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   1. Introduction. 

   We are concerned with the existence of optimal deterministic stationary stra-
tegies for Markov Game. Our Markov Game is specified by six tuple (S, A, B, q, r, 13): 
S is a nonempty Borel subset of a Polish space, the set of a system ; A is a non-
empty Borel subset of a Polish space, the set of actions available to player I ; B is 
a nonempty Borel subset of a Polish space, the set of actions available to player 
II ; q is the law of motion of the system ; it associates Borel measurably with each 
tuple (s, a, b) E SxAxB a probability measure q(. Is, a, b) on the Borel measurable 
space (S, .(S)), where 2(X) is the u-field generated by the metric on X ; r, the payoff 
function, is a bounded Borel measurable function on SxAxB; 0� j3 < 1 is a discount 
factor. When the system is in s, and players I and II choose actions a and b respec-
tively, player II pays player I payoff r(s, a, b) units of money and system moves to 
next state s' according to the conditional distribution q(• Is, a, b). Then, the whole 

process is repeated from the new state s'. Since 13 is the discount factor, the unit 
income at n-th day in future is worth 13n-times of the unit one today. Then, our 
optimization problem is to maximize the total expected discounted gain of player I 
as the game proceeds over the infinite future and to minimize the expected dis-
counted loss of player II. 

   A strategy 7r for player I is a sequence of r1, 7r2, ••• , where 7rn specifies the ac-
tion to be chosen by player I on the n-th day by associating Borel measurably with 
each history h=(s1, a1, b1, ••• , an„, bn_„ sn) of the system a probability distribu-
tion 7rn(. I h) on (A, g(A)). 11 denotes the class of all strategies for player I. A 
strategy r for player I is called semi-Markov (Markov) if each rrn is a function of 
s1 and sn(sn) alone ; a strategy 7r is said to be deterministic stationary if there is a 
Borel measurable map f from S to A such that 7rn= f for each 1; and, in this 
case, r is denoted by f(-). Strategies, semi-Markov strategies and deterministic 
stationary strategies for player II are defined analogously. r denotes the class of 
all strategies for player II. 

   A pair (7r, a) of strategies for players I and II associates with each initial state
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s1 the n-th day expected gain for player I 

           In(7r, a)(s1) 7r10-1q7r2a2q • • 7rnanqr 

              = 

                        ABS SABr(sn, an, bn)d7r10-1q7r2a2q 7.0".4(• I s1) 
                                    (3n-1) factors 

and a total expected discounted gain for player I 

                     I(7r, a)(s1) = a)(si). 

It is clear that In(7r, a) is Borel measurable and consequently I(7r, a) is Borel mea-

surable. 

   A strategy 7r* is optimal for player I if for all a' E F and all s G S 

                     inf sup I(7r, a)(s) I(ir*, a ')(s) . 
                                                    o",=.1• nen-

A strategy a* is optimal for player II if for all rr' E H and all s E S 

                     sup inf I(7r, a)(s) I(7r', a*)(s) . 
                                     7:E/7 a= 

We shall say that the Markov game has a value if for all s e S 

                  sup inf I(7r,a)(s) = inf sup I(7r, a)(s) . 
                                        nE.II a-:- 

When the game has a value, the quantity sup inf /(r, a), as a function on S, is called 
                                                  rc17 

the value function. Recently Maitra and Parthasarathy [5] and Parthasarathy [6] 
have proved, under some conditions, that the Markov game (S, A, B, q, r, 4) has a 

value and that both players have optimal random stationary strategies. 

   In this paper we shall study the Markov game (S, A, B, q, r, 13), too, and prove, 

under somewhat restrictive conditions on the payoff function r and on the condi-

tional distribution q, that both players have optimal " deterministic " stationary 

strategies as well as that the game has a value. The difference between [5] and 
our paper is the following : for w E M(S) let's consider the two expressions 

                    r(s, p, 2)+13.fw(•)dq(• Is, p, 2)(1.1) 
and 

                    r(s, a, b)-1-13Sw(•)dq(• Is, a, b)(1.2) 

where M(X) is the class of all bounded Borel measurable functions on Borel subset 

X, r(s, p, 2)= r(s, a, b)dp(a)d2(b) and q(•s,2) =q(•Is, a, b)dp(a)d2(b) for 
  B AB A 

p E PA, 2E PB, where Px is the class of all probability measures on (X, gi(X)). 
The expression in (1.1) which was treated in [5] is always concave-convex in (ii, 2), 

because of its bilinearity in (p, 2). On the other hand, the expression in (1.2) is 

not always concave-convex in (a, b). 
   This paper gives a sufficient condition on A, B, q and r that makes the expres-
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sion (1.2) concave-convex in (a, b) as well as continuous in (a, b). We shall show 

that under this condition there exist optimal deterministic stationary strategies. Our 

proofs are partially owing to [5] and to the results by Blackwell [1] and Strauch 
[8].

