ON A WALD＇S EQUATION AND AVERAGE SAMPLE NUMBER IN A SEQUENTIAL SIGNAL DETECTION

Nagai，Takeaki
Faculty of Engineering Science，Osaka University
https：／／doi．org／10．5109／13060

出版情報：統計数理研究． 15 （1／2），pp．29－38，1972－03．Research Association of Statistical Sciences
バージョン：
権利関係：

ON A WALD'S EQUATION AND AVERAGE SAMPLE NUMBER IN A SEQUENTIAL SIGNAL DETECTION

By
Takeaki Nagai*

(Received November 5, 1971)

§ 1. Summary.

It is shown that in detecting sequentially a deterministic signal $\psi(t)$ in white noise $\eta(t)$ a similar identity (iii) in theorem 2.1, to the Wald's holds concerning a stopping time τ determined by making use of a likelihood ratio. It is also shown that τ has finite moments of any order under quite weak conditions over the signal. The exact A.S.N. $E\{\tau\}$ in a constant signal case has been obtained and given by (2, 8).

It is also considered a detection problem of a constant signal $\psi(t) \equiv \alpha$ in a coloured noise based on a sub-optimal statistic which become optimal when the noise were white. Similar properties of a stopping time τ to those in the white noise case have been obtained in theorem 3.1.

§ 2. Detection of a deterministic signal in a white noise.

We consider the following detection problem of a signal $\psi(t)$ in the white noise $\eta(t)$;

$$
\begin{array}{ll}
H_{0} ; & x(t)=W(t) \\
H_{1} ; & x(t)=m(t)+W(t), \tag{2.1}
\end{array}
$$

where $m(t)=\int_{0}^{t} \psi(s) d s$ is the integrated signal and $\{W(t), 0 \leqq t<\infty\}$ is the Wiener process which is considered to be the integrated form of the white noise $\eta(t)$.

By H_{0} we mean that there is no signal in the (integrated) observation $x(t)$ whose distribution is induced from the Wiener measure P_{0} and by H_{1} the observation $x(t)$ is the sum of the signal $m(t)$ and the noise $W(t)$ whose distribution is induced by P_{1}, i. e. a shift of P_{0} by $m(\cdot)$.

In order for the detection problem (2.1) to be non-singular, we assume that $\psi(\cdot)$ is square integrable on each finite interval [$0, t], 0 \leqq t<\infty$.

Let us put

$$
\begin{equation*}
V(t)=\int_{0}^{t}|\psi(s)|^{2} d s<\infty \tag{2.2}
\end{equation*}
$$

[^0]Let $\mathfrak{B}_{t}, 0 \leqq t<\infty$, be the σ-field generated by the observation $\{x(s), 0 \leqq s \leqq t\}$ and $P_{i t}, i=0,1$, restrictions of $P_{i}, i=0,1$, to \mathfrak{B}_{t} respectively.
$P_{0 t}$ and $P_{1 t}$ are equivalent for each t, and the logarithm of the likelihood ratio $L(x ; t)$ of $P_{1 t}$ with respect to $P_{0 t}$ is given (See [5], [6]) by

$$
\begin{equation*}
L(x ; t)=\int_{0}^{t} \psi(s) d x(s)-\frac{1}{2} V(t) . \tag{2.3}
\end{equation*}
$$

The statistic $L(x ; t)$ is optimal in the sense that it will give the most powerful critical region in this detection problem for testing H_{0} vs. H_{1} based on $\{x(s), 0 \leqq s$ $\leqq t\}$, (See [3]).

At first we set error probabilities to be equal to the prescribed value $\gamma,(0<\gamma$ $\leqq 1 / 2$), that is,

$$
\begin{equation*}
P\left(\text { to accept } H_{1} \mid H_{0}\right)=P\left(\text { to accept } H_{0} \mid H_{1}\right)=\gamma . \tag{2.4}
\end{equation*}
$$

We define a stopping time τ by

$$
\begin{equation*}
\tau=\inf \left\{t>0 ; L(x ; t) \leqq-\lambda_{0} \text { or } L(x ; t) \geqq \lambda_{1}\right\}, \tag{2.5}
\end{equation*}
$$

where λ_{0} and λ_{1} are positive constants such that our following decision rule satisfies (2.4).

