九州大学学術情報リポジトリ Kyushu University Institutional Repository

ON TESTS FOR EQUALITY OF COHERENCES OF TWO BIVARIATE STATIONARY TIME SERIESES

Nagai, Takeaki Faculty of Engineering Science, Osaka University

Goto, Masashi Shionogi Computing Center, Shionogi Research Laboratory

https://doi.org/10.5109/13097

出版情報:統計数理研究. 16 (3/4), pp.93-101, 1975-03. Research Association of Statistical

Sciences バージョン: 権利関係:

ON TESTS FOR EQUALITY OF COHERENCES OF TWO BIVARIATE STATIONARY TIME SERIESES

 $\mathbf{B}\mathbf{y}$

Takeaki NAGAI* and Masashi Goto**

(Received October 10, 1974)

1. Introduction.

In this paper we shall consider test procedures concerning equality of coherences of two bivariate stationary time serieses. They are the likelihood ratio test and its approximating chi-square test and a test based an asymptotic normality of sample coherences.

Let π_1 and π_2 be two populations whose characteristics are measured by real bivariate stationary time serieses, say, $\mathbf{x}^{(1)}(t) = [x_1^{(1)}(t), x_2^{(2)}(t)]'$, $t = 0, \pm 1, \pm 2, \cdots$ and $\mathbf{x}^{(2)}(t) = [x_1^{(2)}(t), x_2^{(2)}(t)]'$, $t = 0, \pm 1, \pm 2, \cdots$ with zero means and having spectral density matrices

(1.1)
$$f^{(1)}(\lambda) = \begin{bmatrix} f_{11}^{(1)}(\lambda) & f_{12}^{(1)}(\lambda) \\ f_{21}^{(1)}(\lambda) & f_{22}^{(1)}(\lambda) \end{bmatrix} \qquad -\pi \leq \lambda \leq \pi$$

$$f^{(2)}(\lambda) = \begin{bmatrix} f_{11}^{(2)}(\lambda) & f_{22}^{(2)}(\lambda) \\ f_{21}^{(2)}(\lambda) & f_{22}^{(2)}(\lambda) \end{bmatrix} \qquad -\pi \leq \lambda \leq \pi$$

respectively.

We shall denote coherences of $x^{(j)}(t)$, j=1, 2 by

(1.2)
$$\omega^{(j)}(\lambda) = \frac{|f_{12}^{(j)}(\lambda)|}{\{f_{11}^{(j)}(\lambda)f_{22}^{(j)}(\lambda)\}^{\frac{1}{2}}} \qquad j = 1, 2$$

and phases of $x^{(j)}(t)$, j=1,2 by

(1.3)
$$\theta^{(j)}(\lambda) = \tan^{-1}\left\{-\frac{q_{12}^{(j)}(\lambda)}{c_{2}^{(j)}(\lambda)}\right\} \qquad j = 1, 2$$

where $c_{12}^{(j)}(\lambda)$ and $q_{12}^{(j)}(\lambda)$ are the co-spectral densities and the quadrature spectral densities of $\mathbf{x}^{(j)}(t)$ respectively, that is, $f_{12}^{(j)}(\lambda) = \frac{1}{2}\{c_{12}^{(j)}(\lambda) - iq_{12}^{(j)}(\lambda)\}.$

For a given frequency λ ($\lambda \neq 0$, $\pm \pi$), we shall consider test procedures for a null hypothesis

$$H_0: \omega^{(1)}(\lambda) = \omega^{(2)}(\lambda) = \omega(\lambda)$$

against an alternative hypothesis

$$H_1: \quad \boldsymbol{\omega}^{(1)}(\lambda) \neq \boldsymbol{\omega}^{(2)}(\lambda)$$
.

^{*} Faculty of Engineering Science, Osaka University, Toyonaka, Osaka.

^{**} Shionogi Computing Center, Shionogi Research Laboratory, Osaka.

Throughout this paper we shall fix the frequency λ , $(\lambda \neq 0, \pm \pi)$, and drop the argument variable λ in $\mathbf{f}^{(j)}(\lambda)$, $f_{kl}^{(j)}(\lambda)$, $\theta^{(j)}(\lambda)$ and $\omega^{(j)}(\lambda)$.

2. F. F. T. data and their asymptotic normality.

Let $\{x_k^{(j)}(t), t=1, 2, \dots, T\}$, $k=1, 2, \dots, N_j$, j=1, 2 be N_1 and N_2 independently observed bivariate stationary time serieses of length T from π_1 and π_2 respectively.