   2. Some preliminaries. 

   Let X be a topological space. Then  2' denotes the set of all non-empty closed 

subsets of X. In 2' we introduce the topology (called exponential topology or Vietoris 

topology) which is the coarsest one in which the sets 2' for open A (in X) are open 

(in 2') and for closed A are closed, where 2' (rel. to X) is the set of all F=PE A. 
Further by 0(X), 9(X) and 2(X) we mean the set of all open, closed and topo-

logical Borel subsets in X respectively. 

   In the following definitions we assume that X, Y are topological spaces. 

   DEFINITION 2.1. A function F: X is (2(X), 0(Y))-, (2(X), 9(Y))- or (2(X), 
2(Y))-measurable iff for each G E 0(Y), K E 9(Y) or B E 2(Y) F-1(G), F'(K) or 

F-1(B) belongs to 2(X) respectively, where F-'(A)= {x E X F(x) n A # 0} for Ac Y. 

   Note that when Y is perfectly normal space, (2(x), 9(Y))-measurability of 

F(•) implies (2(X), 0(Y))-measurability. From above definition it is clear that 

(2(X), 2(Y))-measurability of F(.) implies both (2(X), 0(Y))- and (2(X), 9(Y))-
measurability. 
   DEFINITION 2.2. A function F: X--,2" is 2(X)/0(2")- or 2(X)/2(2")-measurable 

iff for each G E 0(2") or B E 2(2") F -'(G) or F-1(B) belongs to 2(X) respectively, 

where in this case F-1(A)= {x E XIF(x)E A} for A E 2(2"). 

   Of course these two measurabilities are equivalent. 

   Let (Y, d) be a compact metric space. Then (2", dH) with Hausdorff metric 

dH(A, B) = max (sup p(a, B), sup p(A, b)) is a compact metric space, too. Here p(x, C) 
                             a="1 

= inf d(x, y) for C c Y. Furthermore, by Theorem in 42-11 of [4] the identity map-
  ?EC 

ping : (2", 0(29)—÷(2", dH) is a homeomorphism. 
   LEMMA 2.1. Let X be a metric space and Y a compact metric space. A function 

F: X--,2" is 2(X)/2(2")-measurable if and only if F is (2(X), 9(Y))-measurable. 
   PROOF. It is sufficient to prove that 2(X)/0(2")-measurability is equivalent to 

(2(X), 9(Y))-measurability. From the definition of Vietoris topology 0(2") is gen-
erated by the open subbase 

        0**(2Y) = {{B E 2" ; G}, {B E 2" ; B (-)H# cb} ; G, 0(17)1 . 

We have for any G E 0(Y) 

            fx; F(x) E 2Y; B GII = Ix; F(x)CG} 

                                 = {x; F(x) Ge = 0}(2.1) 

                                 = {x; F(x)nGc 0}c 

and for any HE 0(Y) 

          {x ; F(x)E {B 2" ; B nH� = {x ; F(x)nH# cb} .(2.2)



74S.  IWAMOTO and Y. KAI

Let F(.) be (2(X), g(Y))-measurable. Since Y is a metric space, Y is perfectly 
normal space. Then, remark below Definition 2.1 assures that F(.) is (2(X), 0(Y))-
measurable. Hence by (2.1) and (2.2) it holds that for any 0** in the open sub-
base 0**(2Y) fx ; F(x) E O**} E g(x). Through the proof of Theorem in 42-II of 

[4] we have for each open ball R with center A E 2", namely, R= {B E 2Y1dH(A, B) 
< el 

   R= U E 2Y; B G1 {B E 2Y; B nG1' 95} n {B 2'; B nG,zk# 0}1 
            k=1 

where G'i! = fxld(x, e-1/k} and G= {xIp(x, A) < s} are open in Y and {a,..., 

4,1 k�, is a finite system of points of A such that for each x E A and k we have 
d(ait , x) < 1/k for some i. (The compactness of A enables us to choose such a sys-

tem). Therefore we have for any ball R fx ; F(x) E E g(x). Since (2", dH) is 

compact metric space, any open set 0 in (2", dH) is a countable union of the base 

{Ri ; i 1}. Consequently we have for any open set 0 E 0(29 {x ; F(x) E 0} g(x). 
   Conversely if F(.) is 2(X)/0(2")-measurable, (2.1) yields that for any closed 

set K in Y 

            fx ; F(x) K # = fx ; F(x) E {B E 2Y ; B Ifc}}c 

Then in this case F-1(K) E 2(X) for any K E F(Y). This completes the proof. 

