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   1. Introduction. 

   Let (X',  Y)' be a (p+1)-dimensional random vector having the distribution func-

tion (df) F* and the probability density function (pdf) f* with respect to the Lebes-

gue measure. Let F and f be the p-dimensional marginal df and pdf of X respec-
tively. Let k(x) be a known pdf defined on the p-dimensional Euclidean space RP 

such that 

(1.1)sup k(u)<00 , and 
                                     unRP 

(1.2)11 u k(u) —› 0 as Ilull=( =iu1)1/200. 

Let {an} be a sequence of monotone decreasing positive real numbers converging to 

zero as n tends to infinity. Further conditions on the convergence rate for the 

sequence {an} will be needed throughout the study. They are listed as follows : 

(1.3)nag co , as n--->00 ; 

(1.4)na,1+4 —> 0 , as n--->oo ; 

(1.5)1 (  an  )p--› a (0�a�1), as n—>oo ; and 
                         ,-1\a1 

(1.6)E exp (—snag)<oo for any s> 0 . 
                                    n=1 

Based on a random sample YiY, ••• , Ynr from F* we wish to estimate the 

multiple regression function 

(1.7)m(x)-=E(Y I X-=x)=h(x)If(x) , 

where 

                     h(x)=S y f *(x, y)dy 

It will be assumed throughout the study that m(x)<co. A nonparametric estimate
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of m(x) may be given by 

(1.8)mn(x)=h.(x)1 .f.(x) 

where 

(1.9)fii(x)=  1                                  ) 

and 

(1.10)hn(x)=  En Y-ki  
                       nanj=ian 

with 

                         u a  
ait,' ••• ' an ) . 

The density estimate fn(x) was considered by Cacoullos (1966). 

   For the simple regression case, i. e., p=1, the estimate mn(x) was proposed by 

Nadaraya (1964) and independently by Watson (1964). Schuster (1972) showed that, 
for this case, the asymptotic distribution of (nan)112Emn(x1)—m(x1), ••• ,mn(xq)—m(x,)] 

is q-variate normal with mean vector OE Rq and diagonal covariance matrix C where 

the i-th element is Cii=Var (Y1 X=xi)f le2(u)du/f(xj), i=1, ••• , q. 
   Yamato (1971) proposed a sequential estimate for f(x) as follows : 

(1.11)Ax,=  1 1 le(  x—X,           )na
; 

The estimate f(x) has an advantage over f.(x) in that when the sample size n in-
creases only the additional terms need to be computed and hence f(x) may be esti-
mated sequentially. With the same spirit, we propose a nonparametric sequential 
estimate for the multiple regression m(x) as follows : 

(1.12)in(x)=E(x)11(x), 

where f(x) is given by (1.11) and 

(1.13)ii(x)=  1 ?„-1, 1  yjk(  x— X,         naj 

   The purpose of this paper is to investigate important large sample properties of 
lii(x). In Section 2, weak and strong (pointwise as well as uniform) consistencies of 
m(x) are shown. Weak consistency is established under conditions of Yamato's (1971) 
Theorem 2, while strong consistency may be proved using the technique first intro-
duced by van Ryzin (1969) and later used by Davies (1973) in proving the consistency 
of f(x). Finally the joint asymptotic normality of (naf,)1/21M(x1)—m(x1),--,n1(x,)—m(x,)] 
is shown in Section 3. 

   Throughout the study the following well known result will be used repeatedly. 

This was also quoted by Yamato (1971, Lemma 2). 

