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Abstract

   This work is concerned with an asymptotical distribution of 
eigenvalues of sparse random matrices. It is shown that the semi-
circle law which is known for random matrices is also valid for the 
sparse random matrices with sparsity nIN=o(1), where n is the 
matrix size and 2N the number of non-zero elements of the matrix. 
The degree of degeneration is also estimated for the matrices with 
2N—cn (c>0: const.) using knowledge of random graphs.

   I. Introduction 

   Random matrices have been studied concerning the excitation spectra of nuclei 

in the field of experimental physics. Energy levels of a system are considered to 

be described by the eigenvalues of an Hermitian operator, i. e., the Hamiltonian. 
And in general one must treat the operation in the infinite dimensional Hilbert 

space. However to avoid the difficulty in treating such operations, we make ap-

proximations by truncating the Hilbert space except a part that is relevant to the 
problem at hand. Thus, representing the Hamiltonian by a finite dimensional matrix 
and solving the eigenvalue equation : 

                              Hi=  Eigri 

we get all the eigenvalues Ei (energy levels) and the eigenfunctions Yri, which 

yield any physical information about the system in principle. In actual situations, 
however, since we do not know the Hamiltonian exactly and since, even if we do 
it, it is too complicate to solve it, we make a statistical hypothsis on H; the 

hypothesis that the elements of the matrix are random variables with appropriate 

distribution functions. The case of Gaussian distributions of the matrix elements 

has been treated analytically by Hsu, Mehta, Ginibre, and others. See L. M. Mehta 

[1] about the historical detail. 
   One may often face with various situations in which he treats random matrices
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in engineering or biology as well as in  physics  : They are relevant to solving 

problems concerning the behaviours of systems of a large number of interacting 
elements. 

   A biological organization is composed from an enomous number of elements 

such as protein. A collection of organella or cells composed from protein serves 

as a unit in a higher level system. It seems that there exists a key which unlocks 

a door through which one may reach comprehension of biological organization in 

some sense in the dynamical behavior of a system of many interacting elements 
of any level and in the hierarchical structures of such systems as one may ap-

preciate from systems of proteins to society via those of cells, organs, individuals 
or troop of individuals, etc. 

   Since interaction between elements is in general nonlinear and the number of 

elements concerned is usually very huge, it is impossible to treat directly the 

dynamical equation describing the interacting system. In addition, we do not know 

the exact feature of interaction as we did not know the Hamiltonian. In biological 
system, it is more probable to consider that the interaction between units of a 

system at any level is determined in random manner except a small number of 

parameters which specify the randomness because of, for instance, the economy 
of information carriers such as DNA and that any unit or element of the system 

can not interact with all the others because of physical or geometrical restrictions 

on the units or the system. Thus, the first approximation of the system equations 

of the interacting elements gives random sparse matrices and we get information 

about the systems through the average property of the matrices. 
   The distribution function and the asymptotic distribution function (as the size 

n of the matrix tends to infinity) of the eigenvalues of random Hermitian matrices 

whose elements are subject to independent Gaussian distributions are already 

known. Especially, the latter is known to be a so called semi-circle distribution for 
a variety of distribution functions of the matrix elements. 

   In what follows, we will consider the asymptotic distribution of the eigevalues 

of sparse random matrices and also the degree of the degeneration of the matrices 
in relevant to the sparsity of the matrices, i. e., the ratio the size n of the matrix 

to the number of non-zero elements 2N(n) of it. The following discussion is partly 

parallel to that of W. H. Olson and V. R. R. Uppuluri [2] in the first half and in the 
latter half, we will make use of the results of the investigation on random graphs 

by P. Erdiis and A. Renyi [3].