Our decision rule based on the observations $\{x(s), 0 \leqq s \leqq t\}$ will be formulated as follows; When $L(x ; \tau)=\lambda_{1}$, (or $-\lambda_{0}$), we stop sampling at $t=\tau$ and decide H_{1}, (or H_{0}), to be true, while as long as $-\lambda_{0}<L(x ; s)<\lambda_{1}, 0 \leqq s \leqq t$, we continue sampling.

Since each distribution of $L(x ; t)$ under $H_{i}, i=0,1$, is symmetric to the other, the thresholds $-\lambda_{0}$ and λ_{1} must be, under the condition (2.4), symmetric, that is, $\lambda_{0}=\lambda_{1}$.

Let F_{t} be the σ-field generated by $\{W(s), 0 \leqq s \leqq t\}$ and let us put

$$
\begin{equation*}
y(t)=\int_{0}^{t} \psi(s) d w(s), \quad 0 \leqq t<\infty \tag{2.6}
\end{equation*}
$$

Then we have
Lemma 2.1. $\left\{y(t), F_{t}, 0 \leqq t<\infty\right\}$ is a Gaussian Martingale with the mean-value zero, its cavariance function $R_{y}(t, s)=V(\min (t, s))$ and its realizations are continuous with probability one.

Proof. Clear.
From the symmetricity of the distribution of $L(x ; t)$, we may and do proceed our discussion under the assumption that H_{0} is always true.

We have the following evaluation of the tail probability of τ :
Lemma 2.2. For sufficiently large t,

$$
\begin{equation*}
P(\tau>t) \leqq \frac{2}{\pi} \frac{\sqrt{V(t)}}{\left(V(t)-2 \lambda_{0}\right)} \exp \left\{-\frac{V(t)-2 \lambda_{0}}{8 V(t)}\right\} . \tag{2.7}
\end{equation*}
$$

Proof. Since $[\tau>t] \subset\left[\left|y(t)-\frac{1}{2} V(t)\right|<\lambda_{0}\right]$, we have from lemma 2.1,

$$
P(\tau>t) \leqq \int_{-\lambda_{0}+\frac{1}{2} v(t)}^{\infty} \frac{1}{\sqrt{2 \pi V(t)}} \exp \left[-\frac{y^{2}}{2 V(t)}\right] d y
$$

For a large t such that $V(t)>2 \lambda_{0}$, the inequality (2.7) easily follows. Q.E.D.
Lemma 2.3. If there is a positive constant $\alpha>0$, whatever small it is, such that the signal power $V(t)$ diverges to infinity with the same order as $O\left(t^{\alpha}\right)$ or faster, then for all positive $\beta>0, E\left\{\tau^{\beta}\right\}<\infty$.

Proof. Let $F(t)$ be the c. d. f. of τ. From the assumption that $V(t)=O\left(t^{\alpha}\right)$, we can find positive numbers T_{0} and A^{*} such that $\sqrt{V(t)}-2 \lambda_{0} / \sqrt{V(t)} \geqq A^{*} t^{\alpha / 2}$, for all $t \geqq T_{0}$. It is enough for us to show that $\int_{T_{0}}^{\infty} t^{\beta} d F(t)<\infty$, for all $\beta>0$. Indeed, it is easily seen that the integral is dominated by a convergent series $K_{0} \sum_{\nu=1}^{\infty}(1+\nu)^{\beta} e^{-K_{1} \nu^{\alpha}}$ $<\infty$, where K_{0} and K_{1} are suitably chosen positive constants.
Q.E.D.

Let us put

$$
U(t)=y(t)^{2}-V(t), \quad 0 \leqq t<\infty,
$$

and for each $\lambda,-\infty<\lambda<\infty$,

$$
Z(t, \lambda)=\exp \left\{\lambda y(t)-\frac{\lambda^{2}}{2}-V(t)\right\}, \quad 0 \leqq t<\infty .
$$

Then, we have
Lemma 2.4. $\left\{U(t), F_{t}, 0 \leqq t<\infty\right\}$ is a martingale with the mean value zero and $\left\{Z(t, \lambda), F_{t}, 0 \leqq t<\infty\right\}$ is also a martingale with the mean value 1 for each real λ.

