GENERALIZED CONVEXITIES OF CONTINUOUS FUNCTIONS AND THEIR APPLICATION TO MATHEMATICAL PROGRAMMING

Tagawa, Shojiro
International Institute for Advanced Study of Social Information Science

https://doi.org/10.5109/13087

出版情報：統計数理研究．16 (1/2)，pp.115–125，1974-03．Research Association of Statistical Sciences
バージョン：
権利関係：
GENERALIZED CONVEXITIES OF CONTINUOUS
FUNCTIONS AND THEIR APPLICATIONS TO
MATHEMATICAL PROGRAMMING

By

Shōjirō Tagawa*

(Received October 15, 1973)

1. Introduction.

For real valued functions defined on a finite dimensional Euclidean space, the
notion of quasi-convexity was first introduced by K. J. Arrow and A. C. Enthoven
[1], while the notion of pseudo-convexity by O. L. Mangasarian [3] for differentiable
functions. In this paper, we shall generalize these notions to the case where the
functions are defined on a linear topological space and differentiable in the sense
of Neustadt [4]. We then show that some important results parallel to those ob-
tained in [1] and [3] are valid for the functions in our concern. We shall apply
these notions so as to obtain the sufficient conditions for the minimizing problem
in the framework of general mathematical programming enunciated in a previous
paper of the present author [5]. Our present problem treated in this paper can be
considered to belong to quasi-convex programming in a generalized sense.

In Section 2 we shall investigate the differentiability in the sense of Neustadt
in a linear topological space. In Section 3 we shall describe the necessary and
sufficient conditions for a continuous convex function on an open convex subset of
a linear topological space. In Section 4 we introduce the notions of pseudo-convexity
and quasi-convexity, and investigate the interrelations among convex, pseudo-convex
and quasi-convex functions when these functions are all continuous. In Section 5
we shall discuss the quasi-convex programming regarding the nonlinear program-
mess in a Banach space stated in [5]. Some examples are given in Section 6.
Example 1 given in Section 6 shows that the pseudo-convexity in our sense is truely
more general than that due to Mangasarian [3]. In example 2 we remark that the
norm in a real Hilbert space yields an example of the differentiable functions in
the sense of Neustadt.

2. Differentiability in the sense of Neustadt.

In this section, we shall investigate some properties of differentiable functions
in the sense of Neustadt.

* International Institute for Advanced Study of Social Information Science.
DEFINITION 2.1 (cf. [4]). Let X and Y be real linear topological spaces and f a mapping of X into Y. Then, f is called to be differentiable at $x \in X$ in the sense of Neustadt if to each $x \in X$ there corresponds a vector $f_x(x) \in Y$ such that

$$\frac{f(x+\varepsilon y)-f(x)}{\varepsilon} \rightarrow f_x(x) \text{ as } \varepsilon \rightarrow 0^+ \text{ for all } y \rightarrow x.$$

The mapping f is called to be differentiable on an open domain D of X in the sense of Neustadt if f is differentiable at x in the sense of Neustadt for every $x \in D$.

Note that the differential $f_x(x)$ in the sense of Neustadt is necessarily positively homogeneous, i.e.,

$$f_x(\lambda x) = \lambda f_x(x) \quad \text{for all } \lambda \geq 0.$$

We now present the properties of the differential f_x in the sense of Neustadt.

LEMMA 2.1. Given linear topological spaces X, Y and Z, a mapping f of X into Y, and a mapping g of Y into Z. If f is differentiable at $x \in X$ in the sense of Neustadt, and if g is differentiable at $y = f(x)$ in the sense of Neustadt, then the mapping $g \circ f$ is differentiable at x in the sense of Neustadt and

$$(g \circ f)_x(x) = g_{f_x}(f(x)) \quad \text{for all } x \in X.$$

PROOF. Let f be a real-valued function defined over a real line R^1. If f is differentiable at $x \in R^1$, then f has right and left derivatives at x. Conversely, if f has right and left derivatives at $x \in R^1$, then f is differentiable at x in the sense of Neustadt.

PROOF. First of all, assume that f is differentiable at $x \in R^1$ in the sense of Neustadt, i.e.,

$$\frac{f(x+\varepsilon y)-f(x)}{\varepsilon} \rightarrow f_x(x) \quad \text{for all } x \in R^1.$$

Setting $x = 1$, we have

$$\frac{f(x+\varepsilon y)-f(x)}{\varepsilon} \rightarrow f_x(1),$$

which means that f has right derivative at x.

