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   § 1. Summary. 

   It is shown that in detecting sequentially a deterministic signal  0(0 in white 
noise 72(0 a similar identity (iii) in theorem 2.1, to the Wald's holds concerning a 
stopping time r determined by making use of a likelihood ratio. It is also shown 
that r has finite moments of any order under quite weak conditions over the signal. 
The exact A. S. N. E{y} in a constant signal case has been obtained and given by 

(2, 8). 
   It is also considered a detection problem of a constant signal OW a in a colour-

ed noise based on a sub-optimal statistic which become optimal when the noise were 

white. Similar properties of a stopping time r to those in the white noise case 
have been obtained in theorem 3.1.

     § 2. Detection of a deterministic signal in a white noise. 

    We consider the following detection problem of a signal OW in the white noise 
 72(0 ; 

                     H ; x(t) = W(t) 

                  H ; x (t) = m(0+ W(t) ,(2.1) 

 where m(t) = 0(s)ds is the integrated signal and { W(t), 0 t < oo} is the Wiener 

                   0 

 process which is considered to be the integrated form of the white noise 17(t). 
    By Ho we mean that there is no signal in the (integrated) observation x(t) whose 

 distribution is induced from the Wiener measure P0 and by Hl the observation x(t) 
 is the sum of the signal m(t) and the noise W(t) whose distribution is induced by 
 P1, e. a shift of Po by m(•). 

    In order for the detection problem (2.1) to be non-singular, we assume that 0(•) 

 is square integrable on each finite interval [0, t], 0 t < oo. 
    Let us put 

                 V(t) = 0(s)I2ds < 00 .(2.2) 

                                              0
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   Let  Ot, 0 t < 00, be the a-field generated by the observation {x(s), s �t} 

and Pit, i= 0, 1, restrictions of Pi, i= 0, 1, to Tt respectively. 
   Pot and P1t are equivalent for each t, and the logarithm of the likelihood ratio 

L(x; of .131t with respect to Pot is given (See [5], [6]) by 

                                1                   L(x ; t) =
00(s)dx(s)2 V(t) .(2.3) 

   The statistic L(x; t) is optimal in the sense that it will give the most powerful 

critical region in this detection problem for testing Ho vs. H1 based on {x(s), 0 s 

 t}, (See [3]). 

   At first we set error probabilities to be equal to the prescribed value r, (0 r 

 1/2), that is, 

                P(to accept H,IH0).= P(to accept HoI111)=--- r .(2.4) 

   We define a stopping time r by 

               z- = inf It > 0; L(x; t)�. —2, or . L(x; 211 ,(2.5) 

where 20 and 2, are positive constants such that our following decision rule satisfies 

(2.4). 
   Our decision rule based on the observations {x(s), s .�t} will be formulated 
as follows ; When L(x; -r)= 21, (or —20), we stop sampling at t= v and decide H1, 

(or H0), to be true, while as long as —20 L(x ; s) < 21, t, we continue sam-

pling. 
   Since each distribution of L(x; t) under Hi, i = 0, 1, is symmetric to the other, 

the thresholds —20 and Al must be, under the condition (2.4), symmetric, that is, 

20= 21. 

   Let F, be the a-field generated by { W(s), s �t} and let us put 

                 y(t) = 0cb(s)dw(s) , 0t <00.(2.6) 
   Then we have 

   LEMMA 2.1. ly(t), Ft, 0 t < co} is a Gaussian Martingale with the mean-value 

zero, its cavariance function Ry(t, s) = V(min (t, s)) and its realizations are continuous 
with probability one. 

   PROOF. Clear. 

   From the symmetricity of the distribution of L(x; t), we may and do proceed 
our discussion under the assumption that Ho is always true. 

   We have the following evaluation of the tail probability of z : 

   LEMMA 2.2. For sufficiently large t, 

             p > t) �  2 V(t) exp — 220                                                          (2.7) 
                    7r (V(0-220)8 V(t) • 

   PROOF. Since [7 > E [ I .Y(t)---- 17(t) I < 20] , we have from lemma 2.1, 

  1  Y2             Per > 0-5 j-2,±÷v(t) -‘/27rV(t) exP[— 2V(t) ]dY •
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For a large t such that  V(t)> 220, the inequality (2.7) easily follows .Q. E. D. 
   LEMMA 2.3. If there is a positive constant a> 0, whatever small it is, such that 

the signal power V(t) diverges to infinity with the same order as 0{t") or faster , then 
for all positive 13> 0, Efz-P1 < 00. 