   LEMMA 2.2. Let X be a metric space, Y be a compact metric space and v XY 

be bounded, Borel measurable in x for each y Y and continuous in y for each x E X. 

Define v* : X -.2Y by 

                   v*(x) = fy ; v(x, y) = max v(x, yOl . 
                                                               y'EY 

Then v*(.) is 2(X)/2(2") measurable. 

   PROOF. By Lemma 2.1 it sufficies to prove (2(X), ¶'(Y))-measurability of v*(•). 

Since any L E g(Y) is compact, there exists a countable set D in L such that D L. 

Then we have 

        fx ; v*(x) n = n=1[yiED{x; 'mav(x,3/0—v(x,yi)I <  1  }] . (2.3)        nVEYxn 

If v*(x) n L # 0, then there exists a y* E L such that v(x, y*) = max v(x, y'). We can 
                                                                                        y' EY 

choose subsequence {yin ; j 1} C D such that y11 —>y* as j co. Since v(x, •) is con-

tinuous in y, for any n�1 there exists a yii nG D such that 

                         v(x, y*)—v(x, yi n)1<n . 

Consequently we have x E ()[ U fx ; I max v(x, y')—v(x, yi)I< 1  11 Conversely if 
                        n=1 yiEDy' 

xen[Ulx; I max v(x, y')—v(x, yi)l<  1 }], then there exists a subsequence {yin ; 
   n=1 yiEDy' E Y 

n�1}C D C L such that                

I max v(x, y')—v(x, —v(x, yin)l< for each n 1. 
                         y'EY 

Since L is compact, we can choose subsequence {yink ; k _� 1} such that yink E L 

as By y-continuity of v(x, •), we have
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                          v(x, y*) = max v(x,  y')  . 
                                            V EY 

Then (2.3) yields {x ; v*(x) n L # E 2(X) because of Borel measurability in x of 

the functions max v(•, y') and v(., y) for fixed y E Y. This completes the proof of 
                y, EY 

Lemma 2.2. 

   Note that Lemma 2.2 shows that the assumption (ii) in [6] is redundant . 
   LEMMA 2.3. General Selector Theorem (Kuratowski and Ryll-Nardzewski [3]) . Let 

X be a metric space, Y be a separable metric space and V : X be 2(X)12(29- 

measurable. Then there exists a Borel measurable selector v such that 

                     v(x) E V(x) for all x E X. 

   PROOF. This lemma is due to Kuratowski and Ryll-Nardzewski [3] . 
   LEMMA 2.4. Let v : XY - q? be a bounded continuous function , where X is a metric 

space and Y a compact metric space. Then v* : X- - R defined by v*(x)--= max v(x , y) 
                                                                                             YEY 

is continuous. Similarly , v*: X— 4? defined by v*(x)---= min v(x, y) is also continuous. 
                                                                yEY 

   PROOF. This lemma is stated in Lemma 2.2 of [5] . 
   We shall set the following assumptions : 

   ASSUMPTION (I). u SAB--.R is bounded on SAB, continuous in (a , b) for each 
s E S and Borel measurable in s for each (a , b) E AB. 

   ASSUMPTION (II). u : SAB --q? is concave in a for each b E B and convex in b 

for each a E A (abbreviated hereafter concave convex in (a , b)), where A, B are 
compact convex metric spaces. 

   Now we can prove the Minimax Selector Theorem for our Markov game that 

is fundamental in finding optimal deterministic stationary strategies over all possible 

strategies. 

