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1. Introduction.

Let (X', Y)Y be a (p+1)-dimensional random vector having the distribution func-
tion (df) F* and the probability density function (pdf) f* with respect to the Lebes-
gue measure. Let F and f be the p-dimensional marginal df and pdf of X respec-
tively. Let k(x) be a known pdf defined on the p-dimensional Euclidean space R?
such that

(1.1 sup k(u)<oo, and
ucRP
(12 lulk@)— 0 as Jul=(Eup—co.

Let {a,} be a sequence of monotone decreasing positive real numbers converging to
zero as n tends to infinity. Further conditions on the convergence rate for the
sequence {a,} will be needed throughout the study. They are listed as follows:

(1.3) naf— oo, as n-—oo;
(1.4) naftt—0, as n—oo;
1 an p——) e .
(1.5) 7o (g) —a (0=a=D), as n—oo;and
(1.6) iexp(—enaﬁ)<oo for any £>0.
Based on a random sample (X{, Y,), -+, (X}, Y,) from F* we wish to estimate the
multiple regression function
1.7 m(x)=E(Y | X=x)=h(x)/f(x),
where

h)={ v*(x, dy.

It will be assumed throughout the study that m(x)<oco. A nonparametric estimate
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64 I.A. AuMAD and P. Lin

of m(x) may be given by

(1.8) Mma(x)=h(x)/fn(x),
where

(1.9) Jalx)= n%z,%’ é K x—(;nX, )
and

(1.10) o) = élek(%“:’?),
with

(g )=t e,

The density estimate f,(x) was considered by Cacoullos (1966).

For the simple regression case, i.e., p=1, the estimate m,(x) was proposed by
Nadaraya (1964) and independently by Watson (1964). Schuster (1972) showed that,
for this case, the asymptotic distribution of (na,)"*[m,(x;)—m(xy), -+, m(x)—m(x,)]
is g-variate normal with mean vector 0= R? and diagonal covariance matrix C where

the i-th element is Ci=Var (V| X=x,) du/fx), i=1, -, q.

Yamato (1971) proposed a sequential estimate for f(x) as follows:

(L11) = B (),

. p
S oar

The estimate f(x) has an advantage over f,(x) in that when the sample size = in-
creases only the additional terms need to be computed and hence f(x) may be esti-
mated sequentially. With the same spirit, we propose a nonparametric sequential
estimate for the multiple regression m(x) as follows:

(1.12) in(x)=h(x)/f(x),
where f(x) is given by (1.11) and
(1.13) ﬁ(x>=%j§1 alg Y jk( x_anj )-

The purpose of this paper is to investigate important large sample properties of
#(x). In Section 2, weak and strong (pointwise as well as uniform) consistencies of
m(x) are shown. Weak consistency is established under conditions of Yamato’s (1971)
Theorem 2, while strong consistency may be proved using the technique first intro-
duced by van Ryzin (1969) and later used by Davies (1973) in proving the consistency
of f(x). Finally the joint asymptotic normality of (na®)"*[#i(x,)—m(x,), -+, m(x,)—m(x,)]
is shown in Section 3.

Throughout the study the following well known result will be used repeatedly.
This was also quoted by Yamato (1971, Lemma 2).

LEMMA A. If a sequence of functions {8,(x)} converges to a function 6(x) at a

point x as n—oo, then n‘llé 0x)—0(x) as n—oo, If a sequence of functions {5,(x)}

is uniformly bounded in RP and converges to a bounded function §(x), as n—oo, uni-
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formly in RP, then n™! é 0 (x)—d(x), as n—oo, uniformly in R?.
i=1 ’

2. Consistency of the multiple regression estimate.

In this section under some regularity conditions the pointwise consistency (Theo-
rems 1 and 2) as well as the uniform consistency (Theorems 3 and 4) of 7(x) will
be established. Preliminary lemmas necessary to carry out the proof of each theorem
shall precede its actual statement.

LEMMA 1. If k satisfies (1.1) and (1.2), then at each continuity point x of h

Eh(x)— h(x), as n—oo.