   PROOF. Let F(t) be the c. d. f. of r. From the assumption that V(t)=0(ta) , we 
can find positive numbers T, and A* such thatV(0-2201-./ V(t)�: A*1."12, for all 

t >To. It is enough for us to show that ttsdF(t) < 00, for all 13 > 0. Indeed, it is 
                                                    To 

easily seen that the integral is dominated by a convergent series K0 E (1-1-v)Pe-R1' 

< 00 , where K0 and K1 are suitably chosen positive constants.1Q. E. D. 

   Let us put 

                    U(t)=y(t)2—V(t), 0 t CO 

and for each 2,—co < 2 < 00, 

              Z(t, 2) = exp {2y(t)— V(t)} , 0 t < 00 . 
Then, we have 

   LEMMA 2.4. {U(t), t < col is a martingale with the mean value zero and 

{Z(t, 2), Ft, 0 �_ t < oo} is also a martingale with the mean value 1 for each real 2. 

   PROOF. It is clear that E{ U(0} =0. Let us put E(s, t) = cb(u)dW(u). Then 

          U(t+h), U(t)+2y(t)e(t, td-h)-1- {e(t, t+h)} 2 V(t+h)+V(t) . 

Thus, we have 

                    E{U(t+ h) IF t} = U(t) , a. s. 

On the other hand, E{e'v")} = exp V(01, and hence E{Z(t, 2)} 1, for each real 
2. Since it is written as follows : 

                                                                2 

         Z(t+h, 2) = Z(t, 2) exp {2(t, t+h)22V(t+h)—V(t)]} 
we have 

                    E{Z(t+h, 2)1F1} =- Z(t, 2), a. s. 

This shows that {Z(t, 2), Ft, 0 t < co} is a martingale for each real 2. Q. E. D. 

   By noticing that z is the Brownian stopping time, that is {z > t} E F, for each 

t, we have 

   THEOREM 2.1. ( i ) Efy(z-)1 = 0, 

             (ii) E{ IY(7)12} = E{V(r)}, and 
                                   22                (iii) E{exp{2.y(r)— —2— • V(r)} =1, for each real 2. 

   PROOF. Let us define a sequence of stopping times r„ by 

                          7n = min (n, z), n = 1, 2, •-• . 

   Let :17"„(t), n = 1, 2, • be a sequence of stopped processes of y(t) by zn, that is, 

Sin(t) = y(t) for t < rn ; =Y(rn) for t�_r„ and i3t(n) the a-field generated by zn, that is,
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the totality of measurable sets A whose intersection with  {min (t, z-n)�. s} belongs to 

F, for each s, 0 s 00. 

   Since rn is bounded a. s. for each n, it is seen that Un,(0, --3t(7'), t < 001 is a 

martingale and E{Sin(0} sup ElY(t01 = 0 for all t, 0t < co. (See [1]). 

   Hence, for all t > n, (n = 1, 2, • •.), 

             E{Y,i(t)} = E{ Y(70} = J Y(r)dP+y(n)d P . 
                            Cr~n7Crn] 

                            E{y(t)} = 0 . 

   Since for 7 > ny IY(n)i 20+ 21 V(n), we have 

    Erin] 
           y(n)aP1�CAO+ 3(7 > n) 

                    Const. x  .\/ V(n)(V(n)+220)exp—(V (n) —2202  }V(n)-22,l 8 V(n) 
                     --> 0 as n 00 . 

Thus, we have 

                    E{ Y(t)} = lim E{ 31(r = 0 - 
                                                     n-00 

Similarly, we write 

                   Un(t) U(t)for t < rn 

                           =. U(rn)for t rn 

                     in(t,)= Z(t, 2) for t < Vn 

                               = Z(z-n, 2) for t z-n 

   We have then new martingale processes {0„(t), 3t(n), 0 �_ t < 00} and 14(t, 2), 
0 t 001. Therefore we have 

        E{U,i(t)} =U(r)dP+U(n)dP 
                  [vg.n)[r>n) 

       = 

CrL-n]n] 
                    Y2(V)— V(r)1dP+S{ y(n)2 — V(n)} dP 

                                                      Er> 

                    0 . 