   II. Preliminaries 

   Let us consider a random graph F„ ,, consisting of n labelled vertices, P1,172, 
••• P„ and N unlabelled undirected edges without multiplication. Let N edges be 
chosen among (D possible edges at random. Thus the number of the ways of such 

choice is
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and there are the same number of graphs with n vertices and N edges. Assume 

that each of the graphs occurs at equi-probability 

                       ((3))1                             ^N 

Next let us define a random 0-1 matrix  Er= associated with a random 

graph rn,, as follows : 

                  1: if there exists an edge between Pi and Pf, 

            u�i,;<7,){ 0 : otherwise . 
We also define a random weighted matrix Ar= (aii)7,;., associated with T'n,N as 
follows : 

                     xj1, for all i and j such that 60=1, 

                     0 , for all i and j such that sii=0, 

where xils are random variables defined on some probability space. Note that Ar 
is a symmetric matrix. 

   We will investigate the asymptotical property of the eigenvalues of random 
weighted matrices associated with random graphs. Let us denote the eigenvalues 
of an nxn matrix A by A1(A),22(A),••• ,An(A). We give the following lemmata. 

   LEMMA 1. Let A be an nxn matrix and suppose e>0 is given. Then there exist 
a 5>0 and a permutation a of {1,2,••• , n} such that for any matrix D= (dii)7,1.1 such that 

                E Idifj<3, 
                                j = 1 

                     12i(A)--Ac(i)(A+D)i<E, i=1,2,••• ,n. 

   A proof of this lemma may be found in A.M. Ostrowski [4]. 
   LEMMA 2. The ordered eigenvalues 21�22�.••�2n are continuous functions of ele-

ments of a symmetric matrix A. 
   See (2) for the proof of this lemma. 

   According to these two lemmata, denoting the eigenvalues of a random sym-
metric matrix Ar by 21(24F) �-22(Ar)�•-• �-An(Ar),Ai(Ar),i=1,2, ••• ,n are also random 
variables because these are continuous functions of the elements of Ar which are 
themselves random variables. 

   Suppose that a random variable X and a sequence of random variables {Xn}, 
n=1,2, ••• , are given and let F and Fn be distribution functions of X and X,,, re-
spectively. Let the k-th order moments of the distibution functions F and Fn, if 
they exist, be 

                        ak=f.ec/F(x), 
                                             Rl 

                             ak ,n=xkdFn(x), 

respectively. Then we have :
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   LEMMA 3. If, for all  k�_ko arbitrary but fixed, the sequence finite, then 

this sequence converges for every value of k and if the sequence {ak}riuniquely deter-
mines F, then Fn(x)-+F(x) as n-÷oo at all points of continuity of F. 

   A proof of this lemma may be found in M. Loeve [5]. 
   Let (S2, g, P) be an arbitrary probability space, where S2 is any space, 2 is a 

Borel field of subsets of S2 and P is a probability measure defined on 2. Let 

X= X(a)) be a random variable defined on S2. An empirical distribution function of 

a set of random variables {X1,X2,•-• ,Xn} is defined by a mapping Wm: 

[0,1] such that for any wEQ 

                          W n( X) (0 .)) =- n2_,[Xx)](W) 
                                                                       t=i 

where //3 denotes the indicator function of a set B. 

Suppose that 

                                            1n              Mk,n(w)= fRiXkdWn(X) (W) =EM(w) , v(0[2. 
Let W(x) be a distribution uniquely determined by the sequence of its moments 

{ak}k Then we have the following lemma about an asymptotic property of the 
empirical distribution function. 

        P.P. 

    LEMMA 4. If, for all k=1,2,••• , n, M„,„--,ak as n-'oo, then Wn(x)-->W as n--,00 
at all points of continuity of W. 

   See (2) for the proof.

   III. Asymptotic distribution of eigenvalues of random matrices 

   In this section, we will show the validity of so-called semi-circle law for some 

range of the ratio n to N(n). 