In the same fashion, we obtain

$$\frac{f(x^-\varepsilon y)-f(x^-)}{\varepsilon} \rightarrow -f_x(-1),$$

and hence f has left derivative at x.
Conversely, suppose that \(f \) has right and left derivatives. Then,

\[
\frac{f(x + \varepsilon) - f(x)}{\varepsilon} \rightarrow 0^+ \quad f'(x),
\]

\[
\frac{f(x - \varepsilon) - f(x)}{-\varepsilon} \rightarrow 0^+ \quad f'(x).
\]

For each \(x > 0 \), we have

\[
\frac{f(x + \varepsilon y) - f(x)}{\varepsilon y} = \frac{f(x + \varepsilon y) - f(x)}{\varepsilon} \quad \frac{y}{y \rightarrow x} \rightarrow f'_x(x)
\]

since every \(y \) sufficiently close to \(x \) is positive. This implies that \(f_x(x) \) exists and

\[f_x(x) = f'_x(x) x. \]

In the same way, for each \(x < 0 \), we have

\[
\frac{f(x + \varepsilon y) - f(x)}{\varepsilon y} = \frac{f(x + \varepsilon y) - f(x)}{\varepsilon} \quad \frac{y}{y \rightarrow x} \rightarrow f'_x(x) x
\]

so that \(f_x(x) \) exists and

\[f_x(x) = f'_x(x) x. \]

Now, consider the case where \(x = 0 \). It is true that there is a real number \(\delta_0 \), \(0 < \delta_0 < 1 \), such that

\[
\left| \frac{f(x + \varepsilon) - f(x)}{\varepsilon} - f'(x) \right| < 1 \quad \text{whenever } 0 < \varepsilon < \delta_0,
\]

and

\[
\left| \frac{f(x + \varepsilon) - f(x)}{\varepsilon} - f'(x) \right| < 1 \quad \text{whenever } -\delta_0 < \varepsilon < 0.
\]

Setting \(M = \max \{ |f'_x(x)|, |f'_x(x)| \} \), we have

\[
\left| \frac{f(x + \varepsilon) - f(x)}{\varepsilon} \right| < M + 1 \quad \text{whenever } 0 < |\varepsilon| \leq \delta_0.
\]

For an arbitrary positive number \(\xi \), let

\[
\delta = \min \left\{ \frac{\xi}{M + 1}, \delta_0 \right\}.
\]

It is then valid that

\[
\left| \frac{f(x + \varepsilon y) - f(x)}{\varepsilon} \right| = \left| \frac{f(x + \varepsilon y) - f(x)}{\varepsilon y} \right| \quad |y| < (M + 1)\delta \leq \xi
\]

whenever \(0 < \varepsilon < \delta \), \(0 < |y| < \delta \),

which implies that
This completes the proof of Lemma 2.2.

3. Convexity.

We shall present the property of the convex functions.

Definition 3.1. Let \(X \) be a linear topological space, \(A \) a convex subset of \(X \), and \(f \) a real-valued function defined over \(X \). Then, \(f \) is called to be convex on \(A \) if for every \(x_1 \) and \(x_2 \) in \(A \)

\[
f(\lambda x_1 + (1 - \lambda)x_2) \leq \lambda f(x_1) + (1 - \lambda)f(x_2)
\]

for every \(\lambda, 0 \leq \lambda \leq 1 \).

Proposition 3.1. The function \(f \) is continuous convex on an open convex subset \(A \) of \(X \) if and only if

(a) \(f \) is differentiable on \(A \) in the sense of Neustadt,
(b) \(f(x_2) - f(x_1) \geq f_{x_1}(x_2 - x_1) \) for all \(x_1, x_2 \in A \).

Proof. "only if" part: This is an immediate consequence of Proposition 4.1 in [5].

"if" part: First of all, note that \(f \) is continuous at \(x \in X \) if \(f \) is differentiable at \(x \) in the sense of Neustadt (see Lemma 3.1 in [5]).

