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   1. Introduction 

   Let Yi (i=0, 1, ••• , k) be mutually independent and normally distributed with 

mean Oi and variance Ai. Consider the M. L. E. of Oi under the partial ordering of 

the type, 

(1.1)Oi-00�0, i= 1, 2, ••• , k. 

   The above problem is a special case of the isotonic regression, which was called 
"simple tree order" [1, p. 74]. This problem and its algorithm were discussed by 
Bartholomew [2]. Barlow, et al. [1] discussed this problem as minimum violator 

algorithm in a general manner and also presented some examples. We discussed 

an algorithm by means of the projection method in Kuck,' and Choi [5] assuming 

normal distribution. Although our algorithm is essentially the same as that of 
Bartholomew [2], it will shed some lights on the geometrical properties involved 

in the use of Gaussian elimination in the isotonic regression analysis [1], [3]. 

   Let Y'= (Y0, ••• , Yk) and transform 1=71y, where 

             1 0' 1 0' (1. 2):4=[ ]-=-[ , L'= (-1,• , —1), 0'= (0, ••• , 0), 
         L 1kA 

and /k is (kxk) unit matrix, then X, 7Y'=(X0, X1, ••• , Xk)=(X0, X), is distributed as 
N(p, A) , where y = (po, pi, ••• Pk)= (Po, p), po=eo, Pi=ei-00 (i= 1, • • • , k), and 

                              ro L'i (1. 3)A(k+1)=AD(k+1)71'=r)(k+1)                                 +AoL
L E] 

                    — 20 Ao 20_ 

                                  rA. RoL'                  = —20=1
_201, A(k)i ' 

                        D(k) +20E 

where D(k+1) and D(k) are covariance matrices of Yi (i= 0, ••• , k) and (i=1, ••• , k), 

i.e., the diagonal matrices with Ai(i= 0, ••• , k) and (i=1, ••• , k) respectively and E
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is a (kxk) matrix with all elements equal to 1. 

   We can easily show that the underlying M. L. E. of 0 or for a given sample 

ylo r 21-=:4-y1= (4, x1) , equals to the solution of the following minimizing problem ; 

(1.4)Min (Y—Y1)1J-1(Y—Y1) 
                                            Ay>_0 

or 

(1. 5)Min (2-2') ' A-4 (-." 
                                                   s>.-0 

respectively. (See Kuoli5 and Choi [5]) 

   (1.5) can be rewritten as 

(1.6)Min [(x—xl)'A-'(x—x") +  (x0— x°) —2°Ir A-1(x— x1) }2 .                                            AO (1— 

As the second term is zero, the problem of finding 2 satisfying (1.6) is essentially 

reduced to that of x with 

(1.7)Min (x—x") ' A-1(x— x1) .

   2. Algorithm 

   In Kud6 and Choi [5], we described an algorithm to obtain the solutions of (1.4) 

and (1. 7) for an arbitrary positive definite matrix A. Following the notions of [5], 

we partition the vector x'= (x'(X                                     (1),--'(2), =(x1, • , Xm Xm+1, X k) and the sweepout 

operation on the following matrix, taking the corresponding covariance matrix of 

x(1) as a pivotal matrix, yields the following, 

         -A
il 0 0- A11 Al2 X(1) - * 

(2. 1)—A211111 I 0 A21 A22 X(2) = 0 * X(2)— A21A 11X(1) 

             -— BlAyi 0 I_ _B;B2 V-112y_ _0 * V-1/23,— BiAT1X(1)- 

where V=D(k+1), B=- AV" and B is also partitioned correspondingly. The optimal 

solutions j) and x of (1.4) and (1.7) are respectively of the forms ; 

(2. 2)9= V1/2 ( V-1/2y_ BiAT1X(1)) 

                           = y— V A'1(iliV 

and 

                   ".i=[0 (2. 3)                               X(2)— A21A11 X(1)1 
if and only if 

(2.4)ATx(n= (B1B;)-1A1y�0 

and 

(2. 5)x(2) - A2,ATIx(i)= B2 (17-4/2y- B;ATIAiy)>0 .
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   We can arrive at the solution while all of the successive steps of the Gaussian 

eliminations taking every possible subset of variables as the pivotal matrix are 

exhausted. In this note we show that the number of Gaussian eliminations is re-

duced to the minimum in the case when A is of the form (1.3). 

