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                    Abstract 

   Let  an  : n�1} be a sequence of i.i.d. Banach space valued 
random variables with E[X„]=0 and Ell X.112<00, and let So=0, 
Sn= Xi- F X2+ . . . + Xn, n�1. We prove that if {Sn : n_.�1} satisfies 
the LIL in B then the sequence {77,, : n�.1} satisfies the LIL in 
C([0, 1], B), where 77n(t)=S[nt]+ (nt—[nt]) X[nt]-14, Ot51 and 
C([°, 1], B) --={ f : [0, 1] ----. BI f is continuous}. We also use this 
result to give an alternative to the proof of the LIL of Brownian 
motion in Banach spaces.

   1. Introduction 

   Let B be a real separable Banach space with the norm 11.11 and B* be its topo-
logical dual. Throughout, {Xn : n�1} always denotes a sequence of i. i. d. B-valued 
random variables on a probability space (Q, LA, P) with E(Xn) =0 and Ell X.112<00. 
Note that Ell X.112<00 assures the existence of a covariance operator 

                   T(f, g).---=E[f (Xn)g(Xn)1, f, gEB*. 

Let a denote the mean zero Gaussian measure on B with the given covariance opera-
tor whenever this measure exists. Let HpCB denote the reproducing kernel Hilbert 
space of e. This pair of spaces (B, Hp) is often referred to as an abstract Wiener 
space [4]. Perhaps one of the most important properties of abstract Wiener space is 
the existence of a constant M>0 such that 11x1I�MIlx11, for every x in 1-1,, where 

11.11, is the norm of Hi,. Consequently, through the continuous injection i : 1-11. —J3 and 
the restriction map i* : B* —f 1-1':, we have the relation B*CIP:2,===H, C B. Let {W(t) : 
t�0} denote i-Brownian motion with the transition probability Pt(a, A)=1i((A—a)/t"2). 
It is known that 1W (t) : 0�t�11 induces a mean zero, Gaussian measure P„, on the
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measure space (CB,  g), where CB is the space of continuous functions w from [0, 1] 
into B with w (0) =0, and F is the a-field generated by the functions w w (t). P„, is 

called abstract Wiener measure. See [4], [5] and [13] for expositions of concepts of 

p-Brownian motion. 

   In this paper, we are interested in the random walk {72„ : n�1} defined by 

  ( 1 ))27,(t)=S:nt]-1-(nt—Entl)X[nt7+1, 

where So=0, 

                           Sk=Xi+X2+ ••• + X k 

for k�1 and [r] mean the greatest integer which is less than or equal to r. We say 

that the sequence {X,, : n�1} satisfies the central limit theorem (CLT) in B if the 
distribution of Snl n"2 converges weakly to p(..0 (Snln112) p). We say that the 

sequence {Sn : n�l} satisfies the law of iterated logarithm (LIL) in B if there exists 

a compact, symmetric convex K C B such that 

 ( 2 )Pllim d (Snl (2nLLn)112, K) =0} =1 

and 

 (3)P IC ({Snl (2n LLn)"2}) =K} =1, 

where 

                       d (x, K) =inf x yll, 
                                                  yEK 

C({X„}) means the set of strong limit points of the sequence {X„, : n�l} in B and 
LLn=1 if n=1, 2, =log log n if n�3. The equivalence among the boundedness of 

E CLT and LIL are well known in [6], [15] and [16] when B=Rk . However, 

when B is a general Banach space, there is no implication among those three concepts 
as can be seen in [2], [7] and [10]. The main purpose of this paper is to show that 

the LIL of {Sn : n�1} in B implies the LIL of {72,, : n�1} in CB. We also use this 

result to give an alternative to the proof of the LIL of Brownian motion in Banach 

spaces. A work of the same spirit but different content is [8] in which ...C(Sn/n1/2)p 

implies (72n1 n112) 13n, has been established. 

   The following necessary and sufficient condition for LIL in B will be used in 

proving our main result. 