To show the contrary, assume that \(f(x) \) is not convex on \(A \). That is, there are vectors \(x_1, x_2 (\neq x_1) \in A \) and a real number \(\alpha, 0 < \alpha < 1 \), such that

\[
f(\alpha x_1 + (1 - \alpha)x_2) > \alpha f(x_1) + (1 - \alpha)f(x_2).\]

Define the function \(h: [0, 1] \rightarrow \mathbb{R}^1 \) as follows:

\[
h(\lambda) = f(\lambda x_1 + (1 - \lambda)x_2) + \lambda(f(x_1) - f(x_2)) \quad \text{for all } \lambda \in [0, 1].\]

It is then clear that \(h \) is differentiable on \([0, 1]\) in the sense of Neustadt and

\[
h(0) = h(1) = f(x_1).
\]

Furthermore, we have

\[
h(1 - \alpha) > f(x_1) = h(0) = h(1).
\]

Since \(h \) is continuous on \([0, 1]\), there exists a real number \(\tilde{\lambda} \), \(0 < \tilde{\lambda} < 1 \), such that

\[
h(\tilde{\lambda}) = \max_{\lambda \in [0, 1]} h(\lambda) > h(0) = h(1).
\]

It is then valid that

\[
h(\tilde{x}) = f(x_1) + \tilde{\lambda}(f(x_1) - f(x_2)),
\]

where

\[
\tilde{x} = \tilde{\lambda}x_1 + (1 - \tilde{\lambda})x_2.
\]

Since \(h \) is differentiable on \([\tilde{\lambda}, 1]\) in the sense of Neustadt, it follows from Lemma 2.2 that \(h \) has left derivative and

\[
h_{\leftarrow}(\delta) = h'_{\leftarrow}(\lambda)\delta \quad \text{for all } \delta < 0,
\]
whenever $\lambda < \lambda \leq 1$.

Now, we shall show that

\begin{equation}
(3.4) \quad h_{\delta_1}(\delta_2-\delta_1) \leq h(\delta_2)-h(\delta_1) \quad \text{whenever } 0 < \delta_1 < 1, \ 0 \leq \delta_2 \leq 1.
\end{equation}

It follows from (3.1) that

\[
h_{\delta_1}(\delta_2-\delta_1) = \lim_{\varepsilon \to 0^+} \left[\frac{f(x(\delta_2)+\varepsilon(x_2-x_1))-f(x(\delta_1))}{\varepsilon} + \mu(f(x_1)-f(x_2)) \right] - (x(\delta_1)(x_2-x_1)+(\delta_2-\delta_1)(f(x_1)-f(x_2)),
\]

where

\[
x(\delta_1) = \delta_1 x_2 + (1-\delta_1)x_1.
\]

Moreover, we have

\[
(x(\delta_2)-x(\delta_1))(x_2-x_1) = x(\delta_2)-x(\delta_1),
\]

where $x(\delta_2) = \delta_2 x_2 + (1-\delta_2)x_1$. Therefore, it follows from the condition (b) that

\[
h_{\delta_1}(\delta_2-\delta_1) \leq h(\delta_2)-h(\delta_1).
\]

It is true, by virtue of (3.2), that

\[
h_\lambda(\delta) \leq 0 \quad \text{for all real numbers } \delta.
\]

If we suppose that

\[
h_\lambda(1-\lambda) = 0,
\]

then it is immediate, by (3.4), that

\[
0 = h_\lambda(1-\lambda) \leq h(1)-h(\lambda),
\]

which contradicts to (3.2). Hence, we have

\[
h_\lambda(1-\lambda) = \lim_{\varepsilon \to 0^+} \frac{h(\lambda)\varepsilon(1-\lambda) - h(\lambda)}{\varepsilon} < 0
\]

It is then valid that there is a real number ε_0, $0 < \varepsilon_0 < 1$, such that

\[
h(\lambda)\varepsilon(1-\lambda) - h(\lambda) < 0 \quad \text{for all } \varepsilon \in (0, \varepsilon_0].
\]

This can be rewritten in the form: There is a real number $\bar{\lambda} < \lambda < 1$, such that

\[
h(\lambda) < h(\bar{\lambda}) \quad \text{for all } \lambda \in (\bar{\lambda}, \lambda].
\]

Furthermore, the continuity of h allows us to take $\bar{\lambda}, \lambda < \lambda < 1$, as the number satisfying

\begin{equation}
(3.5) \quad h(0) = h(1) < h(\lambda) < h(\bar{\lambda}) \quad \text{whenever } \bar{\lambda} < \lambda \leq \lambda.
\end{equation}

Recall that h has left derivative on $(\bar{\lambda}, \lambda]$. Then, there exists a real number $\lambda_0 \in (\bar{\lambda}, \lambda]$ satisfying

\[
h'(\lambda_0) < 0.
\]

For if we assume that

\[
h'(\lambda) \geq 0 \quad \text{for all } \lambda \in (\bar{\lambda}, \lambda],
\]

then it follows from Proposition 2 in Bourbaki [2; Ch. 1, § 2, N°2] that

\[
h(\bar{\lambda}) \geq h(\lambda),
\]
which contradicts to (3.5).