Proof. It is clear that $E\{U(t)\}=0$. Let us put $\xi(s, t)=\int_{s}^{t} \psi(u) d W(u)$. Then

$$
U(t+h)=U(t)+2 y(t) \xi(t, t+h)+\{\xi(t, t+h)\}^{2}-V(t+h)+V(t) .
$$

Thus, we have

$$
E\left\{U(t+h) \mid F_{t}\right\}=U(t), \quad \text { a.s. }
$$

On the other hand, $E\left\{e^{\lambda \cdot y(t)}\right\}=\exp \left\{-\frac{\lambda^{2}}{2}-V(t)\right\}$, and hence $E\{Z(t, \lambda)\} \equiv 1$, for each real 2. Since it is written as follows:

$$
Z(t+h, \lambda)=Z(t, \lambda) \exp \left\{\lambda \xi(t, t+h)-\frac{\lambda^{2}}{2}[V(t+h)-V(t)]\right\},
$$

we have

$$
E\left\{Z(t+h, \lambda) \mid F_{t}\right\}=Z(t, \lambda), \quad \text { a.s. }
$$

This shows that $\left\{Z(t, \lambda), F_{t}, 0 \leqq t<\infty\right\}$ is a martingale for each real λ. Q.E.D.
By noticing that τ is the Brownian stopping time, that is $\{\tau>t\} \in F_{t}$ for each t, we have

Theorem 2.1. (i) $E\{y(\tau)\}=0$,
(ii) $E\left\{|y(\tau)|^{2}\right\}=E\{V(\tau)\}$, and
(iii) $E\left\{\exp \left\{\lambda \cdot y(\tau)-\frac{\lambda^{2}}{2} \cdot V(\tau)\right\}\right\}=1$, for each real λ.

Proof. Let us define a sequence of stopping times τ_{n} by

$$
\tau_{n}=\min (n, \tau), \quad n=1,2, \cdots
$$

Let $\breve{y}_{n}(t), n=1,2, \cdots$ be a sequence of stopped processes of $y(t)$ by τ_{n}, that is, $\breve{y}_{n}(t)=y(t)$ for $t<\tau_{n} ;=y\left(\tau_{n}\right)$ for $t \geqq \tau_{n}$ and $\breve{\mathfrak{B}}_{t}^{(n)}$ the σ-field generated by τ_{n}, that is,
the totality of measurable sets A whose intersection with $\left\{\min \left(t, \tau_{n}\right) \leqq s\right\}$ belongs to F_{s} for each $s, 0 \leqq s<\infty$.

Since τ_{n} is bounded a.s. for each n, it is seen that $\left\{\breve{y}_{n}(t), \breve{\mathfrak{b}}_{t}^{(n)}, 0 \leqq t<\infty\right\}$ is a martingale and $E\left\{\breve{y}_{n}(t)\right\}=\sup _{t^{\prime}} E\left\{y\left(t^{\prime}\right)\right\}=0$ for all $t, 0 \leqq t<\infty$. (See [1]).

Hence, for all $t>n,(n=1,2, \cdots)$,

$$
\begin{aligned}
E\left\{\breve{y}_{n}(t)\right\}=E\left\{y\left(\tau_{n}\right)\right\} & =\int_{[\tau \leq n]} y(\tau) d P+\int_{[\tau \geqslant n]} y(n) d P . \\
& =E\{y(t)\}=0 .
\end{aligned}
$$

Since for $\tau>n,|y(n)| \leqq \lambda_{0}+\frac{1}{2} V(n)$, we have

$$
\begin{aligned}
\left|\int_{[\tau>n]} y(n) a P\right| & \leqq\left(\lambda_{0}+\frac{1}{2} V(n)\right) P(\tau>n) \\
& \leqq \text { Const. } \times \frac{\sqrt{V(n)}\left(V(n)+2 \lambda_{0}\right)}{V(n)-2 \lambda_{0}} \exp \left\{\frac{-\left(V(n)-2 \lambda_{0}\right)^{2}}{8 V(n)}\right\} \\
& \longrightarrow 0 \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

