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   1. Introduction. 

   Languages L1, L2, , Ln are said to be regularly separable if there exist mutually 
disjoint regular sets R1, R2, , Rn with Li Ri for each i. In case n = 2, we say 

that L1 is regularly separable from L2, or regular set R1 separates L1 from L2. 

   This notion, introduced by K. Kobayashi [1] in developing his abstract theory 

of complexity of formal languages, seems very important not only in the study of 
complexity but also in the general study of formal languages from the three points 

of views : 

   (1) It is useful for setting up a criterion of nearness of 'approximation' of 
languages by ones with a weaker structure, e. g., context-free languages by regular 

sets. When languages L1, L2, ••• , Lii are regularly separable, we can say that the 
regular superset R1 of L1 approximates L1 as near as R1 intersects with no other 

set Li but L1. 

   (2) It gives a negative way for language recognition. From the regular separa-
bility of languages L1 and L2, we can know, by only finite automata, to which 

language of L4, .14 or (L,U 1,2)c a given word belongs, though we can not have any 

positive answer. 

   (3) We may take, in a sense, that the regular sets in regular separation of 
languages correspond to the linear discriminant functions in the usual pattern re-

cognition. 
   In the present paper, we shall study some aspects of regular separation of 

languages. In Section 2 we shall prove a fundamental lemma which gives a suf-

ficient condition for regular separability of languages, by which we shall exhibit 

several examples of regularly separable languages, and give a necessary and suf-
ficient condition for regular separability of languages from a set of all primes for 

the case of a singleton alphabet. In Section 3 we shall consider languages which 

are not regularly separable from any other infinite language, and show that the 

full set A* of words can be covered by some finite union of context-sensitive 
languages which contain no infinite regular set, but not by any such context-free 

language. In the final section, we shall give a necessary and sufficient condition 
for regular sets containing no nonregular context-free language, and give a solvable 

decision problem.
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   2. Regularly separable languages. 

   LEMMA 2.1. If each of  L1 and L2 is regularly separable from L, then so is each 
of L, nL, and L, L2. 

   PROOF. Let a regular set R1 separate L1 from L, and a regular set R2 separate 
L2 from L. Then 

                     L, n 1 2 L, R„ 

                     LIUL2 c_ RiUR2 , Lg 

                 (R,U R 2) n R s) = cb , 

where LC denotes the complement of L with respect to the full set. 
   Note that the regular separability are not always preserved under the opera-

tions of product and *. By the lemma and fundamental properties on regular sets, 
we may take mainly the case of n = 2. 

   LEMMA 2.2. Languages L1 and L2 are regularly separable if there exists a gener-
alized sequential machine S for which S(L1) and S(L2) are mutually disjoint regular 
sets. 
   PROOF. S-1(S(L1)) is a regular superset of L1. And 

               S-1(S(LI)) n S-'(S(L2)) = S-1(S(L1) n S(L2)) 

                                     = S-1(0) = . 

Hence the regular set S-1(S(L1)) separates L1 from L2. 
   EXAMPLE 2.1. L = fanbn ; n _� 01 is regularly separable from L' fanb"2 ; 01. 

In fact, we can construct a generalized sequential machine S = ({so, s1, s2}, {a, b} 

{a, b, c}, 5, 2, so): 
                  5(so, a) = s, , 5(s1, a) = s2 , 5(s2, a) = so , 

                 O(si, b)= si for i= 0, 1, 2 ; 

                 2(si, a) = 6 for i= 0, 1, 2 , 

                 2(so, b) = a , 2(s,, b) b , 2(s2, b)=c. 
And we have 

                    s(L)= (a3)* lJ (b3)* bU (0)* cc , 

                      S(L') = (a3)*aa U (b3)+ U (c3)*c , 

which are regular and mutually disjoint. 
   EXAMPLE 2.2. L= {anbn ; n 0} is not regularly separable from L' = { anb2n n> 0}. 