   LEMMA A. If a sequence of functions {5,(x)} converges to a function 6(x) at a 

point x as n—.00, then n' 6,(x)—q3(x) as n—*oo. If a sequence of functions {3,,(x)} 
                                    J=1 

is uniformly bounded in RP and converges to a bounded function O(x), as n—.00, uni-
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formly in  RP, then n-1 i(x)--3(x), as n--.00, uniformly in RP. 
                                 i=1

   2. Consistency of the multiple regression estimate. 

   In this section under some regularity conditions the pointwise consistency (Theo-

rems 1 and 2) as well as the uniform consistency (Theorems 3 and 4) of 7h(x) will 

be established. Preliminary lemmas necessary to carry out the proof of each theorem 

shall precede its actual statement. 
   LEMMA 1. If k satisfies (1.1) and (1.2), then at each continuity point x of h 

                                   h(x) , as n--.00 

   PROOF. From Lemma A it suffices to show that a771) E 1Y nk[(x— X7,)1a7,]} —*h(x), at 

each continuity point x of h. Now 

           aiTpE[ynk(  x—aX7,  1=a;pcyk(an                                       )f *(u, y)dudy 
                                      RJ RP\ 

                         =a77PS E[Y k(  x—u X-=It]f(u)du 
                RPan 

                          =a;ipf k( x—u  )h(u)du 
                                      RP\an 

                                  k(v)h(x— a iiv)dv—>h(x) , 
                                             RP 

as n—oo. The third equality is obtained by the substitution of (1.7), the fourth 
equality by the transformation v=(x—u)1 an, and the final result by the facts that h 
is continuous at x and k is a pdf. ^ 

   LEMMA 2. Assume that conditions of Lemma 1 and (1.3) hold. If 

(2.1)E(Y21X=x)<00 , 

then, at each continuity point x of h, 

                     Var [ii(x)] 0 , as n—>00 

   PROOF. Note that 

           Var [fi(x)] =n-2 ari2P Var [ k(  x—a•X; )] 
                                                J=1 

                       ,n-2a; 2pfy2k2(  X-11                                      )f*(u, y)dudy 
               JRRPa, 

                          —n-2 ± aj2if .)\x—auf*(u, y)dudy]2                     =1RRP 

                           a_i_2pfy2k2( X—U )f*(u, y)dudy 
                    .7=1RRPa./ 

                        =n_2Ja;.2pfRPk2(  X—all                                         g(u)du , 

 • where
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(2.2)g(u)=E(Y2 x=u)f(u). 

But, as in Lemma 1, a77/1 RPk2[(x-u)lan]g(u)du->g(x)fRPk2(u)du<00, as n->oo. Hence 
                    (na`2,P)_if k2(  X-U  )g(u)du-. 0 , 

                                      RP 

as n-K>o, and the lemma follows by an application of Lemma A. ^ 
   The weak pointwise consistency of m(x) is obtained in the following : 

   THEOREM 1. If k satisfies Conditions (1.1) and (1.2), and if {an} satisfies Condi-
tion (1.3), then, at each continuity point x of f and h for which f(x)>O, 

                                m(x) , 
in probability, as n-->co. 

   PROOF. It follows from Lemmas 1 and 2 that h(x)->h(x) in probability, as n-*oo, 
at each continuity point x of h. Also f(x)--f(x)>0 in probability, as n->00, at each 
continuity point x of f (Corollary 4, Yamato (1971)). The theorem follows by an 
application of Slutsky's lemma. ^ 

   Condition (1.3), assumed in Theorem 1, is not sufficient for the strong consistency 
which is to be established in the next theorem. A somewhat stronger condition on 
the convergence rate of {an} will be needed. 

   THEOREM 2. Suppose that Y and f(x) are both bounded, that k satisfies Condi-
tions (1.1) and (1.2), and that {an} satisfies Conditions (1.5) and (1.6). If (2.1) holds, 
then, at each continuity point x of f, h and g for which f(x)>O, 

                            m(x)-> m(x) , 

with probability one (w. p. 1), as n->00. 
   PROOF. Similar to Theorem 1, we will need to show that, as n-,00, 

(2.3)1;(x)-÷h(x), w. p. 1, 

and 

(2.4)f(x) f(x), w. p. 1. 

From Lemma 1 above and Corollary 2 of Yamato (1971) it suffices to show that 
h(x)-Efi(x)i -0 and I f(x)-Ef(x)1---*0 w. p. 1, as n--c>0. We shall only prove the 

first assertion, the second can be proved similarly. Sinceii(x)=n-1 ayPYik[(x-XJ)lai], 
                                                                                                    =1 

nii(x)= R;(x) is the sum of n independent random variables where, for j=1, ••• ,n, 
                 =-1 

            1  

              i(x)={Y .k( x-XjErik( x-aXi)1• 
    a Note that R;(x) is bounded, i. e., 

                        max I R;(x) M < 00 . 