   THEOREM 2.1 (Minimax Selector Theorem). Under the Assumptions (I) , (II), there 
exist Borel measurable f : S— A and g: B such that for all s E S 

                      u*(s, f(s)) = max u*(s, a) 
                                                    aEA 

                       u*(s, g(s)) = min u*(s, b) , 
                                                  bEB 

where u*(s, a) = min u(s , a, b), u*(s, b) = max u(s, a, b). Hence, for all s E S 
                    bEB 

            u(s, f(s), g(s)) = min max u(s, a, b) = max min u(s , a, b) . 
                  bEB aEAaEA bEB 

   PROOF. Lemma 2.4, together with Assumption (I), implies a-continuity of u*(s , •) 
for fixed s E S. Since B is compact, u*(., a) is measurable in s for fixed a E A. By 
Lemma 2.2 and 2.3, there exists a Borel measurable f : S- A such that 

                  u*(s, f(s)) = max u*(s, a) s E S.(2.4) 
                                                   a—EA 

Similarly, there exists a Borel measurable g: S---43 such that 

                 u*(s, g(s)) = min u*(s, a) s S .(2 .5) 
                                              bEB 

Namely,
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                   min u(s, f(s), b) = max min u(s, a, b)(2.6) 
                t il3a _.4 b=B 

and 

                   max u(s, a, g(s)) = min max u(s, a, b) .(2.7) 
                                 OEA 

By Assumption (II), appealing to Sion's minimax theorem [7], we have 

             u(s, f(s), g(s)) = min max u(s, a, b) = max min u(s, a, b) . 

                                                                                          

" A b1=
_B 

This completes the proof. 
   Let M+(S) denote the class of all bounded nonnegative Borel measurable func-

tions on S. For u E M(S) we mean (lull =sup I u(s) I. Note that AP(S) is a closed 

subset in the complete metric space (M(S), d), where d(u, v)=IIu—vII. Hence (M+(S), d) 
is a complete metric space. 

   We further consider the Markov Game (S, A, B, q, j3, r*), where 

               r*(s, a, b) = r(s, a, b)-1-11r11 _?-= 0 , (s, a, b) E SAB . 

That is, in the new-defined Markov Game its payoff function is an element of 
M+(SAB), other components being not altered. We call the game (S, A, B, q, p, r) 
original Markov Game and the game (S, A, B, q, j3, r*) modified Markov Game, or 
simply "original M. G." and "modified M. G.", respectively. Then we have the fol-
lowing relationship between two Markov Games, which was pointed by Kai [2] in 
the case of finite state Markov Game. 

   LEMMA 2.5. Any strategy (7r, a) in the original M. G. (S, A, B, q, j3, r) can be re-

garded as a strategy (Or, a) in the modified M. G. (S, A, B, q, j3, r*) and vice versa. 
Furthermore it follows that 

                        /(7, = /*(rr, a)                                   1
13 

where I*(r, a) is the total expected discounted payoff associated with modified M.G. 

(S, A, B, q, 8, r*). 
   PROOF. The proof of this lemma is straighforward. 

   In the following Lemmas 2.6 and 2.7 we assume that A and B are compact con-
vex sets. 

   LEMMA 2.6. Let for each n� 1 gn(a, b): AxB—R be concave-convex in (a, b). 

   (i) If an 0 for n=1, 2, •-• , 1, then E criign(a, b): AxB—R is concave-convex in 

(a, b). 
   (ii) If gn(a, b) converges to g(a, b) as co, then g(a, b) is concave-convex in (a, b). 

   PROOF. Easy. 
   LEMMA 2.7. Let q= q(B1s, a, b): g(S)x S xAxB- 4? be concave-convex in (a, b) 

for each (B, s) E .0(S)x S. If v v(s): S— R is a nonnegative bounded Borel measur-

able function, then v(sOdq(s' I s, a, b): SxAxB—R is concave-convex in (a, b) for 

each s E S. 
   PROOF. This is a trivial consequence of Lemma 2.6. 

   We further set the following assumption :
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   ASSUMPTION (III). The action spaces A, B are compact convex, the payoff func-

tion r r(s, a, b) is continuous and concave-convex in (a, b) for each s  E S and the 
 law of motion q = q(B I s, a, b) is continuous and concave-convex in (a, b) for each 

(B, s) E g(s) X S. 
   DEFINITION 2.3. Let Assumption (III) be satisfied. For any w E M+(S), we as-

sociate (Tw)(s) defined by 

            (Tw)(s) = max min [r*(s, a, b)+13$ w(s')dq(s' s, a, b)](2.8) 
                                             a',7A 

                  = min max [r*(s, a , b)+ j3 w(s')dq(s' I s, a, b)] . 
                    bEB A 

   Note that T is a well-defined operator on M+(S) under the Assumption (III). 
   LEMMA 2.8. Under the Assumption (III), the operator T is a contraction mapping 

on M+(S) with contraction coefficient 43 < 1. Hence T has a unique fixed point w* in 
M+(S). 
    PROOF. Easy. 