It is then valid, by virtue of (3.4) and Lemma 2.2, that

$$0 < h'_{\lambda_0}(-\lambda_0) = h_{\lambda_0}(0-\lambda_0) \leq h(0) - h(\lambda_0),$$

which contradicts to (3.5).

Consequently, we can conclude that \(f \) is convex on \(A \). This completes the proof of Proposition 3.1.

4. Pseudo-convexity and quasi-convexity.

We shall introduce the notions of pseudo-convexity and quasi-convexity for the functions defined on a linear topological space.

Definition 4.1. Let \(X \) be a linear topological space, \(A \) a subset of \(X \), and \(f \) a real-valued function defined on \(X \) which is differentiable on \(A \) in the sense of Neustadt. Then, \(f \) is called to be pseudo-convex on \(A \) if for every \(x_1 \) and \(x_2 \) in \(A \),

$$f_{x_1}(x_2-x_1) \geq 0 \quad \text{implies} \quad f(x_2) \geq f(x_1).$$

Now, we shall investigate the properties of pseudo-convex functions which are almost parallel to those described in [3]. Let \(X \) be a linear topological space and \(A \) a convex subset of \(X \). Let \(f \) be a real-valued function defined over \(X \).

Property 1. If \(f(x) \) is continuous convex on \(A \), then \(f(x) \) is pseudo-convex on \(A \), but not conversely.

Proof. This is an immediate consequence of Proposition 3.1.

Definition 4.2 (cf. [1]). The function \(f \) is called to be quasi-convex on \(A \) if for every real number \(\lambda \) the set

$$\{ x \in A | f(x) \leq \lambda \}$$

is convex.

If the real-valued function \(f \) defined over \(X \) is quasi-convex on \(A \) and if \(f \) is differentiable on \(A \) in the sense of Neustadt, then

$$f(x) \leq f(x) \quad \text{implies} \quad f'_{x-x_1}(x) \leq 0.$$

Definition 4.3 (cf. [3]). Let be given a linear topological space \(X \), a convex set \(A \) in \(X \) and a real-valued function \(f \) defined over \(X \). The function \(f \) is called to be strictly quasi-convex on \(A \) if for every \(x_1 \) and \(x_2 \) in \(A \), \(x_1 \neq x_2 \),

$$f(x_1) < f(x_2) \quad \text{implies} \quad f_{\lambda_1}(x_1+(1-\lambda_1)x_2) < f(x_2),$$

for every \(\lambda, 0 < \lambda < 1 \).

Property 2. If \(f(x) \) is pseudo-convex on \(A \), then \(f(x) \) is strictly quasi-convex on \(A \), but not conversely.

Proof. We shall prove by contradiction. That is, assume that \(f(x) \) is not strictly quasi-convex on \(A \), then it follows from the Definition 4.3 that there are vectors \(x_1 \) and \(x_2 \) in \(A \) and a real number \(\lambda_i, 0 < \lambda_i < 1 \), such that

$$f(x_i) < f(x_2)$$

(4.1)

$$f(\lambda_i x_1 + (1-\lambda_i) x_2) \geq f(x_2).$$
Define the function h from the interval $[0, 1]$ into a real line as follows:

$$(4.2) \quad h(\lambda) = f(\lambda x_1 + (1-\lambda) x_2) \quad \text{for all} \quad \lambda \in [0, 1].$$

Since the function h is continuous, there is (by (4.1)) a real number $\bar{\lambda}$ such that

$$0 < \bar{\lambda} < 1,$$

$$(4.3) \quad h(\bar{\lambda}) = \max_{\lambda \in [0, 1]} h(\lambda) \geq f(x_2) > f(x_1).$$