   THEOREM 1. (Kuelbs [11, p. 745]) Let X1, X2, • •• be i. i. d. B-valued such that 

E(Xn) =0 and EllX,,I12 <co. Then the sequence {Sn : n�1} satisfies the LIL in B if and 

only if 

 ( 4 ) P{{S,i1(2nLLn)1/2 : n-1} is relatively compact in B1 =1. 

   For other results on LIL in abstract spaces, see [9], [12], [13] and [14].
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   2. Main result 

   Let  C([0, B) be the space of continuous functions f from [0, 1] into B. 

C([0, 1], B) is a real separable Banach space under the norm                      

lIf II.= sup II.f (t) 

A family 

                     Ifa: a EAI CC ([O, 1], B) 

is said to be uniformly equicontinuous if 

 ( 5)lim sup sup II fa (s) fa(t) 11 =0 
                                   6,0 aEA Is-tK5 

   The following lemma (without condition (ii)) is known as the Arze1A-Ascoli theorem 

when dim(B) <00. However in a general Banach space B, its proof does not seem to 
be available in literature. Therefore, we include its proof in the Appendix for the 

sake of completeness. 

   LEMMA 1. (Arzeli-Ascoli Theorem) A subset {fa: aE AI is relatively compact in 

C([0, B) if and only if 

   (i) supll fa(0) II <00, 

   (ii) for each t in [0,1], the set ffec(t) : aEAI is relatively compact in B 
and 

   (iii) {fa : aE is uniformly equicontinuous in C([0, B). 

   THEOREM 2. (Main Result) Let {X„ : n�1} be a sequence of i. i. d. B-valued ran-

dom variables such that E(X,i)=0 and EllX„Ir<00, and let : n�1} be as in (1). 
Then {Sn: n�1} satisfies the LIL in B if and only if {77,, : n�1} satisfies the LIL 
in CB. 

   PROOF. The sufficiency of the theorem is trivial. Therefore we shall only prove 

the necessity. By Lemma 1 and Theorem 1, this is equivalent to show that the 

following three conditions hold. 

   ( i ) P{{)7,,(0)/2nLLn)1l2 : n,_�_11 is bounded in B}=1; 

   (ii) P{ {Yin (t) 12n LLn)112 : n �1} is relatively compact in B} =1 for each t in [0, ; 
and 

   (iii) P{{777,1(2nLLn)'12 : n�1} is uniformly equicontinuous in CB} =1. 

Condition (i) follows immediately from the fact that for n=1, 2, ••• P{72,,(0) =0} =1. 

The validity of (ii) and (iii) are treated in Lemma 2 and Lemma 3 respectively. 

   LEMMA 2. Let {X7,: n>1} and 172.: be as in Theorem 2. If IS7i: 

satisfies the LIL in B then for each t in [0, 1] 

 (6) 13{{22„(01(2nLLn)'12 : n_.:11 is relatively compact in B1=1.
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   PROOF. By Theorem 1, there exists a compact, symmetric, convex K C B such 
that  P(Di) =P(Q2) =1, where 

                 Q1= {lim d (S,/ (2n LLn)"2 , K) =0} 

and 
                 D2= IC ({S./ (2nLLn)1/2}) =K} . 

Now let co E S21 11 Q2 and tE[O, 1] be given (when t=0 the conclusion is trivial), and 
letR=atK=-{aty : yEK}, where 

                   at=lim ([nt] LL[nt]InLLn)"2. 

We claim that 

 (7)lirn d7(t, (0) / (2n LLn) 1/2,R                           ,,)=0 

and 

 ( 8 )C({77n(t, 0)) (2nLLn)1121)=R. 

These two conclusions will then imply (6), by Theorem 1. 

   For the proof of (7), we simply observe that 

                    limit XEnt]+1(0)) / (2n LL011211 =0. 

Then 
             lim inf 11 77n (t, (0) 1 (2nLLn)112 — zll 

                   n yEK 

                �_lim inf at II S[nt] (w) / (2 [nt] LL [nt]) "2—y11 
                        n yEK 

                  +1117111 X En t3+1 (0)) / (2n L Ln) 1/211=0. 