Thus it follows from the Bernstein inequality [see, e. g., Bennett (1962)] that, for any 

t> 0,
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               P[I R,(x)I>tan]2 exp t2       '-1 + Mt ) 
                                                                        3o-n 

where 

                            o•,=Var [ R,(x)] . 
                                                                                .,=1 

Therefore, for any a >0, 

(2.5)PI1/(x)— EE(x) I >2 exp — en                               2( c;q2 ,  )1'                             713 

The result (2.3) will be proved if we can show that the infinite sum of the right 

hand side of (2.5) is finite. In view of Condition (1.6), this will be accomplished by 

showing that 

(2.6)   ag(x)f RPk2(u)du <co , 
as n--,00, where a is defined by (1.5) and g(x) by (2.2). Note that 

          afAian1x—X;                           V ar[Y,k( 
    nna, 

where the j-th term in the summand (multiplied by a') is equal to 

  k2(                    X— g(u)duajUa;Rpk(l_ r( X— u                                 LJ\)h(u)du2 

                                                                                    2 

               =fRPk2(v)g(x— afv)dv— alfRPk(v)h(x—a,v)dy. 
Therefore, 

                                  o-2 
(2.7)               g

nn ag(x)f RPk2(u)du 
                 =-RPk2(v)  n ,( a;an)P g(x—a,v)—ag(x) dv 

            = 

                  a4fk(v)h(x —a,v)dv]2 
                          n j=i Rp 

                             RP 

                   k2(v){  1j=ia( anI g(x—a,v)—g(x)Ildv 

                                 +g(x)  1;aan )p —aRPk2(v)dvd-0(afi). 
                                         The second and third terms of the last expression converge to 0 by (1.5) and by the 

fact that an—>0 as n—*oo. The first term is bounded above by (recall that a1>a2> ••• 

> an> >0) 

(2.8)1 ifIg(x—a,v)—g(x)Ik2(v)dv 
                        n=1Rp 

Since g(x)=E(Y2IX=x)f(x) is bounded and continuous at x and since f le(v)dv 
                                                                                  RP 

  sup k(y) <00, it follows from the Lebesque Dominated Convergence Theorem that 
  Y ERP
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                      RPg(x— ar,v)— g(x)Ik2(v)dv—>0 

as With an application of Lemma A, this implies that (2.8) converges to 0 as 
n—co, establishing (2.6), and hence (2.3). Assertion (2.4) can be proved similarly. ^ 

   Our next task is to establish the (weak and strong) uniform consistency for ih(x). 
   LEMMA 3. Assume that conditions of Lemma 1 hold. If h is a bounded function 

and Y is a bounded random variable, then 

                   sup I Eii(x)—h(x)I—> 0 as n—.00 
                             xERP 

   PROOF. Note that ajPEY ik[(x—XJ)lai]=f RPh(x—a,v)k(v)dv which is uniformly 
bounded (since h is). In view of Lemma A, the lemma will be established if we can 

show that 

(2.9)sup 1x—X                     EYnk()—h(x) —> 0 as n—.00 
                  xERP an 

Now, for a given 5> 0, partition RP=AUAc, where 

                    A= {u : lull -5.5} = {v : . 

Then the left hand side of (2.9) is equal to 

           supI h(x— anv)— h(x)I k(v)dv _<sup 
     xERP RPxERP A AC 

                 sup sup I h(x—u)—h(x)I 
                          xERP .EA 

                + alsup[II RPACk(v)] sup{fh(x— a nv)I dv+AC                                        h(x)dv}     uVEAxE 

Since an-4), (3/an—*co (i. e., Ac—>95) as n—>00, the fact that h is uniformly bounded 

together with Condition (1.2) implies that both terms in the braces of the last expres-
sion converge to 0 as n tends to 00. Now, (2.9) is established by letting 3—>0. ^ 

   LEMMA 4. Assume that conditions of Lemma 2 hold. If f and h are bounded, if 

(2.10)na,i1) co , 

and if the characteristic function of k, 0(t)=S eit'xk(x)dx, is absolutely integrable 
                                                         RP 

and nondecreasing in the negative part and nonincreasing in the positive part for each 
argument, then 

                       sup I ii(x)—h(x)l— 0 , 
                                        xERP 

in probability, as n--.00. 

