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   0. Summary. 

   A class of estimators of a distribution function, which includes the empirical 

distribution function, is discussed. The necessary and sufficient condition for the 
estimator to be asymptotically unbiased at all continuity points of the distribution 

function is presented. We give the asymptotic evaluation of the variance and show 

its asymptotic normality. The necessary and sufficient condition for the estimator 

to converge uniformly to a continuous distribution function with probability one is 

presented (the continuity can be delected in case of the necessary condition). We 

propose an estimator of a p-th quantile based on the estimator of a distribution 
function, which converges to the p-th quantile with probability one under certain 

conditions.

   1. Introduction. 

   Let X„ X2, ••• , X„ be a random sample of size n from a population with an un-

known distribution function F(x). The empirical distribution function F,*(x) can be 

expressed as follows, 
                                1 n                         F:( x)= E eo(x— X,), 

                                             n ,=1 

where eo is the unit distribution function, i. e., 

                      { 0 if x<0                            eo(x)= 
                               1 if x� 0 . 

For any x, F,*(x) is the uniformly minimum variance unbiased estimator of F(x) for 
all continuous distribution functions, F. It is also well known as Glivenko-Cantelli 

Theorem that 
                  P[ sup F:(x)—F(x)i— oi = 1 . 

   Now we shall consider an estimator of the distribution function F(x) given by 

                                 1 n (1.1)Fn(x)=- E 147,(x— X ,) , 

                                      n 
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 where Wn is a given distribution function. Obviously the estimator is also a distri-

 bution function. In case F(x) is continuous, it seems reasonable to take a continuous 

 distribution function as W„ so that we have an continuous estimator Fn(x). Partic-

 ularly in case the distribution function F(x) is absolutely continuous, by taking an 

 absolutely continuous distribution function as Wn, Fn(x) is again absolutely con-
 tinuous, which provides an estimator of the density function f(x) as follows, 

                                  1 n  (1
.2)fn(x)=E w „(x— Xi) ,                                               n J=1 

 where wn is the derivative of Wn. After the density estimator of the above form 

 was introduced by Rosenblatt [6], many authors have discussed its statistical proper-

 ties, for example, Parzen [4], Leadbetter [1], Nadaraya [3], Ryzin [7] and Schuster 

 [9]. 
    For the estimator of a distribution function of the form (1.1), the present author 

 is aware of the following literatures only : Leadbetter [1], Watson and Leadbetter 

 [11] and Yamato [12]. Murthy [2] considered the estimator of the similar form 
 to estimate 1—F(x), in which the distribution is absolutely continuous and wn is 

 especially taken as B„K(Bn) with certain restrictions on a constant B„ and a density 
 K. Leadbetter [1] and Watson and Leadbetter [11], mentioned above, gave the 

 same results for the asymptotic bias, variance and normality in case the distribution 
 is absolutely continuous and wn satisfies certain conditions. In their case Wn(x). 

 needs not be a distribution function. It may be natural, however, that Wn is a 

 distribution function because it seems favourable if the estimator of a distribution 

 function is also a distribution function. 

    We shall prepare ourselves with the terminology and notation corcerning the 

 convergence of a sequence of distribution functions. Let {G,} be a sequence of 

 distribution functions and G be a distribution function. Then we say that the 

 sequence {GO converges completely to G and write 

                                     Gn— G , 

 if Gn(x)--- G(x) as 00 at all x E C(G), where C(G) denotes the set of all continuity 

 points of G. 
    In section 2, for arbitrarily distribution function it is shown that Fn(x) is asymp-

 totically unbiased at all continuity points of the distribution function if and only 

 if Wn—>e0. Under the condition Wn—>e, we show that 

             lim n Var [Fn(x)] = F(x)[1—F(x)] at all x E C(F) 

 and also that the distribution of 

                           ^n [Fn(x)— EF,(x)] _ 
                         F (x)[1— F (x)] 

 converges to the normal distribution N(0, 1), at all x E C(F) with F(x) 0 or 1. 