   For the proof of (8), let zER. Then z=a, y for some yEK. By the assumption, 

we have a subsequence { n (k) : k _�.1} of In : n�1} such that 

                lim II S, k) (0)) / (2n (k) LLn (k)) 112 — y 11=0. 

This implies that 

                  limll Yin( k) (t) / (2n (k) LLn (k)) 1/2 —Z11 =0 

by the same argument as in the proof of (7). 

   REMARK 1. The proof of Lemma 2 actually yields that if {Si, : n�1} satisfies LIL 

in B then 

  (9) P{ { (7 7n(t) n(s)) /2 (n, t, s) : n� 1} is relatively compact in B} =1 

for any s, t in [0, 1] with s<t, where 

              2 (n, t, s) = {2 ([nt] [ns]) LL ([nt] — Ins]) 11/2. 

This remark will be used in the proof of Lemma 3.



A Random Walk and its LIL in a Banach Space85

   LEMMA 3. Let  {X7, : n�1} and {yin : n�1} be as in Theorem 2. If {S„ : n�1} 

satisfies the LIL in B then 

 (10) P{{)27,1 (2nLLn)"2 : n�1} is uniformly equicontinuous in CBI -=1. 

   PROOF. Let i3>1 be fixed, and let n,-=1)3r1. We shall prove that 

 (11) Pl{rinr/ (2n r LLn r)"2 : r�1} is uniformly equicontinuous in CB} =1. 

Let r>o be such that for n _�1 and s, t [0, 1] 

 (12)PIII)7.(t) —7)n (s) II >E2(n, t, s)} =0. 

This I' exists by Remark 1. For r=1, 2, ••• and mo an arbitrary positive integer, 
define Ar by 

                                           00 27Th 

                           A r= U U Ar km,                                                    ni=m0 k=1 

where 

           Ar km= {1172 nr(k2-77) —7)nr ((k-1)2-m) II >Cm (2n r LLn 7)112} 

and sm=2-m12i. It is clear that (11) holds if P{Ar i. o. in r} =0 since em I 0 as co. 

Now 

   P (A r km) =P{ 77nr (k2-m) —)7n, ((k —1)2') II/A(nr, k2-m, (k-1)2-m)�sme(r, m, k) 

where 

               (r, m, k) = (2n, L Ln r)11 (n r, k2- m , (k —1)2-m) 

and 2(n, t, s) is as in (9). We choose mo sufficiently large such for m�nlo 

                   2 (n , k2- m , (k —1)2-71)2-mi2{2n,LLnr}1/2. 
Then 

                        00 2771 

     P(Ar)E E P(Arkm) 
                          M=7Tto k=1 

                 co 2m 

              E E P{1177nr(k2') — )nr((k —1) 2-m)II 1 2(n r , k2- m , (k —1)2-m)sui2-7Thi21 
                          nt=nto k =1 

                 00 2m 

          = E E P111. 7. (k2- — r ((k —1)2') II >TA (n , k2- ,(k-1) 2-m)} 
                      m=mo k=1 

            =0 by Remark 1 for r=1, 2, • . 

Consequently 

                         E P (Ar) =O. 
                                                          r =1 

Thus by Borel-Cantelli's lemma, we have proved P {Ar i. o. in r} =0. 

   We next want to prove that for each e>0 there exists a fixed 40>1 such that 
for all /3 satisfying 1 < P �-Po 

 (13)P{Cr i. o. in r} =0,
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where 

 C7=1  max 11 )2nr-1/ (2nr LLnr --1)1/2 ) kl (2kLLk)1/211oo>s} 

This together with (11) will then conclude the lemma. Define 

                Dr={ max 1112.7.-1-72k11.>E (2n r_i LLnr-i)"21 

and 

           Er={ max 1112k ((2kLLk)-1/2— (2nr_1LLnr-0-11211-> 6/21 . 
                                   nr_i5.7ir 

Let a=s/[4(13112-1)]. We have 

       P(Er)P{ imax1177k 11.0>a (2nr LLnr)"} 

                            nr 

             E1P{11721,11.>a(2kLLk)1"} 
                             k= 

             E ^E P{ sup 117 k (t) —7 k >a(2kLLk)112}                                                )1/ 
                          k=1 0<ls-t151 

             E ^E P{ sup I172k (t) 2 k (S) II >a (2kLLk)112127111 
                             k=1 

           for any m�1. 