Suppose that L is separated by a regular set R from L'. From the finiteness of the 
number of right invariant equivalence classes induced by R, we can see that there 
exists an integer m for which both am and a' are contained in one class, and 
hence there is a class which intersects with both L and L'. 

   EXAMPLE 2.3. L = {a" ; n�: 1} and L' = {a" ; n 1} are regularly separable. 
   EXAMPLE 2.4. L = { a'n ; n 1}' and L' = {a' ; n 1} are not regularly separable, 

for no set R with Lc Rc L" is regular.



On Regular Separation of Languages85

   Here we note that the converse of Lemma 2.2 is not always true. In fact, for 

the regularly separable languages L and L' in the example 2.3, we can see that 

S(L)  n S(L') is not empty or not regular for any generalized sequential machine S. 

   Finally we give a necessary and sufficient condition for regular separability of 
languages over a singleton alphabet from the set of all primes. 

   THEOREM 2.1. Let P= {ap; p is a prime} and L be any language on a* disjoint 

from P. Then L is regularly separable from P if and only if there exists a finite set 
F of integers greater than one such that n = d•l for any an in L with n > 1 and for 

some d in F and l(� 2). 

   PROOF. Suppose that there exists a finite set F= cl,,••• , dr,} which satisfies 

the condition. Then obviously 

                 Lu (ado*a2di(ad)*a2di 
         i=i,=1\ 

   Conversely suppose that a regular set R separates P from L. Let {Ri}=1 be a 

set of right invariant equivalence classes induced by R. Every infinite R; can be 

written as R J= aNagi)*, by which we have 

                PnRi=y5<=)13;+qi•n is not prime for any n 

                         <=>(pi,q;) 1. 

In case R; is finite, it is a singleton set, i. e., R;-=- {ar)}. Let s; be a divisor of r; 

greater than one and smaller than itself. Then putting 

              F {(p3, q;); R; is infinite} U {si; R .; is finite} , 

we have the converse. 
   EXAMPLE 2.5. {akt ; k # 2} is regularly separable from P, but {an' ; 0} not.

   3. Languages containing no infinite regular set. 

   In this section we show the existence of languages which are not regularly 

separable from any infinite language. For this purpose, first we consider the class 

of rigid languages. Here we call an infinite language rigid if it contains no infinite 

regular set. 
   LEMMA 3.1. For any words u, v, w, x and y in A* with vx#s, a language 

<3.1)L= {uvnwxny; n� 0} 

is either regular or rigid. 

   PROOF. In case v or x is empty, obviously L is regular. Hence it suffices to 

consider the case in which neither v nor x is empty. Suppose that L is not rigid, 
i. e., L contains an infinite regular set R. Then R can be written as 

                       R= fuvniweiy; . 

for some infinite chain no < ni < n2 < ••• of integers. And from the finiteness of 

the number of right invariant equivalence classes induced by the regular set R, a 

word uvniwxnky with i < k must be in R. Since R is a subset of L, there exists an
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integer j  (i  <  j < k) such that 

                               uvniwxnky=uvniwejy , 

from which we have 

(3.2)wxnk-ni = vni-niw . 

Here we may assume without loss of generality that the value of k—i is sufficiently 
large or 

                       1(w) < i(Xnk-ny) , 1(Xni-ni) . 

Hence we have a solution of (3.2) : 

(3.3)znk-n, = zw , = wz. 

   Now noticing on that every integer n can be written as 

                          n=(nk—ni)(ni—ni)p+q 

for some p and q with 0 q <(nk—ni)(ni—ni), we have 

                        uvnwey=uvgv(nk-ni)(nj-ni)PWX(nk-ni)(nj-ni)PXgy 

                               1/Vg(WZ)(ni-ni)PWCZWYnk-VPXgy 

                              = UVq(WZ)(nk-ni)PWXqy 

Thus we have, putting r=(nk—ni)(n; — ni) —1, 

                        L = u uvq((wz)nk-ni)*wxqy, 
                                                                     q--=0 

which shows the regularity of L. Hence if L is not rigid, then L is regular. 

   Note that the language L in (3.1) is a typical context-free language with which_ 

we are familiar in the uvwxy-theorem. 

