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Abstract

Let {X,:n=1} be a sequence of i.i.d. Banach space valued
random variables with E[X,]=0 and EjX,[?<co, and let S,=0,
Sp=X1+Xo+ ... +X,, n=1. We prove that if {S,:n=1} satisfies
the LIL in B then the sequence {3, :n=1} satisfies the LIL in
C([0,17, B), where z5(¢) =Stnn+ (nt—[nt]) Xtns41, 0=t=<1 and
C([0,17, By={f:[0,1]—B| f is continuousy. We also use this
result to give an alternative to the proof of the LIL of Brownian
motion in Banach spaces.

1. Introduction

Let B be a real separable Banach space with the norm ||-| and B* be its topo-
logical dual. Throughout, {X,: n=1} always denotes a sequence of i.i.d. B-valued
random variables on a probability space (2, A, P) with E(X,)=0 and E|X,|*<co.
Note that E| X,[|?< oo assures the existence of a covariance operator

T(f, e)=ELf(X.) g(Xn)], f,g=B*

Let ¢ denote the mean zero Gaussian measure on B with the given covariance opera-
tor whenever this measure exists. Let HpSB denote the reproducing kernel Hilbert
space of . This pair of spaces (B, Hy) is often referred to as an abstract Wiener
space [4]. Perhaps one of the most important properties of abstract Wiener space is
the existence of a constant M>0 such that ||x||<M| x|, for every x in H,, where
-1l is the norm of H,. Consequently, through the continuous injection i : H,— B and
the restriction map i* : B* — H% we have the relation B¥*C Hi~H,SB. Let {W() :
t=0} denote p-Brownian motion with the transition probability P(a, A)=p((A—a)/t"?.
It is known that {W () : 0<¢t=<1} induces a mean zero, Gaussian measure P, on the
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measure space (Cg, F), where Cp is the space of continuous functions w from [0, 1]
into B with w(0)=0, and & is the o-ficld generated by the functions w — w({). P, is
called abstract Wiener measure. See [4], [5] and [13] for expositions of concepts of
p-Brownian motion.

In this paper, we are interested in the random walk {7, :n=1} defined by
(1) Na () =Scnint+ (nt—[nt]) Xeniger, 0=t=1,

where S,=0,
Sk=X1+X2+ . +Xk

for k=1 and [7] mean the greatest integer which is less than or equal to ». We say
that the sequence {X,:n=1} satisfies the central limit theorem (CLT) in B if the
distribution of S,/n'? converges weakly to p(L(S,/nY®)>p). We say that the
sequence {S,: n=1} satisfies the law of iterated logarithm (LIL) in B if there exists
a compact, symmetric convex K C B such that

(2) P{lign d(S,/@nLLn)V? K)=0}=1
and

(3) P{C({S,/(2nLLn)"*})=K}=1,
where

d(x, K)=inf||x—yll,
YEK

C({X,}) means the set of strong limit points of the sequence {X,:n=1} in B and
Lln=1 if n=1, 2, =loglogn if n=3. The equivalence among the boundedness of
E|X,li?, CLT and LIL are well known in [6], [15] and [16] when B=R*. However,
when B is a general Banach space, there is no implication among those three concepts
as can be seen in [2], [7] and [10]. The main purpose of this paper is to show that
the LIL of {S,:n=1} in B implies the LIL of {,:n=1} in Cz. We also use this
result to give an alternative to the proof of the LIL of Brownian motion in Banach
spaces. A work of the same spirit but different content is [8] in which £(S./#"%) >y
implies £ (%./n"?) > P, has been established.

The following necessary and sufficient condition for LIL in B will be used in
proving our main result.

THEOREM 1. (Kuelbs [11, p.745]) Let X, X,, -+ be i.i.d. B-valued such that
E(X,)=0 and E|X,|*<oo. Then the sequence {S,: n=1} satisfies the LIL in B if and

only if
(4) P{{S./@nLLn)Y*: n=1} is relatively compact in B} =1.

For other results on LIL in abstract spaces, see [9], [12], [13] and [14].
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2. Main result

Let C([0,1], B) be the space of continuous functions f from [0,1] into B.
C([0,1], B) is a real separable Banach space under the norm

Ifl= sup 17 ®1.

A family
{fa:asA}CC(0,1], B)

is said to be uniformly equicontinuous if
(5) lim sup sup | fu(s) —fa(®) =0

020 acd |s-ti<é

The following lemma (without condition (ii)) is known as the Arzela-Ascoli theorem
when dim (B) <co. However in a general Banach space B, its proof does not seem to
be available in literature. Therefore, we include its proof in the Appendix for the
sake of completeness.