PROOF. From Lemma A it suffices to show that a;?E{Y k[(x—X,)/a,]} —h(x), at
each continuity point x of 2. Now

a;pE[Ynk<x—_a;Y—">]:a; f [ ye(E) o, 5)dudy

:a;ijpE[Yk(—'%) }X: u] fuw)du

= a;@jﬂk( x;u )h(u)du
= R —a.0)dv—h(x),

as n—oo. The third equality is obtained by the substitution of (1.7), the fourth
equality by the transformation v=(x—u)/a,, and the final result by the facts that A
is continuous at x and % is a pdf. 0O

LEMMA 2. Assume that conditions of Lemma 1 and (1.3) hold. If

1) E(Y?| X=x)<co,

then, at each continuity point x of h,

Var [A(x)]— 0, as n—oo,
Proor. Note that

Var [ﬁ(x)]:n-ﬁjé ay» Var [ ¥ k( x;_JXJ N
=nt a5 [ () 4, y)dudy

—n* | prk(x—a_ju—)f*(u, »dudy]
] )

:71—2121 a}2pj'Rpk2(x%ju>g(u)du ,

where
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(2.2) gW)=E(Y?| X=u)f(u).

But, as in Lemma 1, ;7\ Rk [(x—u)/a,]g(u)du—g(x)| k*u)du<co,as n—oo, Hence
RP RP

(nap)=f w(FT) gwdu—o0,

as n-—oo, and the lemma follows by an application of Lemma A. 0O

The weak pointwise consistency of m(x) is obtained in the following:

THEOREM 1. If k satisfies Conditions (1.1) and (1.2), and if {a,} satisfies Condi-
tion (1.3), then, at each continuity point x of f and h for which f(x)>0,

m(x) — m(x),
in probability, as n—oo,

PrOOF. It follows from Lemmas 1 and 2 that A(x)—h(x) in probability, as n—oo,
at each continuity point x of A. Also f(x)—f(x)>0 in probability, as n—oo, at each
continuity point x of f (Corollary 4, Yamato (1971)). The theorem follows by an
application of Slutsky’s lemma. 0O

Condition (1.3), assumed in Theorem 1, is not sufficient for the strong consistency
which is to be established in the next theorem. A somewhat stronger condition on
the convergence rate of {a,} will be needed.

THEOREM 2. Suppose that Y and f(x) are both bounded, that k satisfies Condi-
tions (1.1) and (1.2), and that {a,} satisfies Conditions (1.5) and (1.6). If (2.1) holds,
then, at each continuity point x of f, h and g for which f(x)>0,

n(x) — m(x),

with probability one (w.p.1), as n—oo.
PROOF. Similar to Theorem 1, we will need to show that, as n—oo,

(2.3) h(x) = h(x), w.p.1,
and
2.4) fx)— f(x), w.p.l.

From Lemma 1 above and Corollary 2 of Yamato (1971) it suffices to show that
]h(x)—Eﬁ(x)I—»O and |f(x)—Ef(x)|—0 w.p.1, as n—oo. We shall only prove the

first assertion, the second can be proved similarly. Since ﬁ(x):n“glayp Y R[(x—X;)/a;],

nh(x)= élR,-(x) is the sum of n independent random variables where, for j=1, -+, n,
_ 1y x—X; x—X;
Ry(x)= a? 1Y1k< a; )—EY,«k( a; )}

Note that R;(x) is bounded, i.e.,
max |R{x)| SM<co.
1=j=n

Thus it follows from the Bernstein inequality [see, e. g., Bennett (1962)] that, for any
>0,
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n 12
Pl X Ri(x)| >te,]<2exp [—-—} ,
=1 J 2<1+ Mt

30,

where
oi=Var [ 3} R,(x)].
J=1
Therefore, for any >0,

- n _ n < _ e'n
(2.5) PlA(x)—Eh(x)| >e]=<2 exp{ 2( o oM ]
n ' 3
The result (2.3) will be proved if we can show that the infinite sum of the right
hand side of (2.5) is finite. In view of Condition (1.6), this will be accomplished by

showing that

D2
(2.6) “% - ag(x)jRPkZ(u)du <o,

as n—oo, where a is defined by (1.5) and g(x) by (2.2). Note that

ahon . ax 31 Var[ij(x%;Yj)]’

n n S a

where the j-th term in the summand (multiplied by a%) is equal to

L] R st [ (5 i

2

= jRPkZ(v)g(x— a,;v)dv—a? [Jkpk(v)ll(x— ajv)dv]
Therefore,

@7 ‘Lﬁ—ag(x) { Rpkz(u)dul

:Lﬂkz(v)‘—i—jé (%)pg(x—ajv)—ag(x)|dv

- J:z [f Rpk(v)h(x—a,-v)dvT

<[ po{ B () 1ae—ap—glo) v

+g(x) ‘%jzzl (Z—:)p—al [ E@do+0Gan).