   Let us consider a random weighted matrix AT associated with a random graph 

rn,N• Clearly 

(1) Ai, is symmetric, 
(2) a1j=0, i=1,2,••• , n, 

(3) the number of non-zero elements of Ar is 2N. 
Suppose that for the non-zero elements (to of AT., 

(4) {aipi<j} are independent and 

                              1                                P(
au=a)=-z , 

                              P(ajj= —6)1, 

N of (3) elements {a12, a13, • , aln, a23, • , a2n, • • • , of a random weighted matrix 
AT are non-zero and the number of ways of choosing non-zero elements is 

             ) Letting T(r) be a way of assigning a or —a to the non-zero elements, we have
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2N different  T  (T)' s. Denote them by Ti (I'), 7=1,2, ••• , 2N. Then the probability of 

occurence of a random weighted matrix is 

                  12N(()}-' 
Let e1(Ar) , e2 (Ar) , • • • , en (Ar)be the eigenvalues of a random weighted matrix AT 

and denote the empirical distribution function of the set of random variables ei(Ar), 
• • • , en(Ar) by Wm(x) (Ar). Our aim is to show that by the aid of Lemma 4, 

                                                                             P. 

                          Wn(X) (Ar)--'W (x) 

where W(x) is a distribution function uniquely determined by the sequence of its 

moments {akl. To do so, it is enough to show that the mean of the k-th order 

moment mk,,, and the variance converge to ak and zero, respectively. 

   Let the expectation of W n(x) (Ar) be EWn(x). Then 

                EWn(x)= E Wn(x) (Ar) X Pr(Ar) 
                                       all Ar 

                1                            E E W(x) (A
T) 

                           ((3) )2N all r„,N all T(r)n 
This means that EW,,(x) is a discrete distribution function of nO))2N eigenvalues 
(including multiplications) of all Ar which has jumps of height 

               {na)2Nyl 
(if there is an eigenvalue with multiplication s, s times of the height). Thus, 
denoting the k-th order moment of EWn(x) by Enik,n, we have 

                          Emk,n= xkdEWn(x) 

                          1 n(T)2N       — E 
                           n(`")2NJ-1 

                                                          n 

                       E(—E 4(Ar)) .                                                n /=1 

Since 

              E 4(Ar)=tr (AP) 
                                     1=1 

                  n n n k 

                 = E E ••• E n , 
                                                 J2=1 .ik=1 1=1 

                                     with k+1 

we have 

                       1                  Emk,n= Efri tr (A;-,)}
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 1 n n k                  —E E E—E n aiiii+I(Ar) • 
                         n((IV)2N all r all Tcnii=i.4=1 1=1 

                                                    (i k+1=i1) 

In what follows, we will evaluate the right hand side. 

To begin with, we give: 

   LEMMA 5. For all i*j 

                        N                         {0 , m: odd,          E(Q(Ar))= 

                                      (I) am, m: even. 

   PROOF The number of graphs which have an edge between the vertices Pi 

and Pi is given by 

             all) 
For any Er such that Si7=1, the number of associated weighted matrices with 

aii= 0- 

                                      is 25-1, 

the number of those with aii= - - - a 

                                       is 25-1. 

Thus 

                            ((k—11) (cm2N -1+ (-0.)7712N -1)       E(di3(AT))= 

                     (e k)2N' 
which proves the above lemma.4 

   Let us consider a mapping f which makes a finite sequence f(1) ,f(2),••• ,f (k+1) 

such that f(l) E {1,2, ••• , n}, 1=1,— ,k+1, and denote by Ak,n the class of all map-

pings : 

                 Ak,n{f: i=1,2,••• ,k+1, f(i) E {1,2,—, n}} • 

Denoting by # A the cardinality of a set A, we have clearly 

                                           #Ak,n=nk+1. 

Suppose that 

                   Bk,„={f: fEAk,n, f(k+1)=f(1)} • 

Then we have 

             nn k 
                     E ••• E 11 a;-4.1(Ar) 

                                 31=1.7k=1 1=1121 

                                        k 

                         = E n af()f(1 -1-1)(AT) • 
                                           f EBk,,, 1=1 , 

Since aii(Ar)=0 for all i, putting 

               Ck,n= {f: fE Bk,n, f(1)f(1+1), 1=1,2, ..•,k} ,
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we can equate the right hand side to 

 E  n af(i)fa+i)(Ar) • 
                     f 1=1 

Clearly C k,„-= n(n-1)k-1. 
For any fECk ,n, define 

                    gf(1)=(f(1),f(1+1)), 1=1,2,•••,k. 