Thus, we have

$$
E\{y(\tau)\}=\lim _{n \rightarrow \infty} E\left\{y\left(\tau_{n}\right)\right\}=0 .
$$

Similarly, we write

$$
\begin{aligned}
& \breve{U}_{n}(t)=U(t) \quad \text { for } t<\tau_{n} \\
&=U\left(\tau_{n}\right) \quad \text { for } t \geqq \tau_{n} \\
& \breve{Z}_{n}(t, \lambda)=Z(t, \lambda) \quad \text { for } t<\tau_{n} \\
&=Z\left(\tau_{n}, \lambda\right) \quad \text { for } t \geqq \tau_{n} .
\end{aligned}
$$

We have then new martingale processes $\left\{\breve{U}_{n}(t), \breve{\mathfrak{B}}_{t}^{(n)}, 0 \leqq t<\infty\right\}$ and $\left\{\breve{Z}_{n}(t, \lambda), \breve{\mathfrak{B}}_{t}^{(n)}\right.$, $0 \leqq t<\infty\}$. Therefore we have

$$
\begin{aligned}
E\left\{U_{n}(t)\right\} & =\int_{[\tau \leqq n]} U(\tau) d P+\int_{[\tau>n]} U(n) d P \\
& =\int_{[\tau \leqq n]}\left\{y^{2}(\tau)-V(\tau)\right\} d P+\int_{[\tau>n]}\left\{y(n)^{2}-V(n)\right\} d P \\
& =0 .
\end{aligned}
$$

Since,

$$
\begin{aligned}
\left|\int_{[\tau>n]}\left\{y(n)^{2}-V(n)\right\} d P\right| \leqq & \left\{V(n)+\frac{1}{4}\left(2 \lambda_{0}+V(n)\right)^{2}\right\} \cdot P(\tau>n) \\
& \longrightarrow 0 \quad \text { as } n \rightarrow \infty,
\end{aligned}
$$

We have

$$
\lim _{n \rightarrow \infty} \int_{[\tau \leq n]}\left[y^{2}(\tau)-V(\tau)\right] d P=E\left\{(y(\tau))^{2}\right\}-E\{V(\tau)\}=0
$$

Similarly we have

$$
\begin{aligned}
1=E\left\{\breve{Z}_{n}(t, \lambda)\right\}= & \int_{[\tau \leqq n]} e^{\lambda y(\tau)-\frac{\lambda^{2}}{2} V(\tau)} d P \\
& +\int_{[\tau>n]} e^{\lambda y(n)-\frac{\lambda^{2}}{2} V(n)} d P
\end{aligned}
$$

Since, for each real λ,

$$
\begin{aligned}
& \left|\int_{[\tau>n]} \exp \left\{\lambda y(n)-\frac{\lambda^{2}}{2} V(n)\right\} d P\right| \\
& \quad \leqq \text { Const. } \times \frac{\sqrt{V(n)}}{\left|V(n)-2 \lambda_{0}\right|} \times \exp \left\{-\frac{1}{8}\left[(1-2 \lambda)^{2} V(n)-4 \lambda_{0}+\frac{4 \lambda_{0}{ }^{2}}{V(n)}\right]\right\} \\
& \quad \longrightarrow 0 \quad \text { as } n \rightarrow \infty,
\end{aligned}
$$

it follows immediately that for each real λ

$$
\begin{aligned}
1 & =\lim _{n \rightarrow \infty} \int_{[\tau \leqq n]} \exp \left\{\lambda y(\tau)-\frac{\lambda^{2}}{2} V(\tau)\right\} d P \\
& =E\left\{\exp \left\{\lambda y(\tau)-\frac{\lambda^{2}}{2} V(\tau)\right\}\right\} .
\end{aligned}
$$