    In section 3, we show that if Wn- eo then the estimator of the form (1.1)' 

 converges uniformly to a true continuous distribution function with probability one. 

 It is shown, also, that if the estimator of the form (1.1) converges uniformly to a
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distribution function then we have  Wii—  e0. 

   In section 4, we propose the inverse function of F,i(x) as a estimator of a p-th 

quantile, which converges to a unique P-th quantile of a continuous distribution 
function with probability one if 147,—e0. Another applications of the estimator 
Fn(x) will be presented in Yamato [13].

   2. Asymptotic unbiasedness, variance and asymptotic normality. 

   LEMMA 1. For any distribution function F, the estimator Fn(x) of the form (1.1) 
is asymptotically unbiased at all x C(F) if and only if W7,—, e0. 

   PROOF. Suppose that Wn— Then the sequence of corresponding charac-
teristic functions Own(u) converges to the unit as n— 00 at all points u. The ex-

pectation 

                      EF,(x)= Wn(x—y)dF(y) 

is also a distribution function, which is the convolution of the distribution functions 
Wn and F. Its characteristic function is denoted by w n(u) F(u) , which converges 
to OF(u) as n 00 at all points u, where OF is the characteristic function of the 
distribution function F. Hence we have 

                  lim EF„(x)-= F(x) for all x C(F) . 

Conversely we suppose that lim EF,i(x)= F(x) for all x C(F), i. e., 
                                         n-00 

             lim Wn(x—y)dF(y)= F(x) for all x E C(F) . 
                   n—o.-- 

In terms of the characteristic functions the above convergence is equivalent to 

(2.1)lim n(u)0 F(u)= OF(U) for all u . 
                                   n-•. 

Since OF is the characteristic function, OF(11) is continuous and equal to unit at u= 0. 

Hence there exists a positive constant o such that 

(2.2)OF(u) 0 on (-5, 5) . 

Therefore by (2.1) and (2.2) we have 

(2.3)Um ¢Wn(u)= 1 for u E ( — 5, 5) . 

On the other hand, for any u there exists a positive integer N such that 
—5<uIN< 5 and also we have 

                                                                    1/2 

(2.4)i Ciwn(u)-11 < NI2 W n 1 1 . 

Since the right hand side of (2.4) converges to zero by (2.3), we have 

(2.5)lim ¢Wn(u)=1 for all u , 

which implies that Wn—>e, and thus the lemma is proved.
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    It is obvious that if W eo then 1/17,2.,— eo. Therefore by the same method as 

in the proof of the sufficiency of Lemma 1 if W„-- eo then we have 

(2.6)lim 1/17,2,(x—y)dF(y)= F(x) for x C(F) . 

By Lemma 1 and (2.6), if W,— e, then we have 

(2.7)lim n Var [F,(x)] F(x)[1— F (x)] for x C(F) . 

Consequently if then we have lim EF„(x)—F(x)12 0 for x E C(F) and the 

estimator F„(x) is consistent for x C(F). 

    THEOREM 1. Let X1, X2, ••• , X„ be independent identically distributed random 

variables with a distribution function F(x). Suppose that W e0. Then for the 

estimator F,(x) of the form (1.1) with the above W „, the distribution of 

                            ^n [F,,(x)— EF„(x)1 ,_ 
                         F(x)[1—F(x)] 

converges to the normal distribution N(0, 1) for all x C(F) with F(x) 0 or 1. 

    PROOF. By putting Vni,----W„(x— Xi) for j= 1, 2, ••• n, our estimator can be 

                                    n expressed as Fn(X)= --EV nj, where ,V7,„ are independent and identically 
                         n j=i 

distributed as -177,= n(x— Xn). From (2.7) we have lim Var [V„] = lira n Var [F„(x)] 
                                                                                                                                               n•co 

= F(x)E1—F(x)1 for x E C(F). On the other hand, by eo, we have lim El V ni3 

= T/173,(x—y)dF(y)= F(x) for x e C(F) . Henceforth for x E C(F) we have 

                                                                                    n. 