It is then true, on the basis of Lemma 2.1, that

$$0 \geq h_{\bar{\lambda}}(\delta) = \lim_{\varepsilon \to 0^+} \frac{h(\lambda + \varepsilon \mu) - h(\bar{\lambda})}{\varepsilon} = f_{\bar{\lambda}}(\delta(x_1 - x_2))$$

for every real number δ, where $\bar{x} = \bar{\lambda} x_1 + (1-\bar{\lambda}) x_2$. Hence we have

$$(4.4) \quad f_{\bar{\lambda}}(x_2 - \bar{x}) = f_{\bar{\lambda}}(\bar{x} - x_1) \leq 0.$$

If we assume that

$$f_{\bar{\lambda}}(x_2 - \bar{x}) = 0,$$

then for every $\mu \in [0, 1]$ we obtain

$$f_{\bar{\lambda}}(\mu x_2 + (1-\mu) \bar{x} - \bar{x}) = \mu f_{\bar{\lambda}}(x_2 - \bar{x}) = 0.$$

Since f is pseudo-convex, it is immediate that

$$f(\mu x_2 + (1-\mu) \bar{x}) \geq f(\bar{x}) \quad \text{for all} \quad \mu \in [0, 1].$$

It then follows from (4.2) and (4.3) that

$$f(\mu x_2 + (1-\mu) \bar{x}) = f(\bar{x}) \quad \text{for all} \quad \mu \in [0, 1],$$

which implies that

$$f_{\bar{\lambda}}(x_2 - x_1) = \lim_{\varepsilon \to 0^+} \frac{f(x_2 + \varepsilon(x_1 - x_2)) - f(x_2)}{\varepsilon} = 0.$$

Therefore, it is valid, on the basis of pseudo-convexity of f, that

$$f(x_1) \geq f(x_2),$$

which contradicts to (4.3).

Consequently, it follows from (4.4) that

$$(4.5) \quad f_{\bar{\lambda}}(x_2 - \bar{x}) < 0.$$

It is easy to verify (by (4.5)) that there is a real number ε_0, $0 < \varepsilon_0 < 1$, such that

$$f(\bar{x} + \varepsilon_0(x_2 - \bar{x})) < f(\bar{x}) \quad \text{whenever} \quad 0 < \varepsilon < \varepsilon_0.$$

Since f is continuous, there exists a real number ε_1, $0 < \varepsilon_1 < \varepsilon_0$, such that

$$f(x_1) < f(\bar{x} + \varepsilon(x_2 - \bar{x})) < f(\bar{x}) \quad \text{whenever} \quad 0 < \varepsilon < \varepsilon_1,$$

or equivalently, there exists (see (4.2)) a real number λ_2, $0 < \lambda_2 < \bar{\lambda}$, such that

$$(4.6) \quad h(1) < h(\lambda) < h(\bar{\lambda}) \quad \text{whenever} \quad \lambda_2 \leq \lambda < \bar{\lambda}.$$
Since $h(\lambda)$ is differentiable on $(0, 1)$ in the sense of Neustadt, it follows from Lemma 2.2 that h has right derivative and that
\[h'_r(\lambda) \mu = h_2(\mu) \quad \text{for all } \mu > 0. \]

We now show that there is a real number λ_3, $\lambda_3 \leq \lambda < \bar{\lambda}$, such that
\[h'_r(\lambda_3) > 0. \]

To show the contrary, assume that
\[h'_r(\lambda) \leq 0 \quad \text{for all } \lambda \in [\lambda_3, \bar{\lambda}). \]

It then follows from Proposition 2 in [2; Ch. 1, § 2, N°2] that
\[h(\lambda_3) = h(\bar{\lambda}), \]
which contradicts to (4.6).

Therefore, it is clear that
\[f_{x_3}(\delta(x_1-x_2)) = h_{x_3}(\delta) = h'_r(\lambda_3) \delta > 0 \quad \text{for all } \delta > 0, \]
where $x_3 = \lambda_3 x_1 + (1-\lambda_3)x_2$. Since $x_1-x_3 = (1-\lambda_3)(x_1-x_2)$, we have
\[f_{x_3}(x_1-x_3) = f_{x_3}((1-\lambda_3)(x_1-x_2)) > 0, \]
which together with the pseudo-convexity of f imply that
\[h(1) = f(x_1) = f(x_3) = h(\lambda_3). \]
This contradicts to (4.6).