   PROOF. The proof is similar to that of Theorem 4 of Yamato (1971). From 
Lemma 3 it suffices to show that 

(2.11)sup I fi(x)—Efi(x)I—> 0 , 
                                       xERP 

in probability, as n—>00 . Since OW and k(u) are absolutely integrable, we have
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                    1 
                            )PRP  k(x)= (27e-"95(t)dt 

               ii(x)=  Y.e"'xiy5(a,t)]dt 
                          (27)PRpn 1=1 

and 

               ElAi(x)=  1   10(atdcb(t)e-wxdt 
                         (27)P.                                  Rp n J=1.1 

where 0(t) is the Fourier transform of h(x). Hence 

(2.12)EL sup I h(x)—Efi(x) 11 
                         xERP 

                  — (27)P  EfRp1J{Y ,e"'xi —OW} 0(a,t) dt 
                          <  1 1  :I.                   -(27)2.;,ei."xi —OW12195(a jt)11-112dt                            P Rpl n2 J=1 

The last expressioh in (2.12) follows by an application of Schwarz's inequality. Note 
that, for all j=1, ••• , n, El Y jewxj-0(t)12�C2<co, uniformly in t. This fact together 
with the assumptions on OW and (2.10) implies that (2.12) is further bounded above 
by 

           (27r)PnRp 10(ant) 12} "dt=(27)P(ncdP)1/ BP cb(u)1 du , 

which converges to 0 as n tends to co. The Assertion (2.11) follows by an applica-
tion of Markov's inequality. ^ 

   The weak uniform consistency of in(x) is established in the following : 
   THEOREM 3. Assume that conditions of Lemma 4 hold. Let B be a proper closed 

subset of RP such that inf f(x)=4a> 0 and sup 1 m(x)1=v<00. Then 
       xEBxEB 

                       sup 1 m(x)—m(x) I . 
                                          xEB 

in probability, as n—>00. 
   PROOF. Note that, for all n sufficiently large, we have 

        sup Im(x)—m(x)1suph(x)  +suph(x)h(x)         xEBxEB f(x) f(x)h(x)xEB f(x) f(x) 

                1,{supIh(x)—h(x)1 +supI m(x) Isupli(x)—f(x)11 .            infj(x)xEBxEBxEB 
                          xEB 

It is known that, (see Yamato (1971), Theorem 4) under the assumptions of the 

theorem, 

(2.13)sup li(x)—f(x) I —> 0 , 
                                       xERP 

in probability, as n--->o 0. This implies that 

                        inff(x)?= r> 0 . 
                                         xEB 

Thus, for all n sufficiently large, we have
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(2.14)supIm(x)—m(x) I1 {supI h(x)—h(x)1 +1)sup li(x)-f(x) I, 
   xGBxEBxEB 

which converges to 0, in probability, as  n—>oo  , by Lemma 4 and (2.13). ^ 
   To prove the strong uniform consistency of fn(x) over the subset B as defined 

in Theorem 3, in view of Inequality (2.14), it is sufficient to establish the strong uni-
form consistency for f(x) and ii(x). The result is stated here without proof. 

   THEOREM 4. Let B be a proper closed subset of RP such that inf f(x)= > 0 and 
                                                                                    xEB 

sup I m(x)I =7) <o0. If, under some regularity conditions, 
xEB 

(2.15)sup I f(x)-f(x) I - 0 , w. p. 1 , 
                                        x-aB 

and 

(2.16)sup I fi(x)—h(x) I 0 , w. p. 1 , 
                                  xEB 

as n--00, then 

                    sup I m(x)—m(x) I —> 0 , w. p. 1, 
                                  xEB 

as n—>co. 