               EEIV,03El V.I3                   lim  
n '11                                  3l2lim  l/21 V ar[17]1”0' 

           {Var [17,01}n'                                  J-1 

By Lyapunov's condition the distribution of 

                    F„(x)— EF,(x)[V,•—EV„.] 
                   A/ Var [F„(x)]                                 E Var [V

„;] 
                                                                      3-1 

converges to the normal distribution N(0, 1) for x C(F). The above convergence 

and (2.7) yield the conclusion.

   3. Uniform convergence. 

   In case the distribution is absolutely continuous, if the density estimator f,(x) 

is a density and converges uniformly to the density function with probability one 

then the corresponding estimator F„(x) of the distribution function converges uni-

formly to the distribution function with probability one. This follows from the
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fact that if the sequence of density functions  gn(x) converges to a density function 

g(x) almost everywhere then the sequence of corresponding distribution functions 
converges uniformly to the corresponding distribution function (See, for example, 

Scheffe [8]). Nadaraya [3] gave a sufficient condition for the density estimator 

fn(x) of the form (1.2) to converge uniformly to a density function with probability 
one and Ryzin [7] gave a sufficient condition in multivariate case. It seems to the 
author that the above two sufficient conditions are different even in univariate case. 

Schuster [9] presented a necessary and sufficient condition. The sufficient condition 

given by Nadaraya [3] is the same as the necessary and sufficient condition due 
to Schuster [9]. In this section we present a sufficient condition and a necessary 

condition for the estimator Fn(x) of the form (1.1) converges uniformly to the 

distribution function F(x) with probability one. 

    Let U be the class of all bounded and uniformly continuous real valued functions. 
Then for a function in U we have the following 

    LEMMA 2. If W7,—, e„, then for any gE U we have 

            lim g(x)dFn(x)= g(x)dF(x) with probability one . 

   PROOF. Since the function g is uniformly continuous and bounded, for any 

 > 0 there exists a 5= b(s)> 0 such that 

(3.1)1 xi < 5 implies I g(x+y)—g(y) I < sfor all y . 

There also exists a constant M> 0 such that 

(3.2)!g(x) Al for all x . 

As 1477,—,e0, for the above s> 0 there exists a positive integer No = No(s, a) such that 

(3.3)Wn(-5)±1-- W,(5)< s for n> N,. 

On the other hand we have 

(3.4)            90g(x)d.F„(x)       f1  1-1Eng(X,) 
             1g( x+ X„)dWn(x)— 1 g(X,)dWn(x)          n3=1—n3-1 

     1  "1 7'                                                  147               EI g(x+ X
.7) I dIVIT,(x)±E I g(X,)(d,(x)       n jilx1�6n 

  " 

                 EIg(x+X .7)—g(X,)IdWn(x).                  n 1-1fixl<3 
The first and second terms of the last expression of (3.4) are smaller than Ms for 

n> N, respectively because of (3.2) and (3.3). The third term is smaller than e 

because of (3.1). Thus (3.4) is smaller than (2M+1)s for n> N,. Consequently we 

have
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                lim-ff g(x)dF,i(x)1 E g(X;)} = 0 . 
              n—oo —con 3=1 

Since g is bounded, by the strong law of large number we have 

                                n 

           lim 1 E g(X;)= f g(x)dF(x) with probability one . 
                   n-09 n 

Hence we have 

           lim f g(x)dF,(x)= f g(x)dF(x) with probability one 
                             n—.99 

and thus the lemma is proved. 

   From the above lemma we have the following 

   LEMMA 3. If Wn--- eo, then for all xE C(F) we have 

                   lim Fn(x)= F(x) with probability one . 