   Throughout the remainder of this section, we shall assume Assumption (III). 
For above unique fixed point w* M±(S), we define uw. : SAB by uw.(s, a, b)= 

r*(s, a, b)-1- fi w*(•)dq(• Is, a, b). Minimax Selector Theorem together with Assump-

tion (III), then, enables us to choose Borel measurable f:S—>A and g: S--13 such that 
for all s E S 

                   min uw.(s, f(s), b) = max min uw.(s, a, b)(2.9) 
             b il3a -E-A 

                                  = min max uw.(s, a, b) 

                                                          A 

                                  -= max uw.(s, a, g(s)) 

                                                              a 

                                  Uw.(S,f(s), g(s)) 

   Now we can introduce a dummy game (S, A, B, uu,*(.)), where uw. is the unique 

fixed point of the operator T on M+(S). By (2.9), this dummy game is strictly 
determined, its value is w*(s) and f(s) and g(s) are optimal strategies in the dummy 

game for players I and II respectively.

   3. Semi-Markov strategies are enough. 

   Player I wishes to maximize his expected discounted gain by knowing his com-

plete past history up to date. However, if he can maximize his gain by knowing 

just any partial history without knowing whole past history, he will do so. Similar 

question will arise to player II. By the method of Strauch [7], we shall prove that 
it is enough for both players only to know initial and present states, that is, to 

use only semi-Markov strategies. 

   LEMMA 3.1. Let (n-, o) be any strategies and p E Ps. 

   ( i) There exist random semi-Markov strategies (7r*, c*) such that for any n and 
any r e M(SSABS)
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                   egr(s„ sn, an, 6,, s„,)= sn, an, b„, s„,,) , 

where ecit= 77Thrra                   -1611221 • •• 

   (ii) There exist random Markov strategies (7r**, a**) such that for any n and 
any r M(SABS) 

                   p4r(s„, an, b„, s„,) = pe,1::r(s„, an, tin, sn+1) 

   PROOF. Let 7r: , an be the conditional distributions of an, bin respectively given 

s, and s1 under en, and let 71*, a:* be the conditional distributions of an, b„ respec-

tively given s„ under MI,. We shall prove (i), the proof of (ii) is similar. The 

lemma is true for n =1, since 7rP = 71 and ol = a1, hence 

                     a1, b1, s2) = 7r1a1qr= 7rto-tqr = eC.r(s„ a1, b1, s2) 

Now assume the lemma is true of n < N. All expectations are under the conditional 

probability en. 

                  SN, aN, bN, sN-1-1)= aN, bN, I Si] 

                              = E{E(r(s1, SN, aN, bN, I si, SN) I s1} 

                          = Efu(sl, sN) I sil 

                            = 4u(s1 , sN) 
where 

                    u(s1, SN) = E(r(s1, sN, aN, bN, sN+1) I si, SN) 

                            = 7CN aN qr(s„ sN, aN, bN, sN+i) 

by the properties of conditional distribution. But U(Si, SN) = v(s1, aN-19 bN-1, SN) 
c M(SSABS), and by the induction hypothesis 

                          ectru(si, sN) = sN) 
Thus 

                ef,r(si, SN, aN, bN, SN+1) = SN) 

                                       = eg*710-1qr(s1 , SN, aN, bN, SN4-1) 

                                       egr(S„ SN, aN, bN, SN-F1) • 

This completes the proof. 

   THEOREM 3.1. Let (7r, a) be any strategies and p E Ps. Then there exist random 

semi-Markov strategies (7r*, a*) and random Markov strategies (7r**, a") such that 

                           1(7, a) = I(7r*, a*) 

and 

                         pI(7r, a) = pI(r**, a**) 

for any payoff function r E M(SABS). 
   PROOF. From Lemma 3.1 it follows that for any payoff function r 

                           I„(7r, a) = In(7r*, a*) 

and 

                         pIn(7r, a) = pi-n(7r", a"). 

Since 0 < 1 is a discount factor, In(7r, a) converges to I(2r, a) as CO for any
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 (7r, a) E H x r. Hence 
                            I(7r, = I(7r*, a*) . 