   For preparation we calculate the inverse of A of (1.3). 

   LEMMA. For a matrix A  (kxk) of the form (1.3), the matrix G=(gii) satisfying 
the relation, 

(2. 6)AA-1= (D+ 2,E) (D-1+ G) = I , 

is given by 

(2.7)gii=20 (2i2j)-1 
                       1+20 E 

                                                     v= 

   PROOF. From (2.6), 

                     20ED-1+DG+20EG=0 , that is, 
                  - -A

,.-      00 

(2. 8) AoE•+ • • (gi;)+20E• (g1)=0 . 

             _ 0 • AV_ _ 0 • Ak_ 

   For convenience in notation, consider the first column of (2.8), which is 
          -1- - 1 — 0 - 

                                                    k (2. 9) 202i 1+ +20(E = • 
                                                                    i=1 

            _1- - Akg kl - - 

           k Writing E (2.9) yields 
             i=1 

(2.10)gi1= (-20G1-202-14)2V, i=1, •-• , k, 

therefore 

                       G,= (- 20Gi- 202i1) (I 2;') , 

and then 

       k k 
(2.11)G,= (-202V) (E 2;1) / (1+20 E 2;1) • 

                 v=1v=1 

   Putting (2.11) into (2.10), we have 

             gil°k(22:20-1 Q. E. D.                     1
+20 E 

   Now we state the final proposition. 

   PROPOSITION 2.1. Suppose the components of a sample vector x; xl, ••• xk, or equiv-

alently y„ ••. , yk, are in the ascending order; xixi±i(i=1,••• ,k-1), then there exists m 

such that the last column in the result of sweepout of (2.1), taking the first m as the 

pivot,
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 ix(i)- 

(2.12)zni 
                                            zm, 

                              - X(2) - A21A lx(1) - 

                                                         k satisfies the following 

(2.13)zi�0 , i<m 

and 

(2.14) 

   PROOF. According to the lemma, we can write 
                         -21/ 

• 0 — 72121)-1 (21270-1- - 

    Ailx(0= (D-1+ G) xci)=— c •  

                                 - 0 • 2;1_ _ xn,_ _(29.21) -1. • (27,227m)-1- _ xin _ 

where c= — 2,1 (1+20 E 2;1). Then we have 
                                  v=i 

                    z(xi+K) - 

(2.15) 

                             _zm_2;1 (x,n+ K) _ 

where K= c• (E x„/A,,) 

   (2.15) implies (2.13), and (2.14) is easily shown from the fact that A21=2°E• 
                                                                           Q. E. D. 

   The above proposition enables us to state the rule for computing the solution : 

(1) Examine the observation if there is an violator to the hypotheses (1.1), or an 
observation yi with yi<yo, (2) if there is none, the values in the sample themselves 

are the estimates and the step terminates here, otherwise arrange the observation 

in the ascending order, (3) transform y to x by (1.2), (4) perform Gausian elimina-

tions successively either until when the conditions (2.13) and (2.14) are satisfied 

(case (a)) or until all the steps of k sweepouts are made (case (b)), (5) x, in (2.5) 
is the solution to (1.7) and solution to (1.4) is obtained by letting Oi=(weighted 

mean of yo,yi, ••• , yni)=-(E 2,71y,)/(E 2,71), i=0, 1, ••• , m and 0 i= yz(i=m+1, ••• , k) in 
                                       ,=0 

case of (a) and Oi=(E ),,71y,)/(E 2,79, i=0,1, ••• , k in case of (b). and then (6) 
                                                       ,-0 

the observations are rearranged back to the original. 

   The above algorithm is previously derived by Eeden [4] and also mentioned in 

page 243 of [2]. 
   The author is deeply grateful to Professor A. Kud6 for suggesting this pro-

blem and careful reading of the draft of this paper.
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