LEMMA 1. (Arzela-Ascoli Theorem) A subset {f. @ acA} is relatively compact in
C([0,1], B) if and only if
(i) sup[fa(0) <o,

(i) for each t in [0,1], the set {f.(t) : a= A} is relatively compact in B
and
(iii) {fa:a<A} is uniformly equicontinuous in C([0,1], B).

THEOREM 2. (Main Result) Let {X,:n=1} be a sequence of i.1.d. B-valued ran-
dom variables such that E(X,)=0 and E|X,|I*?<co, and let {5,:n=1} be as in (1).
Then {S.:n=1} satisfies the LIL in B if and only if {y,:n=1} satisfies the LIL
n Cpg.

Proor. The sufficiency of the theorem is trivial. Therefore we shall only prove
the necessity. By Lemma 1 and Theorem 1, this is equivalent to show that the
following three conditions hold.

(i) P{{n.(0)/2nLLn)**: n=1} is bounded in B}=1;

(1) P{{n.(t)/2nLLn)**: n=1} is relatively compact in B} =1 for each # in [0,1];
and

(i) P{{n./@nLLn)"*: n=1} is uniformly equicontinuous in Cg}=1.

Condition (i) follows immediately from the fact that for n=1,2, -+ P{%,(0)=0}=1.
The validity of (ii) and (iii) are treated in Lemma 2 and Lemma 3 respectively.

LEMMA 2. Let {X,:n=1} and {9.:n=1} be as in Theorem 2. If {S,:n=1}
satisfies the LIL in B then for each t in [0, 1]

(6) P{{n.®/@nLLn)Y®: n=1} is relatively compact in B}=1.
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PrRoOF. By Theorem 1, there exists a compact, symmetric, convex K C B such
that P(2,)=P(£2,)=1, where

Q,={lim d (S,/(2nLLn)"?, K)=0}

and
2,={C({S./@nLLn)"*})=K}.

Now let w2, N\ 2, and t=[0,1] be given (when t=0 the conclusion is trivial), and
let K=a,K={a,y: ysK}, where

a¢=linm (Cnt]LL[nt]/nLLn)Y2.

We claim that

(7) lim d (7, (t, )/ (2nLLn)*", R)=0
and
(8) C({na(t, w)/(@nLLn)"?}) =K.

These two conclusions will then imply (6), by Theorem 1.
For the proof of (7), we simply observe that
lim[| Xtno141 (@) / (2nLLn) 2| =0.
Then
lim inf |9, (¢, @)/ (@nLLn)Y*—z|
n yEK
=lim Jé‘;g || Stnsy (@) / 2[nt]LL[nt]) V*—y|
+lim| Xtnere: (@) / @nLLn) V2| =0.
For the proof of (8), let zeK. Then z=aq, y for some yeK. By the assumptlon,
we have a subsequence {n(k): k=1} of {n :n=1} such that
lml|Sncs (w)/(2n (k) LLn (k) *—y|=0.
This implies that

lim|7nce, (0)/ (2n (k) LLn (k) *—z| =0

by the same argument as in the proof of (7).
REMARK 1. The proof of Lemma 2 actually yields that if {S, : n=1} satisfies LIL
in B then
(9) P{H{a(t) —=9a(s)/2(n,t,5): n=1} is relatively compact in B} =1
for any s, ¢ in [0, 1] with s<¢, where
A(n, t, s) ={2([nt]—[ns]) LL([nt]—[ns])} "2

This remark will be used in the proof of Lemma 3.
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LEMMA 3. Let {X,:n=l} and {5,:n=1} be as in Theorem 2. If {S,:n=z=1}
satisfies the LIL in B then

10y  P{{n./(@nLLn)¥*: n=1} is uniformly equicontinuous in Cg}=1.

ProOF. Let 8>1 be fixed, and let n,=[8"]. We shall prove that
(A1)  P{{%a,/@n,LLn,)"*: r=1} is uniformly equicontinuous in Cg}=1.
Let I'>0 be such that for n=1 and s,t=[0, 1]
(12) P{llga®) = 7o () 1> 1"2(n, t, 5)} =0.