Consequently, we can conclude that (4.5) does not hold, and hence f is strictly quasi-convex on A. This completes the proof of Property 2.

Property 3 (cf. [3]). If f is continuous, strictly quasi-convex on A, then f is quasi-convex on A.

Property 4 (cf. [3]). If f is strictly quasi-convex on A, then every local minimum is a global minimum.

Property 5. Let $f(x)$ be pseudo-convex on A (probably not convex only in this case). If
\[f_x(x-x) \geq 0 \quad \text{for all } x \in A, \]
then \bar{x} is a global minimum over A.

It follows from Properties 1-3 that there is a hierarchy among differentiable functions in the sense of Neustadt. More precisely, if we let F_1, F_2, F_3, and F_4 represent the sets of all differentiable functions in the sense of Neustadt defined on a convex set A in a linear topological space that are convex, pseudoconvex, strictly quasi-convex, and quasi-convex, respectively, then
\[F_1 \subset F_2 \subset F_3 \subset F_4. \]

5. Quasi-convex programming.

In this section, we shall present the programming in which the conditions described in [5] are sufficient for optimality.

Definition 5.1 (cf. [5]). Let X be a linear topological space and A a subset of
Generalized Convexities of Continuous Functions

X. By the local closed convex cone of A at $\bar{x} (\in A)$ we mean the set

$$P(A, \bar{x}) = \bigcap_{N \in R(\bar{x})} CC(A \cap N, \bar{x}),$$

where $R(\bar{x})$ is the class of all neighborhoods of \bar{x} and $CC(A \cap N, \bar{x})$ is the intersection of all closed convex cones containing the set $A - \bar{x} = \{a - \bar{x} | a \in A\}$.

DEFINITION 5.2 (cf. [6]). By the local closed cone of A at \bar{x} we mean the set

$$LC(A, \bar{x}) = \bigcap_{N \in RC(\bar{x})} C(A \cap N, \bar{x}),$$

where $C(A \cap N, \bar{x})$ is the intersection of all closed cones containing the set $A - \bar{x}$.

DEFINITION 5.3 (cf. [5]). The set A in X is called a pseudo-cone with vertex at $\bar{x} (\in A)$ if

$$x - \bar{x} \in LC(A, \bar{x}) \quad \text{for all } x \in A.$$

Before we discuss the quasi-convex programming, we shall generalize the notion of quasi-convexity.

DEFINITION 5.4. Given linear topological spaces X and Y, a convex set A in X, a closed convex cone* B in Y, and a mapping g of X into Y. Then, g is called to be B-quasi-convex on A if for each vector $y \in Y$ the set

$$\{x \in A | g(x) \in y + B\}$$

is convex.

LEMMA 5.1. Let X be a linear topological space, R^n an n-Euclidean space, A a convex set in X and $g = (g_1, \ldots, g_n)$ a mapping of X into R^n. If all g_i's are quasi-convex on A, then g is B-quasi-convex on A, where B is given by

$$B = \{y = (y_1, \ldots, y_n) \in R^n | y_i \leq 0, i = 1, \ldots, n\}.$$

PROOF. For any vector $y = (y_1, \ldots, y_n) \in R^n$ the sets

$$\{x \in A | g_i(x) \leq y_i\} \quad \text{for } i = 1, \ldots, n$$

are all convex since g_i's are quasi-convex. Then, the set

$$\{x \in A | g(x) \in y + B\} = \{x \in A | g_i(x) \leq y_i, i = 1, \ldots, n\}$$

is convex. Hence g is B-quasi-convex on A.

This lemma shows that the B-quasi-convexity is a natural extension of the quasi-convexity.

THEOREM 5.1. Let X and Y be real Banach spaces, A a convex subset of X, and B a closed convex cone in Y. Let a real-valued function f defined over X be pseudo-convex on A and let a differentiable mapping g of X into Y in the sense of Neustadt be B-quasi-convex on A. If there exist a vector $\bar{x} \in A$, a real number $\eta \neq 0$, and a linear continuous functional $\bar{g}^* \in Y^*$ such that

$$\eta \geq 0,$$

* A subset B of a linear space is called a cone if $\alpha B \subseteq B$ for all $\alpha \geq 0$.
124 S. Tagawa

\[\gamma^*(y) \leq 0 \quad \text{for all } y \in B, \]
\[\gamma^*(g(\bar{x})) = 0, \]
\[g(\bar{x}) \in B, \]
\[\eta f_2(x) + \gamma^*(g_2(x)) \geq 0 \quad \text{for all } x \in P(A, \bar{x}), \]

then

\[f(\bar{x}) = \min \{ f(x) | x \in A, g(x) \in B \}. \]