Let p>i be sufficiently close to one such that 

                       a/2m=s/2"2(131/2-1) >r, 

where P is as in (12). Then 

 (14) P(Er) 

           ^E P{ sup 117)k(0-77k(s) II >r (2k.uk)112} 
                     k o<Is-t1<2_m 

                    nr 2M 

              E E PO/2k (j2-17) —7)/z ((..1 —1) 2') >r (2kL.Lk)/21                           k=1 j =1 

             =0 by Remark 1. 

Now 

         P(Dr) 

                        nr k-n r 

           5_ E E P{11Yrill->r(r,i)} 
                       k=nr_i j =1 

                            nr k-n r _ k+1 

              E E P{ sup II Yrj (t) — r (s) >r (r, /2m}, 
                                       j=1
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where 
                                     Yr.?--72                                                 nr-i+i 72nr-i+j-1 
and 

 r  (r, j) = (2 (n r — n r -1) LL (n r — n r- i))1' 2 4 j (i3-1)1; 

Choosing ,3 >1 sufficiently close to 1 so that 

                         El j2m+2 (3-1)"2> , 

where r is as in (12), and applying Remark 1 and argument as in (14), we have 

       P{ sup II Yri(t) — Yr, (s)11>r (r , j) / 27n1 
                  0<ls-t K2-74 

            P{ sup II Yri (t) —Yr ,/ (s) II > r j) /2m} 
                               OKIs-t12-m 

          ^P{ sup II Yri (t) Yri (s) II > (r)} 
                                0<ls-t12-m 

                       2m 

            ^E P{11.72,_1+; (12-m) —7inr_i+i ((l-1) 2-m) II > (r) /2} 

                           27Th 

               E P{1177.7—i+J-1(12-71)-72nr-i+j-i ((1-1) 2-m) II > c (7') 121 

                                , where 

                      (r)=r(2(nr—nr-i)LL(nr—nr-1))"2. 

Thus P(Dr) =O. Now 

               E P (Cr) E P (D r) E P (E r) =0 
            r =1r =1r =1 

By the Borel-Cantelli lemma, we have P(Cr i. o. in r) =0. This completes the proof of 

Lemma 3. 

   3. An application 

   Let {Zn, : n�1} be a sequence of independent copies of Z, where Z is the mean 

zero, B-valued Gaussian random variable whose distribution is a. We define 

                                  Ent] 
  (15)IT77,(t)-= E Z (nt —[nt]) ZEnt]+1, 0�-t�1. 

                                          i=o 

Note that for each n=1, 2, ••• the stochastic process {1477,W : 0�t�1} is essentially 

the polygonalized Brownian motion. That is 

                        w„(-7-,)=- w (0
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for 1=1, 2,  •••, n, and is linear on intervals [(1-1)/n, I/ n]. It is known from [141 that 

                         Zi : n�1} 

satisfies the LIL in B. Therefore the sequence {Wn : n�1} satisfies the LIL in CB by 

Theorem 2. In this section, we shall illustrate an alternative to the proof of the LIL 
for Brownian motion in Banach space given by Kuelbs and LePage [13]. 

   THEOREM 3. (Kuelbs and LePage [131) Let {W (t) : t�0} be Au-Brownian motion 
in B. Then the sequence {en : n�l} satisfies the LIL in CB, where en(t)=W (nt) , 
0�t�1. Furthermore the compact, symmetric convex K C CB described in (2) and (3) 

can be characterized as follows : 

  (16)K= f CB: f (t) for each tE [0, 1], and 

                E f [(d 1 dt) (f) (t)12 (it �1} , 
                         j 0 

where {x7 : j�1} C B* is such that the set 

                     {.Bx.I'(x)xdp(x): j>_1} 
forms a complete orthonormal system for 

   PROOF. The characterization of the set K in (16) is from Lemma 4 of [13]. 