   REMARK. Davies (1973) showed under the assumptions that k(u) satisfies Condi-

tions (1.1) and (1.2), that 0(t)=5 elyxk(x)dx is absolutely integrable, and that {an} 
                                     RP 

satisfies (1.3) and the following conditions, 

(2.17)ana77,1—> 1 and naiT2P co , as n---oo , 

(2.18)E (naf,)-2<00 , and 
                                                n=1 

(2.19)E (n4P-1)-1(ai7L—a771)<00 
                                                n=1 

Then, if f is uniformly continuous on B, (2.15) holds. It is observed that if, in addi-

tion to the above assumptions, Y is bounded and h is uniformly continuous on B 

with absolutely integrable Fourier transform, then (2.16) also holds. This can be 

shown using Davies' arguments.

3. Joint asymptotic distribution of the regression estimate at a 

  finite number of distinct points.

   Let x1, • • , x, be q distinct points of f(x) in RP. Under some regularity condi-
tions the joint asymptotic distribution of the random vector [fn(xi), ••• , ii/(X01 will 
be derived. Though the theorem is proved only for the special case when q = 2, it is 
clear that the method of proof remains valid in the more general case. The results 

presented in this section are generalizations over those of Schuster (1972) since (i) 
m(x) is now a multiple regression and (ii) M(x) is a sequential estimate. Though the 

proofs bear some resemblance to those of Schuster (1972), there are major difference 
which need to be clarified. To simplify the presentation we will follow the same 
procedures and define similar notation as those in Schuster. For j=1, ••• , n, 2,
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let 
 U1(xs)=ajPk[(x8—X .,)1a,], U;(xs)--=a1/2EU:;(xs)—EU;(xs)] 

         1715(xs)=Y JUI(xs)V i(xs)=alf'2[17),K(xs)—E17:;(xs)] 

         On(xs)= u,(x8),f.(xs)= v .,(xs) 
                          J=1 

         wi=Eu,(xi),ui(x2),v,(x1),vi(x2)11, 
and 

          nii2Z7,=[0.(x,),171.(x2),177,(x1), 17n(x2)ii 

We will establish the asymptotic normality of Zn by showing that 

(3.1)n42(Var CZ 7,)312=o(1) , 

for any real vector C=(c1, c2, d1, d2)' in P. (See, Loeve (1963), page 275). To evaluate 
the denominator of (3.1), write 

         (4=Var (C' 

           = 1lc? Var 0.(x1)-Pc Var On(x2)±cn Var V7,(x1)-Fd Var 17n(x2) 

            ±2c1c2 coy [0.(x1), .(x2)1±2c1d1 coy CO .(x1), ii(x1)] 

            +2c1d2 coy CO .(xi), 17.(x2)14-2c2d1 coy [17.(x2), .(x0] 

            +2c2d2 coy [17.(x2), C .(x2)14-2d,d2 coy 17.(x2)11 

The above variances and covariances can be evaluated under the assumptions that 

(3.2)af/axi, ah/axi, ag/axi (i=1, • , p) exist and bounded, and 

(3.2) RPuk(u)du=0,RPII ull2k(u)du<00 

They turn out to be as follows : For s=1, 2, 

(3.4)1Var On(xs)=-f(x.9)1 k2(u)du+O(a.) 

                1  

                   Var f7„(xs)=g(xs)f RPk2(u)du+O(a.) 

             1  

               n coy CO .40, Cn(xs)]=h(xs)f k2(u)du+O(an) , 

(3.5)1coy Erin(xi), C.(x2)i =0(a.) , 

                  1 
                     n coy COn(xi), 0.(x2)1=0(a.) , 

                  1  
                    n coy Can(xs), C7.(xs)i=0(a.)
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We will sketch the proofs for (3.4) and (3.5). For (3.4) note that 

         Var  (x)—  f(x) f k2(u)du 

                                                                                         2                  

1 f(x—a,u)—f(x)1 k2(u)du+615f(x — a ,u)k(u)dte] 
                 =0(a j)-1-0(al .; )-=0(a ;) . 