Proof. Define the set \(D \) in \(X \) as follows:

\[D = \{ x \in A | g(x) \in B \}. \]

It is then clear, by virtue of (5.4), that \(\bar{x} \in D \). Since \(g \) is \(B \)-quasi-convex on \(A \), the set \(D \) is convex, and hence it is a pseudo-cone with vertex at \(\bar{x} \). Since \(f \) is pseudo-convex on \(A \), it is pseudo-convex on \(D \). Consequently, it follows, on the basis of Theorem 3.4 in [5], that the conditions (5.1)-(5.5) are sufficient for minimality of \(f(\bar{x}) \) on \(D \). This completes the proof of Theorem 5.1.

Now, we can state, by virtue of Lemma 5.1, the corollary of Theorem 5.1.

Corollary. Let \(X \) be a real Banach space, and \(A \) a convex subset of \(X \). Let a real-valued function \(f \) defined on \(X \) be pseudo-convex on \(A \), and real-valued functions \(g_1, \ldots, g_n \) differentiable in the sense of Neustadt and quasi-convex on \(A \). If there exist a vector \(\bar{x} \in A \), a real number \(\eta \neq 0 \), and a vector \(\zeta = (\zeta_1, \ldots, \zeta_n) \in R^n \) such that

\[\eta g_1(\bar{x}) + \cdots + \eta g_n(\bar{x}) = 0, \]
\[\text{for } i = 1, \ldots, n, \]
\[g_i(\bar{x}) \leq 0, \]
\[\text{for } i = 1, \ldots, n, \]
\[\eta f_2(x) + \zeta_1 g_1(x) + \cdots + \zeta_n g_2(x) \geq 0 \quad \text{for all } x \in P(A, \bar{x}), \]

then

\[f(\bar{x}) = \min \{ f(x) | x \in A, g_i(x) \leq 0 \quad \text{for } i = 1, \ldots, n \}. \]

Proof. Let \(Y \) be an Euclidean space \(R^n \). If we define the mapping \(g \) of \(X \) into \(Y \) and the closed convex cone \(B \) in \(Y \) as follows:

\[g(x) = (g_1(x), \ldots, g_n(x)) \quad \text{for all } x \in X, \]
\[B = \{ y = (y_1, \ldots, y_n) \in R^n | y_i \leq 0 \quad \text{for } i = 1, \ldots, n \}, \]

then it is easily verified, on the basis of Theorem 5.1, that the assertion of the corollary holds.

6. **Remarks.**

Our concept of pseudo-convexity is an extension of the pseudo-convexity described in [3]. For instance, consider the following examples.

Example 1. Let \(f(x) \) be the function from \(R^1 \) into \(R^1 \) defined by
f(x) = \begin{cases}
 x^2 & \text{if } x \leq 0 \\
 \sqrt{x+1} - 1 & \text{if } x > 0.
\end{cases}

Then, \(f(x) \) is not differentiable at 0 in the usual sense, but differentiable at 0 in the sense of Neustadt. Therefore, \(f(x) \) is not pseudo-convex in the sense of Mangasarian, but pseudo-convex in our sense.

Example 2. As more simple, but important example, we can consider the norm in a real Hilbert space \(X \), i.e., the norm \(\|x\| \) is defined by

\[\|x\| = (x|x)^{1/2} \quad \text{for all } x \in X, \]

where \((x|y) \) is an inner product in \(X \). Then, the real valued function \(f(x) = \|x\| \) is differentiable on \(X \) in the sense of Neustadt, and the differential \(f_x \) is:

\[f_x(x) = \begin{cases}
 \|x\| & \text{if } x = 0, \\
 \frac{(x|x)}{\|x\|} & \text{if } x \neq 0.
\end{cases} \]

It is clear that the above function \(f(x) \) is not differentiable at \(x = 0 \) in the usual sense.

Acknowledgements. The author wishes to express his hearty thanks to Dr. Tosio Kitagawa for his useful suggestions and remarks.

References