Let #(i,j)f denote 

          {gf(1)=(f (1),f (1+1)), k, f (1)=i, f(1+1)=j} 

By definition, It(i,j)i is the number of the ordered pair (i,j) which, for a given 

f EC k,nt the set of k ordered pairs {gf(1), 1=1,2,•••,k} contains. 
Let clirf=#(i,j) f-F#(j ,i) f, and let 

        Dk,.= {f: feCk,„, d=even for all (i,j)E{gf(1), 1=1,— ,k}} 

        Ek,Th={f feCk,„, dij=odd for some (i,j)E{gf(1), 1=1,••• ,k}} . 

Then 

                                            Dk,nn E k,n= • 

If k is odd, then 

                          D E k,n= C k,n • 

Let us evaluate 

                  E{ EII af(1)j(1+1)(Ar)} • 
                                     fEEk,„ 1=1 

                      EII af(i)f(i+i)(Ar)} 
                                   fEEk,„ 1=1 

                    = E n af(of(t+i)(AF)} 
                                fEEk •n 1=1 

                    = E E{a6fii6*af(/)/(1+1) (AT)} 
                        fE±'k7n1=1 

                  = E E{aeij}E-ttl*af (1) f (1+1)(Ar)}=0 , 
                      f EE k,n1=-1 

where II* is taken for all 1 except those that give gf(1)=(i,j) or (j,i). The last 
           1=1 

equality is from Lemma 5. It is immediate that 

              E II afcnici+D(Ar)}-= E4.E n af(i)f(i+i)(Ar)} 
          VECk,n 1=1VEDk ,„ 1=1 

Thus for odd k, mk ,n=0 

and for even k, mk,n=—E{ Eaf(Dfu+i)(Ar)} • 
                             nf EDk n 1=1 

For any f ED2v,n) let pf be the number of different values of f (1) 1=1,2,••• ,22): 

           pf= it-(f(1): f(1) EP {f(1),••• ,f(1-1)}, 1=2,••• ,2»+11+1. 

It is clear that for any f D2v,n
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                              2�pf�v+1. 

Let qf(p) denote the number of different pairs in the set 

                  {gf(1), 1=1,2, ••• ,2v} for f with pf—p 

without distinguishing a pair (i,j) from (j, i) if they are contained in the set : 

                     p-15_gf(p)<T);,=min {v, (U} . 

Let us denote by D,,,n(p,q) a subset of D„,„ such that 

                 pf=p, qf=q (p=2,3, ..• ,v+1, q=p-1, ••• , q*) 

and by z,(p,q,n) 
It immediately follows that 

                                     1)+1 41, 
          E E D2,,n 

                                            p=2 4=p-1 

For the sake of evaluation of z,(p,q,n), it is convenient to make use of the con-

cepts of graph : Let us consider connected graphs consisting of p vertices un-

labelled except one and v unlabelled edges, such that the number of adjacent pairs 

of vertices is exactly q(�p-1). Thus there may be more than one edge between 
adjacent vertices. Denote the class of non-isomorphic graphs by gl ,„. Let us con-
sider, for any GEgy, ,,, a double stroke Eulerian cycle (abbreviated by d. s. Eulerian 
cycle) which starts from the labelled vertex, passes through every adjacent pairs 

of vertices of G exactly twice the number of edges between them and returns to 

the original vertex. We write the number of different d. s. Eulerian cycles for any 

GE4,,, by S(G)• 

Letting 

                      Z,(p,o= E S(G) 

we have the following lemma: 

   LEMMA 6. 

                    Z,(p,q,n)=Z„(p,q)n(n-1)...(n—p+1). 