   EXAMPLE 3.1. A language {anbn; n> 0} is rigid. This follows immediately by 

the above lemma, but the following example can not be proved by the lemma : 

   EXAMPLE 3.2. A language L= {anbmambn ; n, m> 0} is rigid. 

   PROOF. Suppose that L is not rigid. Then L must contain a regular set of the 

form xy*z for some words x, y and z with y s. In case the word y contains both 

symbols a and b, then xy*z must contain words not in L. Hence y must consist of 

only one symbol, but also in this case xy*z must contain words not in L. 

   Now let us consider languages which are not regularly separable from any 

infinite language. We denote by RS(L) the class of infinite languages over a fixed' 
alphabet which are regularly separable from the L. For our purpose it suffices to 

see the emptiness of RS(L). As a trivial example for which RS(L) is empty, we 

may choose L=-A*—F, where F is a finite subset of A*. 
   THEOREM 3.1. 

   (1) There exists nonregular context-free language L for which RS(L) is empty. 

   (2) For any context-free language L over an alphabet A 

(3.4)RS(L)URS(Le)# , 

where LC is the complement of L with respect to A*.
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   PROOF. (1) A language L =  Ian  bn  ; n > 0} c is nonregular context-free. And L' 

is rigid as shown in the example 3.1. Hence RS(L) is empty. 

   (2) Let L be a rigid context-free language over an alphabet A with at least 
two elements. Then language L n a* (a in A) is finite, for otherwise it becomes an 

infinite regular set, which is impossible. Hence there exists an integer r for which 

an infinite regular set ara* is contained in Lc, which is again impossible. Thus if 
RS(L) is empty then RS(Lc) is not empty. 

   THEOREM 3.2. There exists a context-sensitive language L such that 

(3.5)RS(L) U RS(Lc)-= . 

   PROOF. Let an enumeration of all elements in A+xA-FxA+ be 

(3.6){(xi, yi, zi); xi, yi, zi in A+ & i> 0} , 

and let k1=1 and for each i(�_ 2) 

             ki= min {r;zi) >. 

Then the language 

(3.7)L = {xiyPzi; i _� 1} 

satisfies the relation (3.5). Suppose that L contains an infinite regular set. Then L 
contains a regular set xy*z for some non-empty words x, y and z. Since this tri-

plet (x, y, z) must be in the list (3.6), there must be an integer i such that (x, y, z) 
= (xi, yi, zi). However, by the definition of L, xiyPzi is in L but xiy1,i+lzi not. Hence 

xy*z is not contained in L. By this contradiction, L can not contain any infinite 

regular set. Similarly Lc can not also contain any infinite regular set. Thus the 

relation (3.5) holds for the L. 

   Now we present concretely an enumeration (3.6) and show that L in (3.7) under 

the enumeration is recognizable by a deterministic linear bounded automaton. To 

do so we use some notations : 

   Let A= {a1, a2, ••• , apl be an alphabet, and v be a bijection from the set of 

integers from 1 to p onto A defined by v(i)= ai for each i (1 i �p). Noticing that 

every positive integer n can be uniquely represented as 

(3.8)n= pm-1+ P io 

for some io, i1f ••• , im with 1 i;� p, we can extend v by 

(3.9)v(n) = v(ini)v(i.-1) v(ii)i)(2:0). 

This extended mapping v is now a bijection from the set of all positive integers N 

onto At By we denote the inverse function of v. And let z- be a bijection from 
NxN onto N defined by 

                      1  (3
.10)r(m, n) =2(m2-1-2rnn±n2—m-3n)+1 . 

We extend z. from NxNxN onto N by 

(3.11)r(r, s, t) = r(v(r, s), t) .
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By z,, r2 and r3 we denote functions of one variable which yield the inverse mappings 

to r, i. e., 

(3.12)1-(7,(n), 7r2(n), 73(n)) = n 

for all n. 