It remains to show that 

                   P Dim II en — (2nLL0112=0} -=1. 

This together with the fact that {Wn : n�l} satisfies the LIL in CB will then imply 

that {en : n-�1} satisfies the LIL in GB. 

   Let {en : n�1} be a sequence of positive real numbers whose precise values will 

be determined later. We have 

       Pa en— WnII-/ (2nLL0/2 

               P{ sup II W (nt) — W n (t) s n (2n LLn)1121 
                         k=0 k/n5t(k+1)/n 

               P { sup II W (nt) — nt W (1) IIEn (2n LLn)1121 
                         k=0 ost _-1 

since 

                  Wn(1)=W(/) 

and is linear on [1/n, (1+1)/n] for 1=0, 1, 2, •••, n; n=1, 2, ••• .
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Now 

 (17) P{ sup  II  W  (nt) — nt W (1) 11 sn(2n LLn)1/2} 

          �P{ sup II W (nt) —nt W(nt)11�-er,(2nLLn)' 2/2} 
                                 Ot5.n-1 

          +P{ sup lint W(nt)—ntW(1)11-E7,(2nLL0/2/21 
                           Mt‘n-1 

          �5PLIW(1)11=>E7,(2nLLn)/21 41. 

From Fernique's estimate [2], there exist constants r> 0 and C> 0 such that 

                     exp IrlIW (1) In C. 

Applying Chevyshev's inequality and Fernique's estimate to the last expression in (17), 

we have 

          P{ sup II W (nt) —nt W (1) II >=-En(2nLLn)1721 

               �5C exp — r sn,2n LLn18} . Choose sii= (LLn)-1/2. 

Then 6. 1 0 as n —> co and we have 

                   E P111.—W.11-/(2nLL01/2�Eril 
                                      n=1 

                        E 5Cn exp {—rn/8} <c0. 
                                                   n=1 

By Borel-Cantelli's lemma, this implies that 

                  P{limll (2nLLn)1/2=0} =1. 

   Appendix: Proof of Lemma 1 

   The necessity of Lemma 1 follows exactly as that of the Arze1A-Ascoli theorem 

in C[0, 1] (see e. g. [1, p. 221]). We only have to prove the sufficiency. 

   Now assume that conditions (i)—(iii) hold. Let s> 0 be given. Choose k large 

enough that 
                   sup suP II fa (s) —fa (t) II <E. 

                                       aEA Is-tl<1/k 

Since 

                                           k 

            IIfa (t) II 5_ II fa (0)1I + E II fa (it/k) — fa ((i --1)tlk)II, 

it follows that 

 (18)sup sup ll f (t) II =C< co. Let K= U {Milk) : a E . 
    Ogt1 aEAi=0
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Note that K is relatively compact (and hence is totally bounded). Therefore there 
exists a finite set Q  CB such that for any xEK, for some ".iE Q. 

   Now let 0 be the set of functions f from [0, 1] into B such that f(ilk) E Q for 
i=0, 1, 2, • • k and f is linear on [(i-1)/k, ilk] for i=1, 2, • •-, k. Note that is a 
finite set. We claim that 95 is a 5E-net with respect to A. Then A is totally bounded 
and therefore is relatively compact since C([0, 1], B) is complete. To show this , let 
faGA. Then fa(ilk)II�C for i-=0, 1, 2, • • k, and there exists gE0 such that 

                    Il fa(ilk)—g(ilk)II<i=0, 1, 2, • •-, k. 

Now let toE [0, 1] be such that 

                    Ii fa—g11—=11f.(4)—g(t0)II, 

and let io be such that 

                          jo/k--51<(i0-1-1) lk. 

Then II g(iolk) —g(t0) II < 3E and              

II fa—g11-_- 11 fa(t0)—fa(io/k)11+11.f.(jolk)—g(i0/k)11 

                   +Ilg(io/k) —g(t0)<e+s+3e=5s. 

This completes the proof of Lemma 1.
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