Furthermore, dominated convergence theorem yields 

                         pI(7r, a) = pg7r**, a**) 
   This completes the proof. 

   COROLLARY. Let 17,,,„ Ts,„, be the classes of all random semi-Markov strategies 

for players I and II respectively. Then 

                    sup inf I(7r, a) = sup inf 1(7, a) , 
                                                             rs,m 

                     inf sup I(7r, a) = inf sup /(ir, . 
                   crEi'1-89m "Ism

   4. Relations to Markovian decision processes. 

   Throughout this section, let's assume that player II is allowed to use only the 
strategy g(-), where g:S---,13 is the Borel measurable function defined at the end 
Section 2, while that the choice of player I remains unrestricted. 

   Associated with the Markov game (S, A, B, q, r*, j3), we consider the Markovian 
decision process (hereafter abbreviated by M.D.P.) (S, A, q', r', (3) such that 

                       Cs' a)= q(s' Is, a, g(s)) , 

                        r'(s, a) = r*(s, a, g(s)) 

                             =r(s, a, g(s))+ . 

P(e) denotes the total expected discounted reward from 7ri, where e is a policy 
for M.P.D. (S, A, q', r', /3). 

   LEMMA 4.1. If 7r is a semi-Markov (stationary) strategy for player I in the M.G. 

(S, A, B, q, r*, j3), then 7 is a semi-Markov (stationary) policy in the M.D.P. (S, A, q', r', 13) 
and I*(7r, g(-))= P(7r). Conversely, if 7 is a semi-Markov (stationary) policy in the 
M.D.P. (S, A, q', r', 13), then 7r is a semi-Markov (stationary) strategy for player I in 
the M.G. (S, A, B, q, r*, /3) with P(7r), I*(2r, g(-)). 

   PROOF. The proof is easily verified and is omitted. 
   This lemma looks like a same version as Lemma 3.1 of [5], but it actually 

different from that one. Because in our lemma g: S—B is Borel measurable, while 
in [5] g: S—> PB. 

   LEMMA 4.2. A policy le is optimal for the M.D.P. (S, A, q', r', (3) if and only if 
its return P(7r1) satisfies the optimality equation, that is, 

                        I'(Tr') = sup TaP(e) 
                                                    aEA 

where Tau(s)= r'(s, a)+(3 • )dqi( • Is, a) for u e M(S). 

   PROOF. This lemma is stated as Theorem 6(f) in [1]. 
   THEOREM 4.1. If f(-) is an optimal deterministic stationary policy in the M.D.P. 

(S, A, q', r', P), then
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                        I*(f(-), g(-))= sup I*(7r, g(-)) • 
                                                                      7C 

   PROOF. Let 7C H be an arbitrary strategy for player I in the M.G. (S, A, B, q, 
r, (3). We apply Theorem 3.1 to a = then there exists a semi-Markov strategy 
7r* for the M.G. (S, A, B, q, r, j3) such that I*(7r*, g(-))= gc-'). Since f(-) is optimal 
for the M.D.P. (S, A, q', r', j3), P(f(")) I'(ir). By Lemma 4.1, I*(f(-), g(-)) I*(7r, g(-)) 
for arbitrary strategy 7C for player I. This completes the proof.

   5. Existence of optimal deterministic strategies. 

   In this section we assume that Assumption (III) remains operative. Then, by 
Lemma 2.8, there exists an unique fixed point w* in M+(S) of the operator T. 

Furthermore, by Theorem 2.1, there exist Borel measurable f: S--21, and g:S—,13 

such that for all s E S 

            r*(s, f(s), g(s))+ Sw*(•)dq(• I s, f(s), g(s)) 
                 = min max [r*(s, a, fw*(•)dq(• Is, a, b)] 

                             bEB aEA 

                  = max min [r*(s, a, b)- - w*(•)dq(• Is, a, b)](5.1) 
                           aEA bEB 

   DEFINITION 5.1. For any Borel measurable f: and g: S-43, define an 
operator L(f, g) by 

     L(f, g)w(s) = r*(s, f(s), g(s))+ w(•)dq(• Is, f(s), g(s)) s E S, w E M+(S) . 

   The following lemma is trivial. 
   LEMMA 5.1. The operator L(f, g) is a contraction mapping on M+(S) with con-

traction coefficient P < 1 and I*(f(-), g(-)) is its unique fixed point in M+(S). 
    PROOF. Easy. 