   PROOF. For any one of S(G) d.s. Eulerian cycles for any GE.61 ,„ when it 
reaches a new vertex after the labelled vertex, assign a number among {1,2, ••• 
to the vertex without duplication. Clearly there are n(n-1)•(n—p+1) ways of 

such assignment for any d. s. Eulerian cycle. We will show that to every assign-

ment for a given d. s. Eulerian cycle, there corresponds an fE D2.,Th(p,q) uniquely. 
This is so because : For the number which is assigned to the starting vertex of 

the d. s. Eulerain cycle, say t1, let f(1)=t1. Let the number assigned to the /-th 

vertex (1=1,2, ••• ,2v+1) along the d.s. Eulerian cycle be t1. When it reaches 

through an edge from the 1-th vertex to the l+1-th, make a pair (f(1), f(1+1)) 
such that f(1)=t, and f(1+1)=61. Then for the d.s. Eulerian cycle, a sequence 

of 2v pairs (f(1), f (2)) , (f (2) ,f (3)) , ( f (2v) ,f(21)+1)) is constructed. Since the 

d. s. Eulerian cycle ends at its starting vertex, 

                       f(2v+1)=. f (1) .
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Since the d. s. Eulerian cycle covers p different vertices, the number of different 
values of  f(/), 1=1,2, ••• ,2v+1 is p, i.e., 

                                Pf=P • 

Since the number of differnt adjacent pairs of vertices is q, the number of differnt 

pairs in the above sequence of 2v pairs is q without distinguishing a pair (i,j) from 
(j,i) if they are contained in the sequence, i.e., qf(p)=p. Since the d.s. Eulerian 
cycle passes any adjacent pair of vertices of a graph G twice the number of edges 
between them, for any (i,j)E-((f(1), f(1+1)), 1=1,2,-. ,2v)- 

                       #(i,j) +#(j, i)=even , 

i.e., dfi is even. Thus fE D„,„(p,q). 
Conversely, it can be shown that for any fE D2,,n(P, 9), there exists only one d.s. 
Eulerian cycle on a graph GEgy,,,. 

   In consequence, in order to evaluate z,(p,q,n), it is necessary to do z,(p,q). 
However it is very complicate to evaluate z„(p,q) except the case; p=v+1 and q=t. 

   LEMMA 7. Any graph which belongs to grj is a rooted tree whose root is the 
labelled vertex if one ignores the multiplicity of edges. 

   PROOF. This accords to the fact that a connected graph with p vertices and 

p—i edges is a tree.4 
   LEMMA 8. If, for any fE D2v,n(P,P-1), 

                (i,j) {(f(l), f(1+1)), 

then if #(i,j)=d, #(j,i)=d. 
   PROOF. The graph which corresponds to the f belongs to gV. This lemma 

follows from the fact that any d. s. Eulerian cycle which starts from the root of a 
tree with labelled vertices, if it passes the edge from the vertex i to j, can not be 
at the vertex i again unless it passes from j to i reversely. 

   REMARK: If pf=v+1, qf=v, then for any (i,j) {gf (1), 1=1,2, ,21.)} 

Table 1 illustrates the values of z,(p,p—i) for small v, p.

Table 1. Numbers of different double stroke 
         Eulerian cycles for graphs Egf--pi The 

         numbers in the diagonal are identical 
         with those by Wigner' theorem. 

7.-.,._ ,'2 3 4 5 6 
1 1 * * * * 

2 1 2 * * * 

3 1 6 5 * * 

 4 1 14 28 14 * 

 5 1 30 110 107 42



92Shunsuke SATO and Kingo KOBAYASHI

Now we will show a theorem by Wigner. 

   WIGNER'S THEOREM. 

 Z(2v)!(v+1,v)=  v!(v+1)!. 