We shall define the F. F. T. data of the observed time serieses by

(2.1)
$$\mathbf{w}_{k}^{(j)}(u) = \frac{1}{\sqrt{2\pi T}} \sum_{t=1}^{T} e^{it\lambda_{u}} \left[\mathbf{x}_{k}^{(j)}(t) - \bar{\mathbf{x}}_{k}^{(j)} \right] \qquad k = 1, 2, \dots, N_{j}, \quad u = 1, 2, \dots, q, \quad j = 1, 2$$

where

$$\lambda_u = \lambda + (u-1-m)\frac{2\pi}{\mathcal{T}}\;, \qquad u=1,2,\cdots,q\;, \quad q=2m+1 \ (m \geq 0 \ \text{integer})\;.$$

and

$$\bar{\boldsymbol{x}}_{k}^{(j)} = \frac{1}{T} \sum_{t=1}^{T} \boldsymbol{x}_{k}^{(j)}(t) .$$

In the case where values of the serieses, well-separated in time, are only weakly statistically dependent, the F. F. T. data $\{\boldsymbol{w}_k^{(j)}(u),\ u=1,2,\cdots,q,\ k=1,2,\cdots,N_j\},\ j=1,2$ are asymptotically independent bivariate complex normal with zero means and variance-covariance matrices $\boldsymbol{f}^{(j)}$ j=1,2, respectively.

Sufficient conditions for the asymptotic normality of the F. F. T. data are demonstrated by many authors, for example; M. Rosenblatt [5], E. J. Hannan [4] and D. Brillinger ([1], [2]).

In this paper we assume that our F. F. T. data are asymptotically bivariate complex normal as stated above and we shall treat them as if they follow their limit distributions.

3. Likelihood ratio criterion.

Under the hypothesis H_1 there are eight unknown parameters

$$\boldsymbol{\theta}_1 = \{ \boldsymbol{\theta}_1^{(1)}, \, \boldsymbol{\theta}_1^{(2)} \} = \{ (f_{11}^{(1)}, f_{22}^{(1)}, \, \boldsymbol{\omega}^{(1)}, \, \boldsymbol{\theta}^{(1)}), \, (f_{11}^{(2)}, f_{22}^{(2)}, \, \boldsymbol{\omega}^{(2)}, \, \boldsymbol{\theta}^{(2)}) \}$$

for the joint distribution of the F.F.T. data

$$\mathbf{w} = \{\mathbf{w}^{(1)}, \mathbf{w}^{(2)}\} = \{(\mathbf{w}_{k}^{(1)}(u), u = 1, 2, \dots, q, k = 1, 2, \dots, N_{1}), (\mathbf{w}_{k}^{(2)}(u), u = 1, 2, \dots, q, k = 1, 2, \dots, N_{2})\}.$$

Let us denote the likelihood functions of $\boldsymbol{\theta}_{i}^{(j)}$ based on the F. F. T. data $\boldsymbol{w}^{(j)}$ by

$$L(\boldsymbol{\theta}_{1}^{(j)}; \boldsymbol{w}^{(j)}) = \pi^{-2\nu_{j}} |\boldsymbol{f}^{(j)}|^{-\nu_{j}} \exp \{-\nu_{j} \operatorname{tr} (\boldsymbol{f}^{(j)-1} \hat{\boldsymbol{f}}^{(j)})\}$$

where $\nu_j = N_j q$.

Then, the likelihood function of $\boldsymbol{\theta}_1$ based on \boldsymbol{w} is given by

(3.1)
$$L(\boldsymbol{\theta}_{1}; \boldsymbol{w}) = L(\boldsymbol{\theta}_{1}^{(1)}; \boldsymbol{w}^{(1)}) L(\boldsymbol{\theta}_{1}^{(2)}; \boldsymbol{w}^{(2)})$$
$$= \pi^{-2N} |\boldsymbol{f}^{(1)}|^{-\nu_{1}} |\boldsymbol{f}^{(2)}|^{-\nu_{2}} \exp\left[-\nu_{1} \operatorname{tr}(\boldsymbol{f}^{(1)^{-1}}\hat{\boldsymbol{f}}^{(1)}) - \nu_{2} \operatorname{tr}(\boldsymbol{f}^{(2)^{-1}}\hat{\boldsymbol{f}}^{(2)})\right]$$

where $N = \nu_1 + \nu_2 = (N_1 + N_2)q$.