   By using these functions, we can enumerate all the elements of A+xA+xA+ as 

(3.13){M71(0, v(7E2(11)), v(7r 3(n))) ; n 1} 

Here we should notice on that 

(3.14)1 (1)(7r i(te(w)))) < 1 (w) 

for all w in A+ and i= 1, 2, 3. 

   Finally let us construct a linear bounded automaton M to recognize the L in 

(3.7) under the enumeration (3.13). The tape of M is one divided into seven tracks 
as shown in the Fig. 1. The track T is to keep the original input word and the

Tinput w 

Tcv(i) 

Txxi 

Tyyi 

Tzzi 

Tryir 

                            k • To                                z
i-1 

      Fig. 1. Tape of M.

other six tracks are for the enumeration. The behaviour of M can be described as 

in the Fig. 2. Now, noticing on the relation (3.14) and that the composite functions 
vote, vo7riop, v 0 7r2 0 ja and v 0730 te are computable within the given tapes (i. e., 

arguments), it is easy to see that every operation or test in the flow diagram can 

be performed by a deterministic linear bounded automaton, and hence the whole 

diagram can be also done by a deterministic linear bounded automaton (Consult [2] 

for construction). And we can easily verify that M recognizes L, i. e., L(M) = L. 

   These two theorems can be restated, from the viewpoint of covering of A*, as 
follows : 

   COROLLARY 3.1. A* can not be covered by any finite number of rigid context free 

languages. 

   COROLLARY 3.2. A* can be covered by two rigid context-sensitive languages. 

   The rest of this section is devoted to give a fundamental properties of rigid 

context-free languages. 
   THEOREM 3.3. If L and L' are rigid context-free languages, then (1) L nL', (2) 

LU L' and (3) L•L' are ridid, but (4) L* and Le are not.
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 ~startj 

                             To 1)(1)1)(1)1)(1) 

                                               A 

                                                               yes 

                                                no 

                               Tc v(Ii(Tc)-1-1) 

                            Tx v(iri(te(Tc))) 

                                 Ty, Tr <---1)(7.72(p(Tc))) 

                            Tz v(n-3(p(Tc))) 

                         no 

    Tr TrTy1(To) <1(TxTrTz) 

                                            yes 

                              no --1 To TxTrTz41111 
                                              yes 

                        accept wreject w 

                   (end) 
            Fig. 2. Behaviour of M with an input word w.

   PROOF. (1) is trivial. (2) Suppose that L U L' is not rigid. Then it contains a 

regular set xy*z for some words x, y, z with y � s. And then at least one of the 

two languages L n xy*z and L' n xy*z are infinite regular, by the fact that 

(3.15)xy*z = (L n xy*z) v (L' n xy*z)
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and by Theorem 4.1 in the next section. Hence L or L' is not rigid. 

   (3) Suppose that  L•L' is not rigid. Then it contains a regular set xy*z with 
y# e. Consider a language 

(3.16)f= 1u ; (3v)(uv in xy*z & u in L & v in L')} , 

which is a subset of L. In case L is finite, there exist a positive integer n and a 
word u in L such that 

(3.17)auxy*ynzE L' , 

the lefthand set of which is infinite regular. 
   Now let us consider the case in which L is infinite. Let A' -= {a' ; a in A} be 

an alphabet disjoint from A, g be a substitution defined by g(a), {a, a'} for every 
a in A, and h be a homomorphism defined by h(a) s and h(a') = a for every a and 
a'. Then we have 

(3.18)f=h(g(L)•L' n g(xy*z)), 

which shows that L is context-free, since L and L' are context-free, xy*z is regular, 

g is a substitution by a finite set and h is a homomorphism. From the infiniteness 
of L, there exists an initial subword y' of y for which L nxy*y/ is infinite. Since 
L is contex-free, the language E nxy*y' is regular by Theorem 4.1. Thus we have 
an infinite regular set contained in L, which contradicts the assumption. 

   (4) For a word w in L, w* is contained in L*. (5) By the proof of Theorem 
3.1 (1).