The second and third terms of the last expression converge to 0 by (1.5) and by the
fact that a,—0 as n—oo, The first term is bounded above by (recall that a,>a,> -
>a,> -+ >0)

28) + 5] lex—ap)—g(x)| F@)do.

Since g{x)=E(Y?| X=x)f(x) is bounded and continuous at x and since jRka(v)dv

= sug k(y)<co, it follows from the Lebesque Dominated Convergence Theorem that
VER
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[ lg(x—a0)—g(@)|K(w)do— 0

as n—oo. With an application of Lemma A, this implies that (2.8) converges to 0 as
n—oo, establishing (2.6), and hence (2.3). Assertion (2.4) can be proved similarly. O
Our next task is to establish the (weak and strong) uniform consistency for #(x).
LEMMA 3. Assume that conditions of Lemma 1 hold. If h is a bounded function
and Y is a bounded random variable, then

sup lEﬁ(x)—h(x)[—> 0 as mn—oo.,
X=RDP

PrROOF. Note that a;"EY,—k[(x——Xj)/aj]:f ph(x—ajv)k(v)dv which is uniformly
R

bounded (since h is). In view of Lemma A, the lemma will be established if we can
show that

(2.9) sup

xERP

1 EYnk(x%X")—h(x)'—»O as n—0o.

n

Now, for a given 6>0, partition R?=AUA°, where
A={u: u|=o}={v: |v]|=0/af} .

Then the left hand side of (2.9) is equal to

sup { | h(x—aw)—h(x)|kw)dv=sup ([ +[ )

xXERP:

= sup sup |A(x—u)—h(x)|

XSRDP uc4

an

+-%- sup Llvlk@)sup{f |h(x—a.0)|do+|h(x)|f do}.

Since a,—0, ¢/ak—co (i.e., A°—¢) as n—oo, the fact that A is uniformly bounded

together with Condition (1.2) implies that both terms in the braces of the last expres-

sion converge to 0 as n tends to co. Now, (2.9) is established by letting —0. O
LEMMA 4. Assume that conditions of Lemma 2 hold. If f and h are bounded, if

(2.10) na® — co,

and if the characteristic function of k, ¢(t):j‘ pe“"k(x)dx, 15 absolutely integrable
R

and nondecreasing in the negative part and nonincreasing in the positive part for each
argument, then

sup | A(x)—h(x)| -0,
XERDP
in probability, as n—oo.

PrROOF. The proof is similar to that of Theorem 4 of Yamato (1971). From
Lemma 3 it suffices to show that

(2.11) sup. |A(x)— Eh(x)| -0,

in probability, as n—oco. Since ¢(t) and k(u) are absolutely integrable, we have
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1 4
k(x :——f e = g(t)dt
(X =gy |, e Dt

ﬁ(x):(z—;)pf Rp[% é Y et Tig(ast) | e =dt

and
A 1 < -it'x
Ehx)=—gayr [ £ da)|p(tre =t
where ¢(t) is the Fourier transform of A(x). Hence

(212) EC sup | h(x)—Eh(x)|]
1
= 7

=y, BEIV e —porisenl} .

dt

- S AV g0} at)

The last expressioh in (2.12) follows by an application of Schwarz’s inequality. Note
that, for all j=1, .-, n, E|Y;e""¥i—¢(t)|*<C?<co, uniformly in . This fact together
with the assumptions on ¢(f) and (2.10) implies that (2.12) is further bounded above
by
] @D = [ 16wl du,

which converges to 0 as n tends to co. The Assertion (2.11) follows by an applica-
tion of Markov’s inequality. O

The weak uniform consistency of #(x) is established in the following:

THEOREM 3. Assume that conditions of Lemma 4 hold. Let B be a proper closed
subset of R? such that ilélgf(x):ﬂ>0 and Egglm(x)|=u<00. Then

sup|Mm(x)—m(x)|— 0.
xXcB
in probability, as n—oo,
PrOOF. Note that, for all n sufficiently large, we have

) h(x) _ hx) h(x) __h(x)
TSR e e TR

A

.#1A— {sup |A(x)—h(x)| +sup|m(x)| sup | F(x)—F(x)|} .
1nff(x) xEB xEB xSB

x&B

It is known that, (see Yamato (1971), Theorem 4) under the assumptions of the
theorem,

(2.13) sup | f(x)—f(x)| =0,
xXERP
in probability, as n—oo. This implies that
inf f(x)=p—e>0.
x&B

Thus, for all n sufficiently large, we have
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1

p—e

(2.14) §ggl m(x)—m(x)| = {ggglﬁ(x)—h(x)l +v §gglf(x)—f(x)|} ,
which converges to 0, in probability, as n—oo, by Lemma 4 and (2.13). O
To prove the strong uniform consistency of 7(x) over the subset B as defined
in Theorem 3, in view of Inequality (2.14), it is sufficient to establish the strong uni-
form consistency for f(x) and ﬁ(x). The result is stated here without proof.
THEOREM 4. Let B be a proper closed subset of R? such that £‘;£f(x>:f‘>° and
igglm(x)lzv<00. If, under some regularity conditions,

(2.15) sup| flx)—f(x)| =0, w.p. 1,
and
(2.16) ﬂég[ﬁ(x)—h(x)p 0, w.p 1,

as n—oo, then
sup|m(x)—m(x)|—0, w.p. 1,
XEB

as n—oo,
REMARK. Davies (1973) showed under the assumptions that k(u) satisfies Condi-
tions (1.1) and (1.2), that (_zﬁ(t):f pe“’"k(x)dx is absolutely integrable, and that {a,}
R

satisfies (1.3) and the following conditions,

217 a,a;4;—1 and na;?® — oo, as n—oo,
(2.18) 3 (nap)*<co,  and

n=1
(2.19) > (na?)azh—a;') <o

n=1

Then, if f is uniformly continuous on B, (2.15) holds. It is observed that if, in addi-
tion to the above assumptions, Y is bounded and 4 is uniformly continuous on B
with absolutely integrable Fourier transform, then (2.16) also holds. This can be
shown using Davies’ arguments.

3. Joint asymptotic distribution of the regression estimate at a
finite number of distinct points.

Let xy, -+, X, be ¢ distinct points of f(x) in R?. Under some regularity condi-
tions the joint asymptotic distribution of the random vector [/(x,), -+, m(x,)] will
be derived. Though the theorem is proved only for the special case when ¢=2, it is
clear that the method of proof remains valid in the more general case. The results
presented in this section are generalizations over those of Schuster (1972) since (i)
m(x) is now a multiple regression and (ii) m(x) is a sequential estimate. Though the
proofs bear some resemblance to those of Schuster (1972), there are major difference
which need to be clarified. To simplify the presentation we will follow the same
procedures and define similar notation as those in Schuster. For j=1, ---, n, s=1, 2,
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- US(x)=a;kl(x,—X))/a],  Uy(x)=a3"LU(x)—EUK(x,)]
ViE)=Y,Ux) Vix)=ar Vi) —EV $(x)]
Un(x)= 2 Ux), Vax= 33 V,(x)
W=LU (%), Uy, Vi(x), Vi),

and

n2Z,=[0(x)), Unlxy), Valxy), Va(x:)1 .
We will establish the asymptotic normality of Z, by showing that

SEICW,?

(31) n:%]/z:(var C'Z)T" :0(1) ’

for any real vector C=(c,, ¢,, dy, d)’ in R*. (See, Loéve (1963), page 275). To evaluate
the denominator of (3.1), write

oi=Var (C'Z,)
=L (¢t Var O,(x))+ci Var O,(x)+di Var 7,(x)+di Var 7,(x,)

+2¢,¢, cov [T (x), Un(a:)]+2¢,d, cov [T(xy), Valx,)]

+2¢,d, cov [Un(x,), Va(2:)]426,d, cov [U(xs), V()]

+20,d; cov [Un(x2), Va(x,)142d,d, cov LVa(xy), Va(x:))
The above variances and covariances can be evaluated under the assumptions that
(3.2) df/0x;, 0h/0x,, dg/0x; (i=1, -, D) exist and bounded, and
(3.2) { uk()du=0, jﬂpnuu%(u)du@o.