   PROOF. We will follow the proof in [2]. Let fE D2.,.(1)+1, v). If a pair (i,j) is 
contained in a sequence of 2v pairs {gf(1)=(f(1+1)), /=1,2, ••• ,22.4, so is (j,i). If 
a pair (i,j) appears before (j,i) in the sequence, assign +1 to (i ,j) and —1 to (j,i). 
Thus there corresponds a sequence of +1's and —l's of length 2v uniquely to the 

sequence of 2v pairs. Since a +1 is assigned before the corresponding —1, the 
number of +1's assigned to gf(1),••• ,gf(1), 1�/�2v-1 is greater than or equal to 

that of —l's assigned to them. Thus the number of f's which belong to D2,,,i(1.+1,v) 
is equal to, among the paths which start from the origin, jump +1 or —1 on the 

x-axis at every step of time and return to the origin again at the 2v-th step, the 

number of those paths which run only the plus side of the x-axis. Let us write 

the number by S,, simply. Suppose that Si; is the number of paths which make the 

first return to the origin at the 2v-th step. Such paths must exist in the positive 
side of the x-axis except at the final step. Thus Si;=S,_1. 

Consequently we have 

                                               S;=S0=1. 
               k=1li=1 

Letting t(x)= E Skxk, we have 
                     k=0 

                              t(x) =1+ Xt2 (X) , 

which gives us the solutions 

                            t(x)=1±4/1-4x                                      2x 

Since t(x) should be a monotone increasing function of x because Sk>0, we dis-

card the solution with a plus sign. The expansion with respect to x gives : 

                        (2v) !                              S ,= 1,1()±1) v=1,2, ••• 

Thus 

                                2v)!                           Z
„(v+1,v)=               v!((v+1)!.• 

Now let us return to compute 

                    E{ EII af(i)f(i+i)(Ar)} • 
             f 1=1 

Noting that, for any fE D2,,„(p,q), aii(Ar)=a;,;(ilT), 

                                           2v 

                           II af(i)/(1+1)(AF) 
                                               1=1 

                          =
t=dy,ji+,(Ar) , 

                                            i
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where  ji<ji+i, 

                        (//,.ii+1)E{gf(p), p=1,2,•••,2v} 

                          c//3:0,,, with E h1=22.), 
                                                                  1=1 

and the number of different , q+1 is p. 

Thus 

                    E{ E II af(i)f(1-1-1)(Ar)} 
                                        feD2v,n(p,q)1=1 

                  = E Ef121 ahif114.1(Ar)} 
                                      feD2v,n(13,4) 1=1 

                          N             = E 
                                 fED2,,n(p,q)1=1 (72) 

                     =Z,(p,q,n)((N,,--y)g„. 
It immediately follows that 

                      E af(i)f(14-1)(Ar)} 
                                feD2u,n t=1 

          v+1g*PN g 
                    =a•2'E n(n-1)•••(n—p+1) EZ,(p,q) 

             2=24=P-1(2') 

                                with e=min {v, (3)} . 

For a large n, it holds that 

       E{ EII af(i)fci+i(Ar)} 
                 fE-D2v,n t=1 

. 

         —a"n{Z,(2)+1,2))(2NnyZi,(1),v-1)(2Nny-1+•••+Zi,(2,1)(2nN  

We have the following theorem: 
   THEOREM 1. Let us denote by Wn(x) the empirical distribution function of the 

eigenvalues of a normalized matrix B„ of an nxn random symmetric matrix Ar: 

                      Bn= 1 Ar . 
                         20.j 2N  

                                       n If iliv=o(1), then 

                      lim E{Wn(x)}=W(x), 

where W(x) is a continuous distribution function with the density w(x): 

                            2 1/1—x2 : fx(�1 ,              w(x)={' 
                   0 : ix>1.
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   PROOF. Write by mt,„ the k-th order moment of the eigenvalues of the matrix 

Bn. From the above discussion, if kil=o(1), then 

                  0: k: odd , 

            lim mr ,„=mk= k!                                                        k: even . 
                     2k (2) ! k2  +1) ! 