This I" exists by Remark 1. For r=1,2,.- and m, an arbitrary positive integer,
define A, by

oo om
A‘r: U U Arkm:
m=mo0 k=1
where

Arkm={l7a, ]27™) =70, (k=D 2"™) | >en 2n, LLn,)"?}

and e,=2"™2[". It is clear that (11) holds if P{A, i.o.in }=0 since ¢, | 0 as m — co.
Now

P(Ayem) =P{llnn, R27™) — 9, (kR—1)27™) | /2 (15, k27™, (k—1)2"™) Zen8 (r, m, k) }
where
O(r,m,k)=@2n, LLn.)"*/A(n,, k2™, (k—1)27™)
and A(n,t,s) is as in (9). We choose m, sufficiently large such for m=m,

A(n,, k2™, (k—1)2"™) <2-™2{2n, LLn,} V=

Then
PA)S 5 3 P(Arsm)
< 33 Pllya 2™ —7a, (=D 2™ /A n,, k27", D2 ™) m2 )
= 33 Pl 627 =7, (=12 [>T 2(n,, k27", =127}
=0 by Remark 1 for »=1,2,--.
Consequently

> P(4,)=0.

Thus by Borel-Cantelli’s lemma, we have proved P{A, i.o.in r}=0.

We next want to prove that for each ¢>0 there exists a fixed S,>1 such that
for all B satisfying 1<B8=5,
(13 P{C, i.o. in r}=0,
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where
Cr={ max [ pn, -/ @np_y LLn,_)V*—n,/ (2RLLR)?|..>¢}.

15

This together with (11) will then conclude the lemma. Define

Dr:{ max Hr/‘nr-l—‘y/’k”w>5(2nr—1LLnr—l)l/z}

np_1sksn,
and
E,={ max 76 (@RLLE) = (21, LLn,_)"[>¢/2}.
np-13ksn,
Let a=¢/[4(pY*—1)]. We have

P(E,) =P{max|y.|->a@n, LLn,)"*}

in

glp{ﬂmllmm(szLk)l,fz}

A

S5 P{_sup_[7:() =74 () | >a QRLLE)

o< s-¢ls1

E]
3

IIA

P{ sup () =74(s) |>a(2RLLE)"/2"}

1 0<|s—tis2™

x>
I

for any mz=1.
Let f>1 be sufficiently close to one such that
a/2m=¢g/2m*2 (fe-1)>T,
where I is as in (12). Then
(14) P(E;)

n

=

A

P{ sup lns(®)—ns(s)I>I"(2kLLE)"*}

1 0<|s—t1<2™ T

x|
il

= 5 5 Pl (2™~ (G-D2™ > T QRLLE™)

=0 by Remark 1.

Now

P{ sup |Y,;() =Y. ;(&)[>y(r, )/2"},

k=ny_y j=1 0<Is—tls2™ ™

A
[\
™
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where
Yo i =y y0i ™ ey
and
7(7; j):(z(nr—nr—l) LL(n'r—nr—l))lﬁz/zlj(/3—1)1/2-
Choosing S>1 sufficiently close to 1 so that
€/j2m+2(,8_1)1/2>[',

where I is as in (12), and applying Remark 1 and argument as in (14), we have

P{ sup Y, ;) —=Y, ;) >7(r, j)/2"}

0<tg—t <2~ M

=P{ sup . 1Y, ;@ =Y, ;) I1>y(r, ) /2™

o<Is—t|s2™

=P{ sup |Y,;0)—Y,;(9l>8()}

o<is—tise—m

= 8 PUgnros 5 (27 =y (=D27 > $(1) /2)

IA

2 PU o512 =7y (=D 2 >4 () /2)

=0,
where
o =IQCn,—n,.) LL(n,—n,_ )"

Thus P(D,)=0. Now

1M

P(C)S 2 P(D)+ 3 P(E)=0.

1

By the Borel-Cantelli lemma, we have P(C, i.o0.in ) =0. This completes the proof of
Lemma 3.

3. An application

Let {Z,:n=1} be a sequence of independent copies of Z, where Z is the mean
zero, B-valued Gaussian random variable whose distribution is x#. We define

(15) W () = [zt:j Zi+ (nt—[nt]) Zengsr, 01

Note that for each n=1, 2, --- the stochastic process {W,({®) :0=i=<1} is essentially
the polygonalized Brownian motion. That is

.(H-wo
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for (=1,2, -, n, and is linear on intervals [({—1)/n, I/n]. It is known from [14] that
[$ 2 n=1)
=1

satisfies the LIL in B. Therefore the sequence {W, : n=1} satisfies the LIL in Cz by
Theorem 2. In this section, we shall illustrate an alternative to the proof of the LIL
for Brownian motion in Banach space given by Kuelbs and LePage [13].