N. R. Goodman [3] showed that the maximum likelihood estimates (M. L. E.) of the variance-covariance matrices $f^{(j)}$ of $w^{(j)}$ are given by the sample spectral densities defined by

(3.2)
$$\mathbf{\hat{f}}^{(j)} = \{\hat{f}_{k,l}^{(j)}\}_{k,l=1,2} \\ = \frac{1}{\nu_j} \sum_{k=1}^{N_j} \sum_{u=1}^{q} \mathbf{w}_k^{(j)}(u) \mathbf{w}_k^{(j)}(u)^*.$$

Hence, the M. L. E.'s of coherences $\omega^{(j)}$ and phases $\theta^{(j)}$ which are uniquely determined by the spectral densities $f_{k,l}^{(j)}$ are given by the sample coherences $\hat{\omega}^{(j)}$ and the sample phases $\hat{\theta}^{(j)}$ defined by

(3.3)
$$\hat{\omega}^{(j)} = \frac{|\hat{f}_{12}^{(j)}|}{\{\hat{f}_{11}^{(j)}\hat{f}_{22}^{(j)}\}^{\frac{1}{2}}}$$

and

(3.4)
$$\hat{\theta}^{(j)} = \tan^{-1} \left\{ -\frac{\hat{q}_{12}^{(j)}}{\hat{c}_{12}^{(j)}} \right\}$$

where

$$\hat{f}_{12}^{(j)} = \frac{1}{2} \{\hat{c}_{12}^{(j)} - i\hat{q}_{12}^{(j)}\}$$
 .

Thus the M. L. E. of Θ_1 is given by

$$\begin{aligned} \hat{\boldsymbol{\theta}}_{1} &= \{ \hat{\boldsymbol{\theta}}_{1}^{(i)}, \, \hat{\boldsymbol{\theta}}_{1}^{(2)} \} \\ &= \{ (\hat{f}_{11}^{(j)}, \hat{f}_{22}^{(j)}, \, \hat{\boldsymbol{\omega}}^{(j)}, \, \hat{\boldsymbol{\theta}}^{(j)}) \, ; \, j = 1, \, 2 \} \end{aligned}$$

and the maximum value of the likelihood function $L(\boldsymbol{\theta}_1; \boldsymbol{w})$ is given by

(3.5)
$$L(\hat{\boldsymbol{\theta}}_{1}; \boldsymbol{w}) = L(\hat{\boldsymbol{\theta}}_{1}^{(1)}; \boldsymbol{w}^{(1)}) L(\hat{\boldsymbol{\theta}}_{1}^{(2)}; \boldsymbol{w}^{(2)})$$

$$= \frac{\pi^{-2N} \exp(-2N)}{\{\hat{f}_{11}^{(1)}\hat{f}_{22}^{(1)}(1-\hat{\boldsymbol{\omega}}^{(1)2})\}^{\nu_{1}}\{\hat{f}_{12}^{(1)}\hat{f}_{22}^{(2)}(1-\hat{\boldsymbol{\omega}}^{(2)2})\}^{\nu_{2}}}.$$

Under the hypothesis $H_0: \boldsymbol{\omega}^{(1)} = \boldsymbol{\omega}^{(2)} = \boldsymbol{\omega}$ there are seven unknown parameters $\boldsymbol{\theta}_0 = \{f_{11}^{(1)}, f_{22}^{(1)}, \theta^{(1)}, f_{12}^{(2)}, f_{22}^{(2)}, \theta^{(2)}, \boldsymbol{\omega}\}$. The likelihood function of $\boldsymbol{\theta}_0$ based on \boldsymbol{w} is given by

(3.6)
$$L(\boldsymbol{\theta}_{0}; \boldsymbol{w}) = L(\boldsymbol{\theta}_{0}; \boldsymbol{w}^{(1)}) L(\boldsymbol{\theta}_{0}; \boldsymbol{w}^{(2)})$$

$$= \pi^{-2N} |\boldsymbol{f}_{0}^{(1)}|^{-\nu_{1}} |\boldsymbol{f}_{0}^{(2)}|^{-\nu_{2}} \exp \left[-\nu_{1} \operatorname{tr} (\boldsymbol{f}_{0}^{(1)^{-1}} \hat{\boldsymbol{f}}^{(1)}) - \nu_{2} \operatorname{tr} (\hat{\boldsymbol{f}}_{0}^{(2)^{-1}} \boldsymbol{f}^{(2)})\right]$$

$$= \pi^{-2N} \left[f_{11}^{(1)} f_{22}^{(1)}\right]^{-\nu_{1}} \left[f_{11}^{(2)} f_{22}^{(2)}\right]^{-\nu_{2}} (1 - \boldsymbol{\omega}^{2})^{-N} \exp \left\{-\frac{1}{1 - \boldsymbol{\omega}^{2}} [H - R]\right\}$$

where we have put

(3.7)
$$\mathbf{f}_{\emptyset}^{(j)} = \begin{bmatrix} f^{(j)} & (f_{11}^{(j)} f_{22}^{(j)})^{\frac{1}{2}} \omega e^{i\theta^{(j)}} \\ (f_{11}^{(j)} f_{22}^{(j)})^{\frac{1}{2}} \omega e^{-i\theta^{(j)}} & f_{22}^{(j)} \end{bmatrix}.$$