On the other hand, the distribution function W(x) with the density ; 

           2   
                           N/1--x2 : Ixi<1 

                 w(x)= 
               0 : lx>1 

is uniquely determined by its moment sequence {m,}. Thus, according to Lemma 3, 
the distribution function of the eigenvalues of the matrix 13„ has the semi-circle 
density for a large n.• 

   In order to show that the empirical distribution WW(x) converges to W(x) in 

probability, it is necessary to do that the variances of the k-th order momemt, 
k=1,2,••• : 

                         E(4,.—E(mr,n))2 

vanish as n tends to infinity. This can be verified by the above discussion and 
discussions similar to those described in [2]. Thus the above theorem can be re-
written as follows : 
"Under the same conditions , 

                                          P 

                            Wn(X)—;W(x)" 

   REMARK : We have discussed only the case that each of the non-zero elements 
takes its value +a or in equal probability 1/2. However, it can be shown that 

the above theorem is also true in the case that each of the non-zero elements of 

Ar subjects to any one of independent symmetric distributions with zero mean and 

variance a2 of various types including the normal distribution with zero mean and 

variance a2. 

   Now, when N----2c-n, the expectations of the k-th order moment of the eigen-

values of B„(k=1,2, •••) are not identical with those defined from the semi-circle 
density and are obtained if z,,(p,p-1) are evaluated. We have not succeeded to 

obtain them so far. However, as we mentioned previously, since the degree of 

sparsity of a random matrix with is large, so is the degree of the degen-

eration. 

   In the next section, we will discuss the degree of the degeneration of a random 

matrix with N2using the beautiful results on random graphs by ErdOs and 

Renyi [3].
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   IV. Degeneration of a random matrix 

   To begin with, we shall list several properties of random graphs defined in II. 

They concern the structure of random graphs with n vertices and N edges. About 

the notions of graphs, see a text book on graph theory [6]. 

   The following lemma holds on the connectivity of a random graph  r  „,N. 
   LEMMA 7. The probability Pn,N(C) that a random graph rn,N has a property C that 

it is connected is given by 

                         lim P„,N(C)= e-e-2Y , —00<y<co , 
                                                                 72 —Poo 

where we put 

                         N(n)--2n log n 

                  ny . 

   Since if, for instance, n2(0<c<1), then y--÷oo as n—*co, every vertex of a 

random graph is connected. On the other hand, when n log n+ o(n), if c>1, 

then a random graph is certainly connected and if c<1, then all vertices are not 

connected and a new structure (eg. a tree or a cycle) appears. In what follows, 
we represent by P„ ,,(•) the probability of an event • on a random graph. 

   LEMMA 8. Let 7 k be the number of isolated trees of order k contained in Tn ,N• 
If 

                     n)           N(                 lim =p>0 , 
                           ni7L1 

                           Aje-j.(2,)k-ikk-2 
                  ny~limN(z"k=i)=j! 1=0,1,--;2=k! 

                                                                                                                                                                                                      • 

   LEMMA 9. Let z-k be the number of isolated trees of order k contained in T n,N 
(k=1,2, ...). If 

                 N(n)  
                    Jimk -2 CC' 

                                  4-'°° n k-1 

   2kk                     N(n)— k n log n21
e-1 n log log n     lim =-00 

then for —oo<x<co 

                lim Pn,N(  MNN <X)=0(X) 

                                   N                                                               

, 

                             kk-2 ( 2N)k-12kN 
                   11,1n,N = n kt

ne n , 

                     (x)= 1fxe-22 du .                               N/27r -- 

   LEMMA 10. Let rk be the number of isolated trees of order k contained in Tn ,N 
(k=1, 2, If
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                 1              N( n)— 2k   n  log  n+ k12k  n log log n+ yn+ o(n) , 

                                             (—oo<y<oo) 

                                   e
!-A                 lim Pn,N(rk=i)=Aj•(1=0,1,2, ...)       n-...1 

                                              e-2ky                        2 ---                              k k! • 

We will discuss the structure of random graphs with N----2c-n. 