   4. Regular sets containing no nonregular context-free language. 

   It is well-known that every context-free language over an alphabet with a 

single element is regular. In this section we extend this result to obtain a neces-

sary and sufficient condition of regularity of context-free languages, and then prove 

the solvability of a decision problem questioning whether a given regular set con-

tains nonregular context-free languages. 

   First we start with pointing out an elementary property. 

   LEMMA 4.1. Let L, L1 and L2 be regular sets. 

   (1) L1 U L2 contains no nonregular context-free language if and only if so do both 
L, and L2. 

   (2) If L,•L, contains no nonregular context-free language then so do both L, 
and L2. 

   (3) If L* contains no nonregular context-free language, then so does L. 
   PROOF. Immediate. 

   Note that converses of (2) and (3) are not always true. In fact, putting L= 

{a, , Li= a* and L2= b*, both languages L,• L, and L* contain a nonregular con-
text-free language lanbn ; n> 01. 

   Now using the well-known result, we prove a sufficient condition : 

   THEOREM 4.1. For a regular set L over an alphabet A, if there exist an integer 

n and words xi, yi, zi in A* with 1 i n such that
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(4.1)L  , 
                                                          1=1 

then L contains no nonregular context-free language. 

   PROOF. First we prove the theorem for n 1. Let L be a context-free language 
contained in L. Then a language 

                         L' {w ; xiwz, in L} 
is context-free, hence 

                        L" = la") ; w in LI 

is regular, where a is a symbol. Let b and c be two distinct symbols from a . Then 
bL"c is also regular. Now let 

                           yi= aia,••• ap (a1 in A) , 
and 

                       S = (K, {a, b, c}, A, 3, A, s0) 

be a generalized sequential machine defined by 

                          K= {s0, s1, ••• , sp+2} , 

                    5(s0, b) = s1 

                     5(s1, a) = si„ (i = 1, 2, ••• , p-1) 

                    3(sp, a) = si 

                    3(sp, c) = sp„ 

                   3(s, d) = sp+, for any other pair (s, d); 

                    2(so, b)=- x 

                    2(s1, a) =y (i =1, 2, ••• , 

                   2(sp, c) = z 

                  2(s, d) = s for any other pair (s, d) . 

Then we have easily .E=S(bL"c), which shows the regularity of E . 
   Now suppose (4.1) and that L is a context-free language contained in L . Then 

                                                         re 

                      E=U(1.7 nxiyrzi) , 
                                                     i=1 

and, for every i, language EnxiyPzi is regular as we have just proved . Hence so 
is L itself. 

   In order to prove the converse of the theorem we prepare some lammas . 
   LEMMA 4.2. Let a language R contain no nonregular context-free language . Then. 

so does R* if and only if R is commutative (i. e., uv = vu for any words u, v in R). 
   PROOF. Suppose that R is commutative. Then there exists a word w for 

which R w* (See p. 169 in [3]). Hence R* w*, which proves the sufficiency by 
Theorem 4.1. Suppose, conversely , that R is not commutative. Then there exist 
two words u, v in R such that uv # vu. By using this pair of words , we have a
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context-free language contained in R* 

 L  =  {(uv)n(vu)n  ; n> 0} , 

which is not regular, for we can construct a generalized sequential machine which 
maps L onto a nonregular context-free language fanbn ; n> 01, where a, b are 

symbols. 

   COROLLARY 4.1. Let a language R contain no nonregular context-free language. 

Then so does R* if and only if 

(4.2)R* U xiytzi 
                                                           i=1 

for some words xi, yi, zi (1 i�n). 
   PROOF. It is sufficient to prove that if R is not commutative, then R* can not 

be covered by the righthand side of (4.2) for any choice of words xi, yi, zi. This 
follows, however, immediately from the nonregularity of L in the above proof and 

Theorem 4.1. 

   LEMMA 4.3. Let u, v, w, x and y be words. Then a language ux*vy*w contains 
no nonregular context-free langnage if and only if there exist integers m, n, p and q 

   p) such that 

(4.3)uevynw=uxPvyqw 

   PROOF. Suppose that the equation (4.3) holds. In case m> p and n we have 

(4.4)xin-Pv=vyl-n . 