(3.8)
$$H = \nu_1 \left\{ \frac{\hat{f}_{11}^{(1)}}{f_{11}^{(1)}} + \frac{\hat{f}_{22}^{(1)}}{f_{22}^{(1)}} \right\} + \nu_2 \left\{ \frac{\hat{f}_{11}^{(2)}}{f_{12}^{(1)}} + \frac{\hat{f}_{22}^{(2)}}{f_{22}^{(2)}} \right\}$$

and

(3.9)
$$R = 2\omega \sum_{j=1}^{2} \nu_{j} \hat{\omega}^{(j)} \left\{ \frac{\hat{f}_{11}^{(j)} \hat{f}_{22}^{(j)}}{f_{11}^{(j)} f_{22}^{(j)}} \right\}^{\frac{1}{2}} \cos \left(\theta^{(j)} - \hat{\theta}^{(j)} \right).$$

We prepare the following proposition

PROPOSITION 1. The M. L. E. $\hat{\boldsymbol{\theta}}_{0} = \{\hat{f}_{11}^{(1)}, \hat{f}_{22}^{(1)}, \hat{\hat{f}}_{11}^{(2)}, \hat{f}_{12}^{(2)}, \hat{\hat{f}}_{22}^{(2)}, \hat{\hat{\theta}}^{(2)}, \hat{\hat{o}}\}$ of $\boldsymbol{\Theta}_{0}$ based on \boldsymbol{w} under H_{0} are given by

(3.10)
$$\hat{\theta}^{(j)} = \hat{\theta}^{(j)}; \mod(2\pi) \quad j = 1, 2,$$

$$\hat{\omega} = \frac{(1 + \hat{\omega}^{(1)}\hat{\omega}^{(2)}) - \{(1 - \hat{\omega}^{(1)}\hat{\omega}^{(2)})^2 - 4p(1 - p)(\hat{\omega}^{(1)} - \hat{\omega}^{(2)})^2\}^{\frac{1}{2}}}{2\{p\hat{\omega}^{(2)} + (1 - p)\hat{\omega}^{(1)}\}},$$

(3.12)
$$\hat{f}_{kk}^{(j)} = \hat{f}_{kk}^{(j)} \left(\frac{1 - \hat{\omega}^{(j)} \hat{\hat{\omega}}}{1 - \hat{\omega}^2} \right)$$

where $p = \frac{\nu_1}{N}$.

Proof of this proposition 1 is given in Appendix.

The maximum value of the likelihood function under H_0 is thus given by

$$L(\hat{\boldsymbol{\theta}}_{0}; \boldsymbol{w}) = \frac{\pi^{-2N} e^{-2N} (1 - \hat{\omega}^{2})^{N}}{\{\hat{f}_{11}^{(1)} \hat{f}_{22}^{(1)} (1 - \hat{\omega}\hat{\omega}^{(1)})^{2}\}^{\nu_{1}} \{\hat{f}_{11}^{(2)} \hat{f}_{22}^{(2)} (1 - \hat{\omega}\hat{\omega}^{(2)})^{2}\}^{\nu_{2}}}.$$

The likelihood ratio criterion for testing H_0 against H_1 is now given be

(3.14)
$$\Lambda(\hat{\boldsymbol{\omega}}^{(1)}, \, \hat{\boldsymbol{\omega}}^{(2)}) = \frac{L(\hat{\boldsymbol{\theta}}_{0}; \boldsymbol{w})}{L(\hat{\boldsymbol{\theta}}_{1}; \, \boldsymbol{w})}$$
$$= [\boldsymbol{\Phi}(\hat{\boldsymbol{\omega}}^{(1)}, \, \hat{\boldsymbol{\omega}})]^{\nu_{1}} [\boldsymbol{\Phi}(\hat{\boldsymbol{\omega}}^{(2)}, \, \hat{\boldsymbol{\omega}})]^{\nu_{2}}$$

where

$$\Phi(x, y) = (1-x^2)(1-y^2)(1-xy)^{-2}$$
.

