent duel 

[1, 3, 4, 7, 8]. 

   (ii) The Case Where p1=p2— 0. 
   When p1= p2 0, we obtain 

               Aj(t)           h
i(t)=for to<t 1 , {i, A= {1, 2}                2 fil

i(t)± A2 {t)-1} 
and 

      Ui(z)=expfZA'j(t)                   a NO+ A2(t) —1cid for to<a5-_z_-1,j} =21 , 
where to is the unique root of equation il1(t)+A2(t)=1 in the interval [0 , 1]. Thus 
we get 

                      2.rz h i(t)U i(t)dt= 1— U,,(z) , 

                                           a 

         {Pi+P2U1(1)} /Pi --> 1+U1(1);fP2+p,u2(1)} /p2 ----1+u2(1) 
and 

                        a —>0 --> 0 . 
Since lemma 2 holds, we have 

                         lim a1=lim a2=to, 

                      { 0 if 0�x<to                     lim F*(x)= 
                              1 if to�x�1; 

                      { 0 if 0�y<to                     lim G*(y)= 
                                 1 if to�y�_l, 

and 
                       lim v*=Ai(t0)—A2(to) • 

The above conclusions are the solution of single-bullet noisy duel [1 , 2, 3, 9]. 
  (iii) The Case Where (p1, p2) (1, 0) 

   When (1)1, p2) (1, 0), we have
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              h t(t)= A;(01 {A 1(0 A2(t)d- A i(t)-1- A 2(t) —1} 

                            for to<t1 , {i, j1= {1, 2} 
and 

      Uz(z)=exp[—.' {1+Ai(t)} hi(t)dt] for to< a.=-z1, {i, /I = {1, 2} 
                                 a Where to is the unique root of equation 

                    NO A2(t)H- Ai(t)+ A2(0-1=0 

in the interval [0, 1], so that a is the unique root of 

              2.r1 hi(x) exp [—.0 {1--Fili(t)} hi(t)ddd x=1     aa 

in the interval (t0, 1], since Lemma 2 and Lemma 4 suggest that equation U2(1)=0 

has unique root a2=to in [to, 1] in the sense of limitting point. Then 

           a=0 ; 

        13=U2(1)/(U2(1)+2*C1 h2(t) exp [—C{ld -Ai(s)} hi(x)ds]dt)> 0        aa 

Hence we conclude the following : 

                       0,                                                                 0_x<a 

        F*(x)=               2.fs h i(t) exp [—.ft{1i-A2(s)} h2(s)d s]dt ,a�x__1;     aa 

    0,0_y<a 

      G*(y)-=

.,1             p(2h2(t) exp Lft{1+ A2(s)} h2(s)dddt+ I i(Y)), a_y 

                                                 1 

                                  a and 
                              v*=1-2A2(a) 

in the sence of limitting point. 
   The above solution is one for the singel-bullet silent-noisy duel [5, 10].

   6. A simple example 

   As a simple example of the result obtained in Section 5 we shall examine the 
case where A i(t)= A 2(t)=t and pi_�_p2. Then we have 

         hi(t)=-1/{(P1+Nt2+2(2—P1—P2)t—(2— pl—P2)} for to<t_l 
and 

     Ui(z)=               (Pi+Na2+2(2 -2+2(2--P1—P2)a—(2-1)1—P2) 11/2                                                         for to< a <z__1             t (Pi+Nz1)1—P2)z—(2—pi—P2) 

where to=[—(2— P1— p,)+ {2(2— p1— po} (1)1- po and i=1, 2. Putting 

               R(z)= {(1)1+ P2)z2 +2(2— 131— P 2)z —(2—Y—p2)} 1/2 1 

we obtain
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        f2 hi(t)Ui(t)dt= R(a)         .)a 2(2—p1—P2) 

               X                  F
(PH-P2)ad-(2-131-132)(PH -P2)z±(2-1)1—            R(a)R(z) 

since 

          {(P1-PP2)t2+2(2--P1—P2)t—(2—P1—P2)} -3/2dt 

                          (P14 - P2)t±(2-131-1)2)  
                   2(2—p1—p2){01-+p2)t2+2(2—P1—P2)t—(2—P1—P2)} 1/2 • 

Hence a1 and a2 are the unique roots of 

          {^2P1/(2-1)2)} a1+ {(P1+P2)0+2(2--/31—P2)a1—(2—P1—P2)} 1/2, 

          {v'2p2/(2—p1)} a2= fo1d-p2)a2-1-2(2—/31—P2)a2—(2—/31—p2)l 1"2, 

respectively. Now a, and a2 are the abscissa in {(a, b)ja0, b�0} of intersecting 

points of 

       hyperbola : b2= {R(a)} 2 and straight line : {-./275;/(2—p2)} a ; 

       hyperbola : b2= {R(a)} 2 and straight line : {N/2p2/(2—pi)} a , 

respectively. Thus we get 

                           " a1> a2                 a=, a1=a2 if p1 }P2, 
                                                   a2>a1 

which gives 

     a=aT-=(2-1)2)(2—Pi—P2)C2--P2— {2(2+ p1— p2)} 1'21/ 12P7—(P2+p2)(2--P2)2} 

and 

          a=0 ; 

         /3= {A/ 2 (2— P1)R(a)-2P2al /12(2—pi—p2)-- ^ 2 P1R(a)+2P1al 

            {p1(2—p1)—p2(2—p2)} a/ {(2— pl—P2)(2—Pi+Pia)} 

since 

                      R(a)= {A/ 2 /91/(2—P1)} a . 
Then we have 

       /i1-2P1/ {p1+ P2R(a)/,V 2} =2(2—P2)/{2—(1—a)P2} ; 

       k2=2(p2+13P0/02+p1R(a)/4/ 2 =2(2—p1)(P2+p0/02(2—p1)-Fmal. 

The above considerations lead us to the following optimal strategies F*(x) and G*(y):
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 0,0�_x<a 

  F*(x)= fx 2A/2 pa                    i f(P
1+P2)t2+2(2—p1—P2)t—(2—p1—P2)} -"2      j a 2—(1—a)P2dt, a..x-�1; 

 10,0�y<a   G*(Y)=2(2—p ,)(p2+13p,){2—(1—a)p,}                          - F*(y)+
,8ii(Y),a�y�1             (2—p2){p2(2—P,)+Pi} 

and the value of the game v*: 

                   v*=2(2—p2)(1 — a)/ {2—(1—a)p2} —1 . 

   Letting (p1, P2)-- (1, 0); (p1, p2) --*(1, 1), the above conclusions converge to the 

solutions of single-bullet silent-noisy duel and single-bullet silent duel in which A1(t) 
=A2(t)=t, respectively (see Karlin and Dresher) .
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