Since, 

          Cr>n)fy(n)2— V(n)1dP1{V(n)41 (220+ V(n))2} .P(r > n) 
                        —>0 as n—>0, 

We have 

           /im [y2(r)— V(r)]dP = E{(y(r))2} — E{V(r)} = 0 . 
                   n—coErgn] 

Similarly we have
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 1= Elin(t, 2)} = e2y cr)_=-1;-V(r)dP 

                                           e2?/(n)- 1 v(n)dP 
                                                 Er>n] 

Since, for each real 2, 

                           22             exp {2y(n) ——2—V(n)} d 
                Er>n] 

               Const. x  -VV(n)    x exp {— 8[(1 22)2 V(n)-42o+v42(n°2)  

                   

I V(n)-220 I 

               --> 0 as n—co , 

it follows immediately that for each real 

                                          22                1= limexp {Ay(r)2 V(v)} dP 
      n-00 

                = Elexp {2y(z-)--22-2 V(r)} .Q. E. D. 

   EXAMPLE 2.1. (c.f. [2], [7]). From theorem 2.1, it is easily obtain the A.S. N.'s 
E{t- 'Ho} and Eft- 11-/il of our detection problem when the signal 0(s) is constant 
a > 0 which is in the white noise. From (2, 4), it is well known that 20 is given by 

                    20= log ( 1 r). 

   Let E1= {W(v) = 2 and E2 be the complementary event of E1. Ther_, 
since v is define by 

              r= inf {t> 0; I W(t) 2a t1�2o/a} , 
we have 

         E{Y(r)} =rE120-1- 2 .r1E11+(1—r)E1 20+ 22 • zlE01 

                             a2                   =2E{y} —(1-27-)Ao = 0 , 

that is, 

                    arl=E{s-11-10}=E{r1111} 

                 = 2 (1 2r) log( 1—
r7(2.8) 

   EXAMPLE 2.2. Let 4> 0 be a suitably chosen small interval and let us put 

                ¢;(s)=1 for (j-1)4�_s<j4, j= 1, 2, •••, 

                     =0 otherwise . 

Let us asssume that 0(s) is a pulsed signal and is approximately expressed by 

                  0(s), h • ei • y5;(s), s< 00 
                                        i=1
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where  h  > 0 is a given constant and si = 0 or 1, j =1, 2, 3, ••-. 

   We also assume that a relative frequency of the occurrence of pulses (s1-4-et+ 
-•• ±s„)/n is close to a constant a , (0 < a 1), except for the first several n. 

   Then, we have approximately 

                     V(t) --t- a2 at ,and 

                                                                                                  n. 

                 y(t) = h E EjZi+hs.4.1[W(t)—W(n4)](2.9) 
                                          j=1 

where zi = W(j4)—W((j —1)4) and n is the largest integer not greater than t/4. 

   It is clear that { y(t), 0 t < co} is a Gaussian process with the mean value zero 
and its covariance function R(s, t) is given approximately by 

                       R(s, t) ah2 min (s, t) . 

   Hence, this detection problem of the pulsed signal 0(s) in the white noise is 

nearly equivalent to the problem to detect a constant signal 0,(s) h • / a in the 
white noise as shown in Example 2.1. 

   Thus, we have the A.S.N. which are given approximately by 

             Ely 'Ho} =E{71H,}   

                          

' -2r)  .log(1r

   § 3. Detection of a constant signal in a non-white Gaussian noise. 

   Similary in § 2, let {W(s), F8, 0 s < co} be the Wiener process. 

   Let {e(s), 0 s < oo} be a Gaussian noise process defined by 

                   e(t) =e-P"-")dW(u) ,0t <CO, •• •• ••(3.1) 

                                   0 where 13 0 is a non-negative constant. 