We notice that the likelihood ratio criterion $\Lambda = \Lambda(\hat{\omega}^{(1)}, \hat{\omega}^{(2)})$ depends only on the sample coherences $(\hat{\omega}^{(1)}, \hat{\omega}^{(2)})$ and (ν_1, ν_2) , since $\hat{\omega}$ is completely determined by $(\hat{\omega}^{(1)}, \hat{\omega}^{(2)})$.

4. Likelihood ratio test for H_0 against H_1 .

From the well-known results of N. R. Goodman [3], the joint p. d. f. of the sample coherences $(\hat{\omega}^{(1)}, \hat{\omega}^{(2)})$ is given by

$$(4.1) \varphi_{\nu_1,\nu_2}(y_1, y_2; \boldsymbol{\omega}^{(1)}, \boldsymbol{\omega}^{(2)}) = h_{\nu_1}(y_1; \boldsymbol{\omega}^{(1)}) h_{\nu_2}(y_2; \boldsymbol{\omega}^{(2)}), 0 \leq y_1, y_2 < 1$$

where

$$h_{\nu}(y;\omega) = \frac{2(\nu-1)(1-\omega^2)^{\nu}y}{[\Gamma(\nu)]^2} \sum_{l=0}^{\infty} \left\{ \frac{\Gamma(l+\nu)}{\Gamma(l+1)} \right\}^2 (\omega y)^{2l} (1-y^2)^{\nu-2}, \qquad 0 \leq y < 1.$$

In particular, under $H_0: \omega^{(1)} = \omega^{(2)} = \omega$ the joint p.d.f. of $(\hat{\omega}^{(1)}, \hat{\omega}^{(2)})$ is given by

$$\varphi_{\nu_1,\nu_2}(y_1, y_2; \omega) = h_{\nu_1}(y_1; \omega)h_{\nu_2}(y_2; \omega), \quad 0 \le y_1, y_2 \le 1.$$

For the likelihood ratio test, we can make use of the following decision rule; Let us put

(4.2)
$$c_0 \equiv c_0(\hat{\omega}^{(1)}, \hat{\omega}^{(2)}, \nu_1, \nu_2)$$
$$= A(\hat{\omega}^{(1)}, \hat{\omega}^{(2)})$$

the realized value of the likelihood criterion based on the sample coherences $(\hat{\omega}^{(1)}, \hat{\omega}^{(2)})$.

We consider a region D in $[0, 1]^2$ defined by

(4.3)
$$D = \{(y_1, y_2) | \Lambda(y_1, y_2) \le c_0\}.$$

The region D, of course, depends on (ν_1, ν_2) .

Under the hypothesis $H_0: \omega^{(1)} = \omega^{(2)} = \omega$, the probability that the sample coherences $(\hat{\omega}^{(1)}, \hat{\omega}^{(2)})$ fall into the region D is given by

(4.4)
$$\alpha_{1}(\omega) = P\{(\hat{\omega}^{(1)}, \hat{\omega}^{(2)}) \in D \mid H_{0}\}$$

$$= \iint_{\mathcal{D}} \varphi_{\nu_{1},\nu_{2}}(y_{1}, y_{2}; \omega) dy_{1} dy_{2}.$$

Since the coherence ω is unknown, we have to estimate the probability $\alpha_1(\omega)$.

It is natural to estimate $\alpha_i(\omega)$ by substituting the M.L. E. $\hat{\omega}$ defined in (3.11) in the place of ω in (4.4).

Thus, we can estimate the probability $\alpha_1(\omega)$ by $\alpha_1(\hat{\omega})$.

With a given level α_0 , say $\alpha_0 = 0.05$, we adopt the following decision rule:

To reject
$$H_0$$
 if $\alpha_1(\hat{\omega}) \leq \alpha_0$, to accept H_0 otherwise.

This is an approximating likelihood ratio test based on the F. F. T. data H_0 against H_1 with the level α_0 .

For a fixed c_0 , $0 < c_0 < 1$, the equation

$$(4.5) \Lambda(y_1, y_2) = c_0$$

has two solutions

$$y_2 = \phi_1(y_1) \ge y_1$$

 $y_2 = \phi_2(y_2) \ge y_1$.

and

These two functions $\phi_1(y_1)$ and $\phi_2(y_2)$ are smooth and their numerical values can be easily computed since the likelihood criterion (3.14) is comparatively simple.