Then 

           1            —n Var CI n,(x)— f(x)f k2(u)dul 
                           1 n                     E Var L J(x)— f(x)f k2(u)du =0(7) 7,) ,                             n )-1 

where 

(3.6) na 
                                             J=1• 

It follows from Lemma A that an—>0 implies iin-0 but not conversely. Therefore 
O(77 n) n), verifying (3.4). As for (3.5), note that, for xi � x2, 

          a3 coy CU; (x1), VJ'(x2)1 

                                                      2—U                 fa.72n Kik( )k(  Xa)f(u)du 
             —SW k(  xia;u )f(u)dufaiPKik(  x2a;u )f(u)dul 

                 k(v)k(  x2-a-x1 ±v)h(x a iv)dv 

               +al; f k(v)f(xi— a iv)dv f k(v)h(x,— a iv)dv 

              = Sk(v)k(  x2— x 1 +v)h(x,— a jv)dv +0(a3) . 

It will be shown that the first term of the last expression converges to 0 as ai-0, 

i. e., 

(3.7) RPk(v)k(  x2a;x1  ±v)h(xi— a iv) dv =o(1) . 
Assume that 

                 sup I h(x) I sup E( 13'11 < 00 
               xERpxERp 

(which is implied by the assumption that E(IY121x)<0.0 for all xG RP). Then the 
integrand in (3.7) is bounded above by k(v)- sup k(y)• sup I h(x)I which, of course, is 

                                  yERP xERP 
integrable. Thus, by the Lebesque Dominated Convergence Theorem, the quantity in 

(3.7) converges to 

               h(xi) I f k ( v) lim [a.,71k(X2X1 ± v)] dv-=0 
                           RP aj-,0 

due to Condition (1.2). This establishes (3.7). Now
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 coy COn(xi), 177,42)]� ,1 a3 I coy171(x2)il 
                                                                    3-1 

                               = 1 0(ai)-=0(72.) • 
                                                   n .J=1 

where 727, is given by (3.6). It is clear 0(r2„)�0(an), establishing (3.5). Hence, 

                k2(u)du E [Clf(X0+clg(x8)+2csdsh(xs)]±0(an) • 
           ^RPs=1 

To evaluate the numerator on the left hand side of (3.1), put g,;=n-3"2E I C'W;13 and 

      p;,./ so that 
      J=1 

        p_16n-212 ( I ci 13E IU.,(xi) 13+ I c2 I3E IU;(x2) I 
                                         .7=1 

           + I di 13E1Vj(X1) 13+ I d213EIV 3(x2)12) 

           16n-312(1 Cir IC213 + I di 13+ I d213) max [El U j(xs)I3, El V i(xs)I3i • 
                                                                                   2=1,2 

However, for s=1, 2, and all j sufficiently large, we have 

               Ell I ,(xs)I3 a:,73P12E k( xsi7Y.13                ) 
                         =a.7-1312 k3(u)f(xs—aiu)dul 

                                           RP 

                           •=0(ajP12) , 
and 

              El V i(x .013 ajPI2 fk3(u)h*(xs—aju)du =0(a.7PI2) • 
provided that 

(3.8)h*(x)=E(Y I X=x).f(x)‹cx) 

for all xE R". Therefore, 

                     pn 16n-3/2 0(ajP12) 
                                                         )=1 

               =0(1-1 2                               (naR,))�_0((naD-1) , 
                                      n J=1 

by an application of Lemma A. Thus pi,—>0 as n—>00 provided that Condition (1.3) 

holds. Therefore pn/6.—>0 as n—>cc for any C�O, establishing (3.1). We have proved 
the following result : 

   LEMMA 5. Suppose that k satisfies Conditions (1.1), (1.2), and (3.3). Assume that 

E(I Y 131 X=x)<co for all xE RP and that (3.2) holds. If xi# x2, f(xs)>O, s=1, 2, then 

Zn is asymptotically normally distributed with mean vector OE R4 and covariance matrix 

                      f(x1) h(x1) 0 0 

                      h(x3) g(xi) 0 0 
                =k2(u)du 

            RP0 0 f(x 2) h(x2) 

                        0 0 h(x2) g(x2)-
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   The next lemma gives a set of sufficient conditions on f, h, and an such that 
El(x) and Eh(x) in Zn may be replaced by f(x) and h(x), respectively. 