   We shall consider the following detection problem ; 

                         Ho: x(t)---=e(t) 

              H1: x(t)= at+ e(t)(3.2) 

where a > 0, is a constant signal to be detected. 
   Let Pit, i = 0, 1, be the distribution of the observation {x(s), 0 s t} under Hi, 

i = 0, 1, respectively. 

   Then, the detection problem (3.2) is nonsingular and the logarithm of the like-

lihood ratio of P ,t with respect to Pot is given by 

             L(x ; t)= logdPit(x)                          d P 
ot 

                 = L 0(x ; 0+4- • {2m(t)x (t) —(M(0)2} 
                                p2 

 t 2f0m(s)x(s)ds—(m(s))2ds}     2(3.3)
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where m(t) at, and 

                                                   a'  Lo(x;= ax(t)2t .(3.4) 

   Suppose that we adopt Lo(x ; t) as a statistic for the problem (3.2) instead of 
the log-likelihood ratio L(x; t). 

   Lo(x; t) is actually not optimal for the problem (3.2) (See [3]) but it has several 
sub-optimal properties because it become optimal when 13=0, that is, the noise e(t) 

were white, and Lo(x; t) does not contain the parameter 43 which is intrinsic in the 
noise. 
   We set error probabilities to the equal to the prescribed value 7, that is, 

               P(to accept 1111 Ho) = P(to accept Ho I H1) = r ,(3.5) 

.and consider only such decision rules that (3.5) holds. 
   We define a stopping r* by 

               7* = inf { t > 0 ; Lo(x; 0 _� —20 or Lo(x; t)-�Ail(3.6) 

where 20, Al are positive constants such that our following decision rule satisfies 

<3.5). 
   Our decision rule based on the observation {x(s), s t} will be formulated 
as follows ; When Lo(x ; T*) = Ai, (or —20, we stop sampling at t = r* and decide 
H1, (or Ho) to be true, while as long as —20 < Lo(x, s) < 21, s t, we continue 
sampling. 
    Since each distribution of Lo(x ; t) under Hi, i= 0, 1, is symmetric to the other, 
the constants A and 21 must be equal under the condition (3.5). 

    Let us put 
                      V(t) = Efe(021 = (1— e-2,3')/ 213 . 

Let us consider a continuous function f(t), 0 t < co, such that 

  (i)f(0) = —2* <0 , 

  (ii)f(t)=O(ta)/co as t , 

    for some positive constant a > 0. 
We shall now define a stopping time r as follows ; 

               = inf It > 0 ; (t) f(t) or (t) 22*+f(t)} .(3.7) 

    The stopping time r* defined by (3.6) is a special case of r by (3.7). Indeed, r* 
corresponds to the case where f(t) = at/2-2* and 2* = 20/a. 

    For a large t, it is easily seen that 

              P(r t)�_ P(f(t)� e(t) 25t*+f(t)) 

          1 1                                  x exp x [f(t)]21 
                       2-^;7,3 If(t)I 

 Thus, we have
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   LEMMA 3.1. For all real k 0, 

                             E{vk} < 00 . 

   Proof of lemma 3.1 is analogous to that of lemma 2.3. 

   Now, we obtain 

   THEOREM 3.1. Let z- be defined by (3.7). Then we have 

  (i)E{e(r)} = 0 , 

  (ii)E{ (z-)2} E{ V(r)} , and 

  (iii)for each real , 

             Elexp[2(v) VEz-d} 1.(3.8) 

   PROOF. It is clear that v is a stopping time with respect to Ft, t� 0. The 
stochastic process {e(t), t 00} is the unique non-anticipated solution of a sto-
chastic differential equation ; 

                    de(t) = - 13E(t)dt+ dW(t) ,(3.9) 

with e(0)= 0. Hence, it enjoys the strong Markov property with respect to a 
Brownian stopping time, for example, say, v. (See [4]). 