   PROOF. Let {am} be a sequence of positive numbers, which converges to zero .. 
Let the function gim(t) for all positive integer m be such that 

                          1 if t x—am 
                         gim(t)— 

                        0 if t x 

and g„„(t) is continuous on [x—am, x]. Let the function g,m(t) for all positive integer 
m be such that 

                        1 if t x 
                        g2m(t)= 

                                 0 if t� x--am 

and g,m, is continuous on Ex, x+aml. It is obvious that g1m, g,,E U for any m. 
Hence by Lemma 2, we have for any m 

(3.5)lim f gim(t)dFn(t) = gim(t)dF(t) 
and 

(3.6)lim f g,m(t)dF„(t)= g2m(t)dF(t) 
                                    n—ao 

on Ar;,m, where Nx,m is a set with P(Nx ,m) = 0 and Nc,,, is the complement of 

Now let us put Nx U Nx,m. Then P(NN) =- 0 and we have (3.5) and (3.6) on Are, for 
                            m=1 

any m. By the definition of glin and g2„„ we have 

                  F(x—am)� g,m(t)dF(t) 

(3.7)f gim(t)dF„(t)�Frg2m(t)dF7,(t) 

                f g2m(t)dF(t)� F(x+am).
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The combination of (3.5), (3.6) and (3.7) yields for any m 

         F(x—am)  <lirn inf F,(x)<lirn sup Fn(x) F(x+ am) on Ne, . 

By letting in tend to infinity in the above inequality, if x E C(F) then we have 

                       lim Fn(x) = F(x) on Arca, . 
                             n—. 

Thus the lemma is proved. 

   THEOREM 3. Let X1, X2, , X, be independent identically distributed random 

variables with a distribution function F(x). If Wn— eo and F(x) is continuous then 

for the estimator Fn(x) given by (1.1) with the above W„, we have 

(3.8)P[ sup I Fn(x)—F(x) =1 . 

Conversely for any distribution function F(x) if (3.8) holds then we have W.,- e0. 

   PROOF. If e, and F(x) is continuous then by lemma 3 we have F,(x)- F(x). 

with probability one for all x. Therefore by giving the same proof as of Glivenko-

Cantelli Theorem (See, for example, Tucker [10], pp. 127-128), we can show (3.8). 

   Conversely suppose that (3.8) holds for any distribution function. Then by this 

assumption and Glivenko-Cantelli Theorem there exists a set N with P(N)= 0 such 

that 
                     lim Fn(x) = F(x) for all x 

(3.9)                       li
m F,',`(x)= F(x) for all x 

on NC. Let y5F,, and cbp-7, denote the characteristic function of distribution functions 
F, and Ft respectively. Then we have 

• (3.10)F.(u)—1-Eeiu(x+x j)dW,(x)=fi-n(u).75, n(u) 
                          nji 

and from (3.9) we have 

                      lim OF,i(u)-= OF(u) for all u 

(3.11)                      li
m p*(u)= F(u) for all u 

on NC. On the other hand since OF is a characteristic function, there exists a. 

positive constant 5 such that 

(3.12) F(u) 0 for u E (-5, 5) . 

From (3.10), (3.11) and (3.12), we have 

                  lim Own(u)= 1 for u E (-5, 5) on NC . 

Since the characteristic function Own does not depend on N, we have 

                  lim cbwn(u)= 1 for it E (-5, d).
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Therefore by following the same discussion as from (2.3) to (2.5) we have 

                  lim n(u) = 1 for all u . 
                                                                     72 ---•:, 

which is equivalent to IV,— e0. Thus the theorem is proved. 

   Alternatively the first part of Theorem 2 can also be proved as follows : if 

       then we have 

                           1 for all u 

and by Glivenko-Cantelli Theorem we have 

                  lim CF*,,(14)= C3F(u) for all u on A" 
                                       72— 

where N is a set with P(AT) = 0. Consequently by (3.10) we have 

                  lim F ii(u)= Au) for all u on A" . 