They turn out to be as follows: For s=1, 2,

(3.4 - Var Oy(x)=f(x)[_Fwdu+0a,),

- Var Vy(x)=gx)|  Fwdu+0(a,),

- cov [T,(x2), Vulac]=h(x)[ Eu)du-+0(a,),

(35) Lcov [0,(x), Vu(x)1=0(a),
- cov [T,(x), Tnlx)1=0(ay).

LocovlOu(x), Vux)1=0a,).
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We will sketch the proofs for (3.4) and (3.5). For (3.4) note that
‘Var U;(x)—f(x) j. k2(u)du1

< [1 fx—a,u)—f(x)| B u)du-+ a3 | [ flx— aju)k(u)du:r

=0(a,)+0(a2)=0(a;).

Then
[ Var 06— ) [ty
= - 35| Var U,(0)— fx)[e¥w)du| =0(7,),
where
(36) = 34

J=1

It follows from Lemma A that a,—0 implies 7,—0 but not conversely. Therefore
O(,)<0(a,), verifying (3.4). As for (3.5), note that, for x,#x,,

|adcov [UF(x,), VF(x)]l
fazev i ( xlaj" )k( ng:" ) fw)du

o () s a2 ()l

a

2
=daf

= ‘fk(v)k(%&+v>h(xl— a,v)dvl
+al;’f}e(v)f(xl—a,-v)dvlfk(v)h(xz——ajv)dv‘

= Ul@(v)le(sz_jx1 —|—v)h(x1—ajv) dv’ +0(a?).

It will be shown that the first term of the last expression converges to 0 as a;—0,
i.e.,

3.7 a;'

{ Rpk(v)k(sz_jx‘ +0)h(x,—a;p) dv| =o(1).
Assume that
sup | A(x)| = sup E(| Y] |x)<oco,
XERDP X=RP
(which is implied by the assumption that E(|Y|*|x)<co for all x=R?). Then the
integrand in (3.7) is bounded above by k(v)- ”sculg) k(y)- xs:pRpp |A(x)| which, of course, is

integrable. Thus, by the Lebesque Dominated Convergence Theorem, the quantity in
(3.7) converges to

k(x| k) Jim [a;‘k(xZT—jx‘ +v) |dv=0

due to Condition (1.2). This establishes (3.7). Now
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n

-lcov LO,(x.), Talend| =5 £ a7 leov LUFGx), V]|

[

1
n

1
n

=

- 0(‘1;):0077») ’

J

where 7, is given by (3.6). It is clear O(5,)=0(a,), establishing (3.5). Hence,

Il
-

oi=[ kwdu 3 [eif(x)+dig(x)+26dh(x)]+0(ay)

To evaluate the numerator on the left hand side of (3.1), put p%;=n"**E|C’'W,|® and
o05= il 03; so that
<

piélGn’s’zé(lcllsEl Ui(x) P+ 16"ElU (x5)]°

+1dPEI V(X)) [P+ de|*E V (x5) 1)
=160 es|* 1 6ol *+ [di I°+1do| ") max LE|U () I*, EIV(x5)1*] .

However, for s=1, 2, and all j sufficiently large, we have
xs_Xj s
o(E7A)]
j k"’(u)f(xs—a,u)du‘
RP
=0(a;?"?),

E|U(xy)|*=a;*"°E

— ,—P/2
=aj

and
E|V(x,)|?=a;?"

jk%u)h*(xs—aju)du‘ =0(a;??),
provided that

(3.8) W (x)=E(Y? X=x)f(x)<co

for all xe R?. Therefore,

pi<16n-"2 3 0(a;7")
J=1

=0(— £ (na3)*)=0((nap)™),

by an application of Lemma A. Thus p,—0 as n—oo provided that Condition (1.3)

holds. Therefore p,/0,—0 as n—co for any C+0, establishing (3.1). We have proved
the following result:

LEMMA 5. Suppose that k satisfies Conditions (1.1), (1.2), and (3.3). Assume that
E(|Y|’| X=x)<oo for all x€R? and that (3.2) holds. If x,#x,, f(x,)>0, s=1, 2, then
Z, is asymptotically normally distributed with mean vector 0 R* and covariance matrix

flx)  h(xy) 0 0
h(x,) g(x) 0 0
0 f(x)  h(xy)
0 0 Mxy) glx,)

F:prkZ(u)du
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The next lemma gives a set of sufficient conditions on f, A, and a, such that
Ef(x) and Eh(x) in Z, may be replaced by f(x) and A(x), respectively.

LEMMA 6. Suppose that assumptions of Lemma 5 hold. If Condition (1.4) holds
and if 0°f/0x,0x;, 0°h/0x,0x; (i, j=1, -, ) exist and are bounded, then

ZE=n"" 3 ayLUKx)—f(x), Vix)—h(x),
Jj=1

U(xq)—f(x,), VI(x,)—h(x)]

has the same joint asymptotic normal distribution as that of Z,.
ProoF. It suffices to show that the i-th component of Z* has the same limiting
marginal distribution as that of the i-th component of Z, for i=1, 2, 3, 4. Since

Z,—Z3=n""3) ai*B,
Jj=1
where B;=(b,;, byj, bsj, b,;)’ with

bU:f(xl)_EU;k(xl) ’ b2]:h(x1)_EV3k(xl> ’

bsj:f(xz)_EU;’F<x2) , b4j:h(x2)—EV3"<<x2) ,

the lemma will be proved if we can show that

(3.9 n-l/zﬁa"‘}/”bwl:% 2(naj)p/2|bij{—>0 as n—oo
= i=1

for i=1, -+, 4. But, by the Taylor expansion of f{x,—a;u) about x; and the asymp-
tion (3.3), we have

byl =|f L A0 =i a ) k(u)dud| <03
Similarly, |b,;1=0(a3), for i=2, 3, 4. Now, applying Lemma A, we have
L S (mazyejo, =L 3 onazy,
n j=1 noji=
which converges to 0 by (1.4) and Lemma A. O
Now we are in a position to state the main theorem of this section, whose proof
follows directly from Lemmas 5 and 6 along with Theorem (ii) of Rao (1965, page 321).
THEOREM 5. Suppose that k satisfies Conditions (1.1), (1.2) and (3.3). Let 9f/0x;,
0h/0x;, 0g/0x;, 0°f/0x,0x;, 8°h/0x;0x; (i, j=1, ---, p) all exist and be bounded. Let {a,}
satisfy (1.3) and (1.4). If x;#x;, f(x)>0 (i#j=1, -, q), then

(naf)*in(x) —m(xy), -+, (xg)—m(xy)]

is asymptotically normally distributed with mean vector 0= R? and diagonal covariance
matrix X =(o;;) where a”:Var(Y|X=xi)J' pkz(u)du/f(xi), i=1,,q.
R
REMARKS. 1. To the best of our knowledge the joint asymptotic distribution of
[ma(xy), -+, myu(x,)] is not documented in the literature, where m,(x) is the non-

sequential estimate given by (1.8). However, it can be shown that, under the assump-
tions of Theorem 1, m,(x)—m(x), in probability as n—oo. This implies that 7i(x) and
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m,(x) have the same limiting distribution. Therefore, the random vector [m,(x,), -,
m,(x,)] has the same limiting distribution as that of [(x,), -, m(x,)].

2. Conditions on the sequence {a,} imposed in Theorem 5 when p=1 agree with
those of Schuster (1972) except Condition (1.3). For p=1, Condition (1.3) reduces to
na,—o, as n—oo. Instead of this, Schuster has na}—oco, as n—oo. This is mainly
due to different assumptions on the moment of |Y|®. Schuster assumes that £|Y|®<oco,
while we assume E(]Y[?| X=x)<oo for all x€R?. Had we assumed E|Y|*<oo, Con-
dition (1.3) would have been

(3.10) na? — oo as n—oo .

However, there is no such {a,} that satisfies both Conditions (3.10) and (1.4) except
for p=1.
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