The region D is thus written as

$$D = \{(y_1, y_2) | \phi_1(y_1) \le y_2 < 1\} \cup \{(y_1, y_2) | 0 \le y_2 \le \phi_2(y_1)\}$$

and the integral (4.4) is written as

$$\begin{split} \alpha_{1}(\omega) = & \int_{0}^{1} dy_{1} \int_{\phi_{1}(y_{1})}^{1} \varphi_{\nu_{1},\nu_{2}}(y_{1}, y_{2}; \omega) dy_{2} \\ & + \int_{0}^{1} dy_{1} \int_{0}^{\phi_{2}(y_{1})} \varphi_{\nu_{1},\nu_{2}}(y_{1}, y_{2}; \omega) dy_{2} \,. \end{split}$$

5. Numerical table for critical region.

Numerical table of critical value is needed for practice of the likelihood ratio test. Table 1 shows the probability level in cases of

$$\omega = 0.2 (0.2) 0.8,$$
 $N = 10, 50, \quad p = 0.5,$
 $c_0 = 0.1 (0.1) 0.9.$

Practical application of this test is prepared in our subsequent paper [6], to the "analytical evaluation of blood pressure of the aged".

Fig. 1 shows the monograph of critical region for $\alpha_0 = 0.05$ for any value (y_1, y_2) in cases as Table 1.

Table 1. Probability level of likelihood ratio test in case of $\omega = 0.1(0.1)0.8$, $c_0 = 0.1(0.1)0.9$, p = 0.5.

N=10

c_0	0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800
0.100	0.0101	0.0129	0.0176	0.0239	0.0314	0.0391	0.0457	0.0524
0.200	0.0286	0.0351	0.0454	0.0586	0.0728	0.0858	0.0960	0.1057
0.300	0.0553	0.0659	0.0821	0.1017	0.1215	0.1385	0.1507	0.1621
0.400	0.0912	0.1060	0.1279	0.1532	0.1776	0.1973	0.2108	0.2234
0.500	0.1384	0.1570	0.1840	0.2140	0.2417	0.2630	0.2768	0.2907
0.600	0.1996	0.2216	0.2526	0.2861	0.3156	0.3373	0.3511	0.3660
0.700	0.2800	0.3042	0.3377	0.3726	0.4023	0.4234	0.4361	0.4558
0.800	0.3890	0.4135	0.4468	0.4805	0.5082	0.5271	0.5384	0.5583
0.900	0.5504	0.5717	0.5999	0.6277	0.6497	0.6642	0.6729	0.6905

N = 50

c_0	0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800
0.100	0.0053	0.0133	0.0231	0.0296	0.0325	0.0338	0.0345	0. 0351
0.200	0.0191	0.0392	0.0588	0.0696	0.0741	0.0761	0.0772	0. 0778
0.300	0.0418	0.0751	0.1033	0.1170	0.1225	0.1250	0.1264	0. 1271
0.400	0.0745	0.1210	0.1562	0.1719	0.1780	0.1809	0.1824	0. 1833
0.500	0.1194	0.1780	0.2183	0.2350	0.2415	0.2445	0.2461	0. 2471
0.600	0.1795	0.2480	0.2913	0.3082	0.3147	0.3178	0.3195	0. 3205
0.700	0.2598	0.3347	0.3785	0.3947	0.4009	0.4039	0.4055	0. 4065
0.800	0.3707	0.4458	0.4866	0.5010	0.5065	0.5091	0. 5105	0. 5117
0.900	0.5357	0.6003	0.6329	0.6439	0.6481	0.6501	0. 6512	0. 6528

6. An approximating chi-square test.

Let us write $\delta = \omega^{(2)} - \omega^{(1)}$. Then the hypothesis H_0 and H_1 are rewritten as

 $H_0: \delta = 0$

and

 $H_1: \delta \neq 0$.

Under the hypothesis H_1 , there are eight unknown parameters for the joint distribution of the F. F. T. data w.

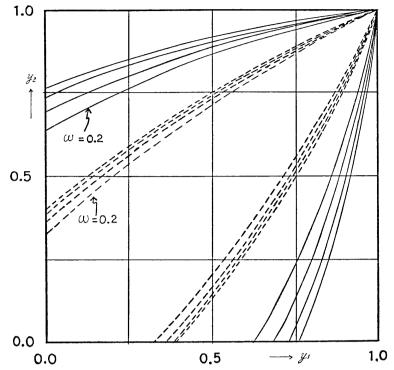


Fig. 1. Critical region of (y_1, y_2) at the level 0.05 in case of $\omega = 0.2$ (0.2) 0.8, where solid line and dashed line show the case of N=10 and N=50 respectively.