   For any random variable g and any measurable set A, we will write 

                 EA{g} = , 

where IA is the indicator function of A. 
   Let Tr be the o-field generated by r, that is, the totality of sets whose inter-

sections with Er > t] belong to Ft for every t, t Goo. Then, we have from the 
strong Markov property, 

                 EE,--543{e(t)} = $(0I Tr} } 

                            = EfIE,�...t] • Ele(t)1 z-, (v)}} 

                          Er,in{E(r)} 

   Since for v > t, f(t)<e(t)< 22*+f(0, we have 

           E[r>nfe(01 I -5 [22*-Ff(t)] • P(t- > t) 

                      1— -x1 22*+f(t) I x exp { —Plf(012} 
                   2A/r/(3I f(01 

                              0 as t-÷ co . 
Thus, it is seen that 

               E{e(t)} = urn Err:5t] { e'(r)} +/im Ecr>t]{(t)} 
                                                         t-- 

                    =E{(r)} 0 . 

We have shown that (i)' holds. 

   Let us write
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 U(t)  = (t)2—V(t). 

Then, U(t) is a functional of the Markov process {e(s), 0 s < co} and hence we 

:have 

             E„ti{U(1)} = E{E{IErt] • U(t) I Tr} } 

                     = E{/E=t] • E{ U(t) I z-, e(r)11 

                      = E,„5t3{U(z-)} = 17(7)1 • 

   Since, for 7 > t, (t) 22*+f(t), it follows that 

          E[,,,{ U(t)} V(t)+(22*-Ff(t))21 Per > t) 

                      1 V(t)±(22*-Ff(t))2] 
                                                               • e 

                     2A/7.,3If(t) I 

                        --> 0 as t co . 
"Thus

, we have 

               E{ U(t)} = urn Ecr_t3{U(r)}+Iim Elr-t]{U(t)} 

                            (z-)2— V(r)} O. 

We have shown that E{(z-)2} = E{ V(7)}. 

   Let us put for each real 2, 

                                                     2 

              Z(t, 2)= exp[2(t)—22 V(t)], 0 t . 

Then, it is clear that Z(t, 2) is Fe-measurable and E{Z(t, 2)1 1. 

    Thus, we have 

                 Etr.st,{Z(t, 2)} = E{E{1[,<tiZ(t, 2)1 0,11 

                         = Efl„„E{Z(t, I r, (v)} } 

                                = Err-gc{z(z., 2)} . 

                                      22 Now, we shall evaluate EL,->t]fexP[2(t)—2 V(t)1 
   Since, for 7 > t, f(t) < (t) < 22*+f(t), we have for each non-negative real 2, 

          EET>tilz(t, 2)1exp 12[22*-Ff(t)1—22 V(t)} • P(z- > t) 

                    21f(t) I ,\/713 exp 222* — I f(012(1— )1                                            isf(t) 

                            0 as t co , 

and for each negative real A, 

                 ELT>tAZ(t, 2)1 �_exp{/(t)—22 V(t)} 

                                    0 as t co . 

Thus, it follows that for each real 2,
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              E{Z(t, 2)} = lim Etr-�_c{Z(r,2)}±lim ED->c{At, 2)} 
      t—t— 

                               = E{Zer, 2} -_-_----1. 

This completes the proof of theorem 3.1.Q. E. D. 

   The stopping time r* is the special case of 7 in (3.7) and hence from theorem 
3.1 it is seen that 

                     E{e(r*)} = 0 , 

                     EfE(z-*)21 = E{ V(r*)} , 
and for each real 2, 

                Ele xp[2(r*) — —222— V(v*)]} -1. 

                                                                                                                                                         . 

   COROLLARY. 

                 E{ 7* I Ho} = E{r* I H1} = 220(1-2/)/a2 , 

where 20 is such a constant that the error probabilities satisfy (3.5). 

   PROOF. Let Eo= {(z-*)= 2a° and E1 be the complementary event of E0.. 
   Then, by noticing that r* is equal to v when f(0-= 2a t-2* and 2* = 20/a. and 

also that p(Eiirro=r and P(EolHo=l—r, it follows from theorem 3.1 that 

         E{e(r*)} =  2 CEIr*1 Eol • P(EolHo)+E{v*IEl} • P(E11110)1 

                                    Ao                     — 2°P(E olHo)+---P(E11110)      aa 

      aAo                     = 2E{z-*IH0} ----(1-2r)= 0 . 

                                  a Thus, we have proved corollary.Q . E. D.
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