                                  n Therefore we have 

                  lim Fn(x)=_- F(x) for all x E- C(F) on A" . 

If F(x) is continuous, then the above convergence holds uniformly on NC and we 

have 

                  lim sup jEn(x)—F(x)1= 0 on NC . 

                          X

   2. Estimation of a quantile. 

   An estimator of a distribution function can be used to estimate a median, a 

lower quantile, a upper quantile and in general, a p-th quantile. The estimator 

Fn(x) of the form (1.1) yields estimators F71(1/2), F,7,1(1/4), F;,1(3/4) and F ,i(p), which 

are estimators of a median, a lower quantile, a upper quantile and a p-th quantile 

respectively, where F;i1 is the inverse function of F, defined by F,-,1(u)= sup : 

Fn(x) < u} and 0 < p < 1. These estimators, in general, can not be expressed in a 

explicit form, but are easily obtained by drawing the curve y = Fn(x) on the (x, y)-

plane, for example using the computer plotting device, and reading the x-axis of 
the intersection of the above curve and lines, y = 0.5, 0.25, 0.75 and p. In case there 

does not exist such intersection, we should read the supremum of the x-axis giving 

the maximum value of Fn(x) which does not exceed y = 0.5, 0.25, 0.75 and p. In case 

the x-axis of such intersection consists of an interval, we should read the infimum 

of the interval. Especially if we taken Fn(x) with W„= e, for all n, i. e., the 
empirical distribution function (x), then we can express Fv(p) in a familiar form. 

Let X,), ••• , X(n) be the order statistics of the sample X1, ••, X. Then the estimator 

F ni(p) with ITT, = eo for all 17, i. e., P-'-1(P), is equal to X(k) if p= k/n and equal to 

     if k/n < p <(k-Hivn, where k is a positive integer smaller than n. If there 

is a unique p-th quantile of a distribution, then this estimator converges to the p-th 

quantile with probability one (See, for example, proposition (i) in Rao [51, pp. 355). 
We show in Proposition 2 that if there exists a unique p-th quantile of a continuous
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distribution function and  Wn—,eo, then the estimator F;1(p) converges to the p-th 

quantile with probability one. In order to estimate a p-th quantile of a continuous 
distribution function, the estimator F7-,1(p) with a suitably chosen continuous distri-

bution function Wn will be recommended over the estimator Ft-1(p). 

   PROPOSITION 1. Suppose Wn—>eo. Let F be a continuous distribution function and 

 < p < 1. Let F be the inverse function of Fn, where Fn is given by (1.1) with the 
above Wn. Then we have 

      sup le : F($)<p} FV(p)�lim sup F;1(p) 1$ : F(e)> pl 

with probability one. 

   PROOF. By the assumption the distribution function F(x) is strictly increasing 

on (a—s, a] for any s > 0, where a = sup le : F($) < pl . Therefore we have for the 

above E> 0 

                                                                                                                                                      . 

                          2 Hence from Theorem 2 for sufficiently large n we have 

                      Fn(as 
                          2 <p 

with probability one. Since F, is a distribution function, for sufficiently large rt 

we have 

                                             6                             a—s < a— 2F77,1(P) 

with probability one. Therefore we have 

                  lim inf F,,-1(p)� a with probability one . 

Similarly we can also show 

          lim sup Fv(p)_inf {e : F($)> p} with probability one . 

   If in the above proposition especially there exists a unique e satisfying F(e)=p, 

then we have the following 

   PROPOSITION 2. Suppose that there exists a unique p-th quantile $. Then under 

the same conditions as Proposition 1, we have 

                        lim Fv(p)= 

with probability one. 

   The above proposition shows that the estimator Fn(x) of a continuous distribution 

function yields a consistent estimator F;1(p) of a unique p-th quantile. 

   The author wishes to thank Prof. A. Kudo of Kyushu University for his en-

couragement and advices.
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