Hence the distribution of the familiar statistic $-2\log \Lambda(\hat{\omega}^{(1)}, \hat{\omega}^{(2)})$ is asymptotically chi-square distribution with 7 degrees of freedom.

For a given level α_0 let $\chi_7^2(\alpha_0)$ be the $100\alpha_0\%$ point of chi-square distribution with 7 degrees of freedom, that is, $P\{\chi_7^2 \ge \chi_7^2(\alpha_0)\} = \alpha_0$.

Then, the approximating critical region for the test of H_0 against H_1 of the level α_0 is given by

$$D^* = \{(y_1, y_2) | -2 \log \Lambda(y_1, y_2) \ge \chi_7^2(\alpha_0) \}$$
.

7. A test based on asymptotic normality.

From the result of E. J. Hannan [4, p. 291],

$$\frac{\sqrt{2\nu_{j}}(\hat{\omega}^{(j)} - \omega^{(j)})}{1 - \hat{\omega}^{(j)2}} \qquad j = 1, 2$$

are asymptotically normal with zero mean and unit variance.

Hence, under the hypothesis $H_0: \omega^{(1)} = \omega^{(2)} = \omega$, the following statistic:

$$\frac{\sqrt{2\nu_1\nu_2}(\hat{\omega}^{(1)} - \hat{\omega}^{(2)})}{\sqrt{\nu_1 + \nu_2}(1 - \hat{\omega}^2)}$$

is asymptotically normal with zero mean and unit variance.

Thus, the approximating critical region for the test of the hypothesis H_0 against

 H_1 of the level α_0 is given by

$$D^{**} = \left\{ (y_1, y_2) \middle| \sqrt{\frac{2\nu_1\nu_2}{\nu_1 + \nu_2}} \frac{|y_1 - y_2|}{\{1 - \hat{\hat{\omega}}(y_1, y_2)^2\}} \ge a(\alpha_0) \right\}$$

where $a(\alpha_0)$ is $100\frac{\alpha_0}{2}\%$ point of the standard normal distribution, and

$$\hat{\boldsymbol{\omega}}(y_1, y_2) = \frac{(1 + y_1 y_2) - \{(1 - y_1 y_2)^2 - 4p(1 - p)(y_1 - y_2)^2\}^{\frac{1}{2}}}{2\{p_{y_2} + (1 - p)y_1\}}$$

with $p = \frac{v_1}{v_1 + v_2}$.

8. Appendix.

PROOF OF PROPOSITION 1.

From (3.9), it is easily seen that M. L. E.'s of $\theta^{(j)}$, j=1,2, are given by (3.10). By substituting $\hat{\theta}^{(j)}$, j=1,2, into (3.6), we obtain

$$L(\boldsymbol{\theta}_{0}; \boldsymbol{w}) = L(\boldsymbol{\theta}_{0}^{*}; \boldsymbol{w})$$

= $\pi^{-2N}L^{(1)}(f_{11}^{(1)}, f_{22}^{(1)}, \boldsymbol{\omega})L^{(2)}(f_{11}^{(2)}, f_{22}^{(2)}, \boldsymbol{\omega})$

where

$$m{ heta_0^*} = \{f_{11}^{(1)}, f_{22}^{(1)}, \hat{m{ heta}}^{(1)}, f_{11}^{(2)}, f_{22}^{(2)}, \hat{m{ heta}}^{(2)}, m{\omega}\}$$

and

$$\begin{split} L^{(j)}(f_{11}^{(j)},f_{22}^{(j)},\omega) \\ = & (f_{11}^{(j)}f_{22}^{(j)})^{-\nu j}(1-\omega^2)^{-\nu j} \exp\left[-\frac{\nu_j}{1-\omega^2}\{X_j^2-2\hat{\omega}^{(j)}\omega X_j Y_j + Y_j^2\}\right] \end{split}$$

with

$$X_{j} = \left\{ \frac{\hat{f}_{11}^{(j)}}{f_{11}^{(j)}} \right\}^{\frac{1}{2}}, \qquad Y_{j} = \left\{ \frac{\hat{f}_{22}^{(j)}}{f_{22}^{(j)}} \right\}^{\frac{1}{2}}.$$

From the following inequalities:

(A.1) For every x, y,

$$x^2-2\hat{\omega}^{(j)}\omega xy+y^2 \ge 2(1-\hat{\omega}^{(j)}\omega)xy$$
.