THEOREM 3. (Kuelbs and LePage [13]) Let {W(t) :t=0} be p-Brownian motion
in B. Then the sequence {&,:n=1} satisfies the LIL in Cp, where &,(t)=W(nt),
0=t=1. Furthermore the compact, symmetric convex K C Cp described in (2) and (3)
can be characterized as follows:

(16) K={feCs: f(t)=H, for each t<[0, 1], and
> . La/an =3 (n@Tar=1),

where {xf: j=1}C B* is such that the set

{Saxf(x)x‘fﬂ(x) : ]21}

forms a complete orthonormal system for H,.
PRrOOF. The characterization of the set K in (16) is from Lemma 4 of [13].

It remains to show that

P{lim||&,—W,llo/ 2n LLn)¥?=0} =1.

This together with the fact that {W,:n=1} satisfies the LIL in Cz will then imply
that {&,: n=1} satisfies the LIL in Cp.

Let {e,:n=1} be a sequence of positive real numbers whose precise values will
be determined later. We have

P{llga—=Wallo/ 2nLLn)"*ze,}

<SPl sup  [W(nt)— W)=, 2nLLn)")

k=0 k/nsts(k+1)/n

= Z,P{ sup || (nt) —nt W (1) | Ze, (2nLLn)"},

0stsn”

since
ROSL

and is linear on [{/n, ((4+1)/n] for [=0,1,2, .-, n; n=1,2, ---.
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Now

(17) P{ sup

i
0stsn~1

[W (nt) —nt W(1) | Ze,(2nLLn)"?)

<P{ sup 1H W (nt) —nt Wnt) | =e,2nLLn)"?*/2}

0stsn”~

+P{ sup |nt W(nt) —nt W) |=e,(2nLLn)"?/2}

0stsn~
S5P{|W(Q)l|=ze,(2nLLn)"?/4}.
From Fernique’s estimate [2], there exist constants y>0 and C>0 such that
exp {riWw @D I} =C.

Applying Chevyshev’s inequality and Fernique’s estimate to the last expression in (17),
we have

P{ sup ) 1Wint) —nt W(Q) || =e, (2nLLn)"?}

0=tsn~
<5Cexp {—ye.’nLLn/8}. Choose ¢,=(LLn) "2

Then ¢, | 0 as n — oo and we have

5 PlEa—Wal/ @nLLn) e}

< ni;SCn exp {—yn/8} <co.

By Borel-Cantelli’s lemma, this implies that

P{lim||§n—Wal/ (2nLLn)"*=0} =1.

Appendix: Proof of Lemma 1

The necessity of Lemma 1 follows exactly as that of the Arzela-Ascoli theorem
in C[0, 1] (see e.g. [1, p. 2217). We only have to prove the sufficiency.

Now assume that conditions (i)—(ii) hold. Let ¢>0 be given. Choose & large
enough that

sup  sup kllfa ) —fa@®lI<e.

ac A 18-tIK<1/
Since
1£eOI=1 £+ 3 1 fulit/B) = G=DE/B,
it follows that

(18) sup sup|f()[|=C<oo.  Let K:g{fa(i/k) tacA}.
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Note that K is relatively compact (and hence is totally bounded). Therefore there
exists a finite set Q C B such that for any x<=K, |x—%||<e for some ¥=Q.

Now let ¢ be the set of functions f from [0, 1] into B such that f(i/k)=Q for
i=0,1,2, -,k and f is linear on [(i—1)/k,i/k] for i=1,2, -, k. Note that ¢ is a
finite set. We claim that ¢ is a 5e-net with respect to A. Then A is totally bounded
and therefore is relatively compact since C({0, 1], B) is complete. To show this, let
fa€A. Then | f,(i/k) | <C for i=0,1,2, -, k, and there exists g&¢ such that

| fa(i/R) —g (i/R) 1 <i=0,1,2, - .
Now let ¢,&[0, 1] be such that

I fa—gllo=1l fu(to) —g (o) I,
and let 7, be such that
To/kSt < (i,+1) /.
Then | g(io/k) —g () || <3¢ and

1 fa—glle= | fa(to) = Falio/ D) I+l fu o/ B) — g o/ B) |
+lg (to/k) — g (t0) | <e+e+3e=5e.

This completes the proof of Lemma 1.
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