By repeatedly using the relation (4.4), each word in ux*vy*w can be written in a 

form 

                 uxkvykw=ux(in-p)r+tvyhw (0 t < m—p, r 0) 

                                = uxtvyn+r(q-n)w 

Hence we have 
                                                     m-p-i 

(4.5)ux*vy*w = U uxtvy*w 
                                                                 t=0 

And by Theorem 4.1, ux*vy*w can not contain nonregular context-free language. 

   Conversely suppose that (4.3) does not hold. And suppose that a language 

(4.6)L= fuevynw; n> 

is regular. Then from the finiteness of the number of right invariant equivalence 

classes induced by the L, there exists a class in which word ux' and uxn (m n) 

are contained, and two words uxmvymw and uxnvymw must be in one class, i. e., these 

two words must be contained in the L, which is impossible, because of our first 
assumption. Hence L is not regular, or the language ux*vy*w contains nonregular 

context-free language. 

   COROLLARY 4.2. The language ux*vy*w does not contain nonregular context-free 
language if and only if 

(4.7)ux*vy*w g U xjyrzi
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for some words  xi, yi, zi. 
   PROOF. It is sufficient to see that the language L in the proof of Lemma 4.3 

can not be covered by any regular set of the form of the righthand side of (4.7). 

But this follows immediately from Theorem 4.1. 

   THEOREM 4.2. If a regular set L over A does not contain any nonregular context-

free language, then there exist an integer n and words xi, yi, zi in A* with 1 � i�n 
such that 

                             L C U 
                                                          i=1 

   PROOF. A proof is done easily by an induction on the number of * operations 

defining the regular set L, using Lemma 4.1 and the last corollaries. 

   Note that, by the proofs of the lemmas, if a regular set contains a nonregular 
context-free language, then as such a language we can choose one in a form 

fuevynw ; n> 01. 
   Finally we give a solvable decision problem. 

   LEMMA 4.4. Let R be a regular set. Then it is solvable to determine whether R* 

contains nonregular context-free languages. 

   PROOF. By the above lemmas, we have immediately : 

                R* contains no nonregular context-free language 

              <=> R is commutative 

             <=> R w* for some word w 

               R* g w* for some word w 

             <=> R* w* for the shortest nonempty word w in R . 

   LEMMA 4.5. For a regular set of the form ux*vy*w, it is solvable to determine 

whether it contains nonregular contex-free languager. 

   PROOF. By the proof of Lemma 4.3, we have an equivalence : 

                ux*vy*w contains no nonregular set 

             <=> there exist integers m and n such that xmv = vyn 

And we have : 

(4.8)xmv = vyn <=> xl(Y'v =vyt(x) 

It is sufficient to see this from left to right. Noticing on the fact that if xmv = vyn 

then xz'mv=vyPn for any integer p, we may assume in (4.8) that 

                       m = k • (y) , n = k • 1(x) . 

   In case 1(v)>1(x)•1(y), by using subwords x1 and x2 of x'(Y) such that v = xico•rx, 

and Xt(Y) = XiX„ and noticing on that y'(x)= x,x,, we have 

(4.9)1(y)1(y)1(y)•r                       XV = XXXi 

                                                  = X1(y).7*XiX2X 

                                           vyl(x)
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   In case 1(v) l(x)•l(y), by using a subword x' such that x1(Y)=vx' , we have y1(Y) 
= xiv and 

(4.10)xt(ov = vx'vv=yi(x). 

Hence we have the implication of (4.8) from left to right. 
   THEOREM 4.3. For a given regular set R, it is solvable to determine whether R 

contains nonregular context-free languages. 

   PROOF. Proof is done easily by an induction on the number of regularity 

operations, using the last two lemmas. 

   This theorem is an interesting contrast with the well-known result on context-

free languages : 
   THEOREM (See p. 132 in [31). For a given context-free language L, it is unsolv-

able to determine whether L contains infinite regular sets.
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