   LEMMA 11. If N(n)=o(n), then r„,N consists of only isolated trees as n--,00. 
   LEMMA 12. Let rk be the number of isolated trees of order k contained in rn,N 

and let the mean of rk be M(z-k) (k=1,2, ...). If N--2n(c>0), then 

                     lim rk)1 kk-2                           n c k!(ce c)R • 

   LEMMA 13. Let V,,,N denote the number of all vertices belonging to all isolated 

trees of rn,N and let the mean of V„,N be M(V„,N). If N-qn 

                                 1 ; 0<c�1 , 

                     lim  M ( n7N)  
                n•00n x(c)                                       1<c , 

where x(c) is the solution of xe-x=-ce-c(0<x<1) and can be represented by 

                       x(c)= E - ki (CC c)k 
                                                     k=1 

It is immediate from the above lemma that if 0<c�1, almost all of vertices belong 

to trees and if c>1, x(c) /c of all vertices belong to trees. The structure of sub-

graphs which the remaining vertices construct when c>1 are known from the 
following lemma. 

   LEMMA 14. Let the size of the largest subgraph of Tn,N be p„,N. If N— in (c>1), 
then for any 77>0 

                     lim P n,N( Pn'N —G (c) <0=1, 
                             n_. 

where 

          G(c)=1Ex(c)kk!'                                 , x(c)=(ce-c)k . 
                                              k=ik 

   See [3] on the proofs of Lemmata 7-14. 

   REMARK : The above lemmata hold on balanced graphs. So far as the balanced 

graph concerns, any subgraph containing an isolated cycle does not exist in a 
finite rate. 

   Since the number of edges of a tree of order k is k-1, the mean of the number 
of edges contained in all the isolated trees, represented by M(En ,N),
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 m(E„,N) (k 1)  M(zk)  =  x2(c)  
             k=1n2c' 

Thus the number NG of edges contained in the largest subgraph is given by 

                     NGn(x2(c)                              1—2c ) • 

The number ng of vertices in the largest subgraph is given by 

                        ng—n(1—  x(c)). 

                     c It follows that 

                                (c'>0) . 

Now let us denote by Ek the matrix associated with a tree of order k. When 

   2n,       0<c�1, letting

       EL-zl 
              '‘ 

               

'E
, e

r= 

                                                         'r
r                                E

k. 

                                      Ek s,

we have 

                         lim Er—er with P.1, 
                                                  n-oc 

where A-43 implies tha matrix A is similar to a matrix B. When N—-c n, c>1, 

letting

   G"NS 
         E, 

                   • 
• 

er=NE,1 

                            • 

                         • 
                              •           'Ek-X 

                                      •       0 

                                         ,E
k, 

                                        •
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where G is a matrix associated with the largest subgraph, we have 

                         lim Er—er with P.1. 
                                                          n-,00 

   Now we will estimate the degree of degeneration of a random matrix Ar as-

sociated with a random graph Eno, with N--2n. Firstly we give the following 
lemma on the determinant of a matrix Ek associated with a tree of order k. 

   LEMMA 15. Let us denote by Ek= (4) a matrix associated with a tree of order k; 
i. e., for 

           {1: if there is an edge between the vertex i and the vertex j,         4i= 
              0: otherwise. 

Then 

                       1E1,1=0 for odd k. 

   A proof of this lemma may be found in A.M. Mowshowitz [7] and the property 

subjects to a structure of a tree. 

   According to this lemma, a matrix associated with a tree of order k odd always 

degenerates and it follows that a weighted matrix Ak associated with a tree of 

order k odd degenerate also. Thus we have : 

   THEOREM 2. Let us denote by dg the degree of degeneration of a random weighted 

matrix Ar associated with a random graph. If N----2cn (c>0), 

              lim d 1 bk-2                         E  (Ce)k (P.1)                             n c k: oddIL 

   REMARK : The above estimation of the degeneration is too under since the 
degree of the degeneration of Ek for odd k may be more than one and Ek for even 

k may degenerate also, depending on the structure of a tree constructed as well 

as on its order. As one might know, the degeneration could be evaluated by means 

of knowledge either on z,(p,p-1), p=2,3, ,v+1 or on the fine structure of random 

graphs. It is complicate to obtain either of them and we have succeeded in ob-
taining none so far.
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