   Finally we have 
   THEOREM 5.1. Let A, B be compact metric spaces. Uuder Assumption (III), the 

Markov Game (S, A, B, q, r, p) has a value, the value function is Borel measurable 
and both players have optimal deterministic stationary strategies. 

   PROOF. By Lemma 2.5, it suffices to show that the same result is true for 
modified M.G. (S, A, B, q, r*, j3). By virtue of Assumption (III), Lemma 2.8 shows 
the existence of the unique fixed point w* in M+(S) of the operator T. Further-
more, by Theorem 2.1 (Minimax Selector Theorem), there exist Borel measurable 

f: S A and g: S B such that for all s E S 

            r*(s, f(s), g(s))+ pfw*(•)dq(- Is, f(s), g(s)) 
                = min max [r*(s, a, b)-F P fw*(•)dq(• Is, a, b)] 

                            bEB aEA 

                  = max min [r*(s , a, b)- - w*(•)dq(• Is, a, b)] 
                            aEA bEB 

                      w*(s) .
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This is equivalent to 

 L(f,  g)w*  =Tw*  . 

Consequently, Lemma 5.1 implies that 

                           w* = g(0.)) • 

Hence we have 

  I*(f(-), g(-))(s)= max [r*(s, a, g(s))+ fl*(f(-), g(-))(•)dq(• Is, a, g(s))] sE S. (5.2) 
                         a,A 

Then by virtue of Lemma 4.1, we can write (5.2) as follows : 

         P(f (-))(s) = max [ri (s, a)+13$ P(f(-))(•)dq/(• Is, a)] s E S .(5.3) 
                                a=A 

Hence 11(f-)) satisfies the optimality equation for the M.D.P. (S, A, q', r', /3). Lemma 

4.2 implies f(-) is optimal for this M.D.P. Furthermore, by Theorem 4.1, 

                      I*(f(-), g(-))= sup I*(7r, g(') .(5.4) 

   Following the similar argument, 

   I*(f(-), g(-))(s)= min [r*(s, f(s), I*(f(-), g(')(•)dq(• Is, f(s), b)] SE S (5.5)                                  bs:B 

leads to 
                    I*(f(-), en= inf I*(f(-), a) .(5.6) 

                                                              0E1' 
   Consequently 

                I*(f(-), g(-))= sup I*(ir, g(-))� inf sup I*(7, .(5.7) 
                     nEffa-ET 7r11 

   Similarly 

                I*(fc's), g(-))= inf I*(f(-), a) .� sup inf I*(ir, a) .(5.8) 
                       oE1' 7r",-17 

Hence 

               inf sup I*(2r, I*(f('), g(-))-= sup inf I*(2r, a) . 
    cr.1" ae-F 

From (5.7) and (5.8) we have 

                  1-*(f(-), a') _� inf sup I*(7r, a.) E r , 

                 /*(e, g(-)) sup inf I*(7r, a) 7r1 E H . 
                                                              ,r.,=-11 cv-EF 

This completes the proof.

   Acknowledgement. The authors wish to express their hearty thanks to Pro-

fesssr N. Furukawa for his advices in preparing this paper.

                                 References 

[1 ] D. BLACKWELL, Discounted Dynamic Programming. Ann. Math. Statist. 37 (1966), 
     226-235. 

[2] Y. KAI, On optimal non-random stationary policies in finite state stochastic games, Bull. 
     Math. Statist., 15 (1973), 93-99.



 82S. IWAMOTO and Y. KAI

[ 3 ] K. KURATOWSKI and C. RYLL-NARDZEWSKI, A general theorem on selectors, Bull. Acad. 
     Polon. Sci. Ser. Math. Astronom. Phys. 13 (1965), 397-403. 

[ 4 ] K. KURATOWSKI, Topology, Vol. II, Academic Press. (1966). 
[ 5 ] A. MAITRA and T. PARTHASARATHY, On stochastic games, J. Optimization Theory Appl. 

    5 (1970), 289-300. 

[ 6 ] T. PARTHASARATHY, Discounted and Positive Stochastic Games, Bull. Amer. Math. Soc. 
    77 (1971), 134-136. 

[ 7 ] M. SION, On general minimax theorems, Pacific J. Math. 8 (1958), 171-176. 
[ 8 ] R. E. STRAUCH, Negative Dynamic Programming, Ann. Math. Statist. 37 (1966), 871-890.