(A.2) For any a > 0 and any z > 0

$$\log z - az \leq -\{\log a + 1\}$$

we have

(A.3)
$$L^{(j)}(f_{11}^{(j)}, f_{22}^{(j)}, \boldsymbol{\omega}) \\ \leq (\hat{f}_{11}^{(j)} \hat{f}_{22}^{(j)})^{-\nu_j} (1 - \boldsymbol{\omega}^2)^{-\nu_j} \exp \left[2\nu_j \left\{ \log \frac{1 - \boldsymbol{\omega}^2}{1 - \hat{\boldsymbol{\omega}}^{(j)} \boldsymbol{\omega}} - 1 \right\} \right].$$

The R. H. S. of (A.3) can be attained by taking $f_{kk}^{(j)}$, k=1,2, to be

(A.4)
$$\hat{f}_{kk}^{(j)} = \left(\frac{1 - \hat{\omega}^{(j)} \omega}{1 - \omega^2}\right) \hat{f}_{kk}^{(j)}, \quad k = 1, 2.$$

Thus, we have

$$\begin{split} L(\boldsymbol{\theta}_{0}^{*}\,;\,\boldsymbol{w}) & \leq L(\boldsymbol{\theta}_{0}^{**}\,;\,\boldsymbol{w}) \\ & = \frac{\{\hat{f}_{11}^{(1)}\hat{f}_{22}^{(1)}\}^{-\nu_{1}}\{\hat{f}_{11}^{(2)}\hat{f}_{22}^{(2)}\}^{-\nu_{2}}(1-\boldsymbol{\omega}^{2})^{N}}{\{\pi\boldsymbol{e}\}^{2N}(1-\hat{\boldsymbol{\omega}}^{(1)}\boldsymbol{\omega})^{2\nu_{1}}(1-\hat{\boldsymbol{\omega}}^{(2)}\boldsymbol{\omega})^{2\nu_{2}}} \end{split}$$

where

$$m{ heta_0^{**}} = \{ ilde{f}_{11}^{ ext{(1)}}, ilde{f}_{22}^{ ext{(1)}}, ilde{\hat{ heta}}^{ ext{(1)}}, ilde{f}_{11}^{ ext{(2)}}, ilde{f}_{22}^{ ext{(2)}}, ilde{\hat{ heta}}^{ ext{(2)}}, m{\hat{\phi}}^{ ext{(2)}}, m{\omega}\}$$
 .

Let $\hat{\omega}$ be the smaller solution of the equation of ω :

$$\{p\hat{\omega}^{(2)}+(1-p)\hat{\omega}^{(1)}\}\omega^2-(1+\hat{\omega}^{(1)}\hat{\omega}^{(2)})\omega+\{p\hat{\omega}^{(1)}+(1-p)\hat{\omega}^{(2)}\}=0$$

where $p = \frac{v_1}{v_1 + v_2}$.

Then, the solution $\hat{\omega}$ is given by (3.11) which satisfies that $0 \le \hat{\omega} \le 1$ and it is early seen that for any ω , $0 \le \omega \le 1$

$$\frac{(1-\hat{\omega}^2)^N}{(1-\hat{\omega}^{(1)}\hat{\omega})^{2\nu_1}(1-\hat{\omega}^{(2)}\hat{\omega})^{2\nu_2}} \ge \frac{(1-\omega^2)^N}{(1-\hat{\omega}^{(1)}\omega)^{2\nu_1}(1-\hat{\omega}^{(2)}\omega)^{2\nu_2}} .$$

Thus, we proved that the M.L.E.'s of Θ_0 are given by (3.10), (3.11) and (3.12). Q.E.D.

References

- [1] D.R. BRILLINGER and M. ROSENBLATT, Asymptotic theory of estimates of k-th order spectra. Spectral Analysis of Time Series (ed. B. Harris), John Wiley, New York. (1967), 153-188.
- [2] D.R. Brillinger, The spectral analysis of stationary interval functions, Proc. Sixth Berkeley Sympos. Math. Statist. and Probability, 1, (1972), 483-513, U. California Press.
- [3] N.R. GOODMAN, Statistical analysis based on a certain multivariate complen Gaussian distribution (an introduction), Ann. Math. Statist., 33 (1963), 152-177.
- [4] E.J. HANNAN, Multiple Time Series, John Wiley, New York, (1970).
- [5] M. ROSENBLATT, A central limit theorem and a strong mixing Condition Proc., Nat. Acad. Sci., U.S.A., 42, (1956), 43-47.
- [6] M. GOTO, Y. BOTAN and T. NAGAI, Classiffication of two bivariate time series and its application with numerical tables. In preparation.