   LEMMA 6. Suppose that assumptions of Lemma 5 hold. If Condition (1.4) holds 
and if a2flaxiaxj, a'hlaxiax; (i, j=1, , p) exist and are bounded, then 

                  Z:=n-1/2 alr[U',(x1)—f(x7), V .1(x1)—h(xi), 
                                                         .7=1 

                       U.1(x2)—f(x2),171(x2)—h(x2)1' 

has the same joint asymptotic normal distribution as that of Zn. 
   PROOF. It suffices to show that the i-th component of Zt has the same limiting 

marginal distribution as that of the i-th component of Zn, for i=1, 2, 3, 4. Since 

                             Z7,— Z:=n-112 6012B; 
                                                                          J=1 

where Bi=(bij, NJ, b3i, bo)' with 

                b1.7=f(x1)—EU1'(x1) , b2j=h(x1)—EV1(x1) , 

                b35=f(x2)—EU1'(x2), b4;=h(x2)—E(x2), 

the lemma will be proved if we can show that 

(3.9)n-1/2 ar bii, =                                1   (naj)P12boi-- 0 as n--co 
             .7 =1n J=1 

for i=1, ••• , 4. But, by the Taylor expansion of f(xi—aiu) about x1 and the asymp-

tion (3.3), we have           

I               b11 I = f RPEf(x1)—f(x1—aiu)1k(u)dul �0(a;) 
Similarly, I Nil =0(aD, for i=2, 3, 4. Now, applying Lemma A, we have 

                11  n                     E (nag )1/2E0(( na3+4)112), 
             n 5=1n J=1 

which converges to 0 by (1.4) and Lemma A. ^ 
   Now we are in a position to state the main theorem of this section, whose proof 

follows directly from Lemmas 5 and 6 along with Theorem (ii) of Rao (1965, page 321). 
   THEOREM 5. Suppose that k satisfies Conditions (1.1), (1.2) and (3.3). Let aflaxi, 

ahlaxi, ag/axi, a2f/axik, a2h/axiax; ••• , p) all exist and be bounded. Let {an} 
satisfy (1.3) and (1.4). If xi#xj, f(xi)>0 (i�j=1 , ••• , q), then 

                   (n4)112[M(x1)—m(x.,), ••• , 7h(x,)—m(x,)11 

is asymptotically normally distributed with mean vector OE R4 and diagonal covariance 

matrix I =(ci) where uji=Var (Y I X=xi)f k2(u)dulf(xi), ••• q. 
                                                RP 

   REMARKS. 1. To the best of our knowledge the joint asymptotic distribution of 

[Mn(X.Dy ••• mn(xq)1 is not documented in the literature, where Mn(X) is the non-
sequential estimate given by (1.8). However, it can be shown that, under the assump-

tions of Theorem 1, Mn(X)—qn(X), in probability as n—>c 0. This implies that m(x) and
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 inn(x) have the same limiting distribution. Therefore, the random vector [inn(x,),•••, 

mn(x,)] has the same limiting distribution as that of Crh(xi), ••• , 

   2. Conditions on the sequence 00 imposed in Theorem 5 when p=1 agree with 

those of Schuster (1972) except Condition (1.3). For p=1, Condition (1.3) reduces to 

nan—'00, as n—,00. Instead of this, Schuster has nct97,—<)o, as n--.00. This is mainly 

due to different assumptions on the moment of I Y 13. Schuster assumes that E Yr<CO, 

while we assume E(IY131X=x)<0.0 for all xERP. Had we assumed El Y 13 <00, Con-

dition (1.3) would have been 

(3.10)ita;,P co ,as n---co . 

However, there is no such {an} that satisfies both Conditions (3.10) and (1.4) except 
for p=1.
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