Q. E. D.

Example 2.1. (c.f. [2], [7]). From theorem 2.1, it is easily obtain the A.S. N.'s $E\left\{\tau \mid H_{0}\right\}$ and $E\left\{\tau \mid H_{1}\right\}$ of our detection problem when the signal $\psi(s)$ is constant $\alpha>0$ which is in the white noise. From (2,4), it is well known that λ_{0} is given by

$$
\lambda_{0}=\log \left(\frac{1-\gamma}{\gamma}\right) .
$$

Let $E_{1}=\left\{W(\tau)=\frac{\lambda_{0}}{\alpha}+\frac{\alpha}{2}\right\}$ and E_{2} be the complementary event of E_{1}. Ther, since τ is define by

$$
\tau=\inf \left\{t>0 ;\left|W(t)-\frac{\alpha}{2} t\right| \geqq \lambda_{0} / \alpha\right\}
$$

we have

$$
\begin{aligned}
E\{y(\tau)\} & =\gamma E\left\{\left.\lambda_{0}+\frac{\alpha^{2}}{2} \cdot \tau \right\rvert\, E_{1}\right\}+(1-\gamma) E\left\{\left.-\lambda_{0}+\frac{\alpha^{2}}{2} \cdot \tau \right\rvert\, E_{\theta}\right\} \\
& =\frac{\alpha^{2}}{2} E\{\tau\}-(1-2 \gamma) \lambda_{0}=0,
\end{aligned}
$$

that is,

$$
\begin{align*}
E\{\tau\} & =E\left\{\tau \mid H_{0}\right\}=E\left\{\tau \mid H_{1}\right\} \\
& =\frac{2}{\alpha^{2}}(1-2 \gamma) \log \left(\frac{1-\gamma}{\gamma}\right) . \tag{2.8}
\end{align*}
$$

Example 2.2. Let $\Delta>0$ be a suitably chosen small interval and let us put

$$
\begin{aligned}
\phi_{j}(s) & =1 & & \text { for }(j-1) \Delta \leqq s<j \Delta, j=1,2, \cdots, \\
& =0 & & \text { otherwise } .
\end{aligned}
$$

Let us asssume that $\psi(s)$ is a pulsed signal and is approximately expressed by

$$
\phi(s)=\sum_{j=1}^{\infty} h \cdot \varepsilon_{j} \cdot \phi_{j}(s), \quad 0 \leqq s<\infty,
$$

where $h>0$ is a given constant and $\varepsilon_{j}=0$ or $1, j=1,2,3, \cdots$.
We also assume that a relative frequency of the occurrence of pulses $\left(\varepsilon_{1}+\varepsilon_{2}+\right.$ $\left.\cdots+\varepsilon_{n}\right) / n$ is close to a constant $a,(0<a \leqq 1)$, except for the first several n.

Then, we have approximately

$$
\begin{align*}
& V(t) \doteqdot \alpha^{2} a t, \quad \text { and } \\
& y(t)=h \sum_{j=1}^{n} \varepsilon_{j} z_{j}+h \varepsilon_{n+1}[W(t)-W(n \Delta)], \tag{2.9}
\end{align*}
$$

where $z_{j}=W(j \Delta)-W((j-1) \Delta)$ and n is the largest integer not greater than t / Δ.
It is clear that $\{y(t), 0 \leqq t<\infty\}$ is a Gaussian process with the mean value zero and its covariance function $R(s, t)$ is given approximately by

$$
R(s, t) \doteqdot a h^{2} \min (s, t)
$$

Hence, this detection problem of the pulsed signal $\psi(s)$ in the white noise is nearly equivalent to the problem to detect a constant signal $\phi_{0}(s) \equiv h \cdot \sqrt{a}$ in the white noise as shown in Example 2.1.

Thus, we have the A.S.N. which are given approximately by

$$
E\left\{\tau \mid H_{0}\right\}=E\left\{\tau \mid H_{1}\right\} \doteqdot \frac{2(1-2 \gamma)}{a h^{2}} \cdot \log \left(\frac{1-\gamma}{\gamma}\right) .
$$

§ 3. Detection of a constant signal in a non-white Gaussian noise.

Similary in $\S 2$, let $\left\{W(s), F_{s}, 0 \leqq s<\infty\right\}$ be the Wiener process.
Let $\{\xi(s), 0 \leqq s<\infty\}$ be a Gaussian noise process defined by

$$
\begin{equation*}
\xi(t)=\int_{0}^{t} e^{-\beta(t-u)} d W(u), \quad 0 \leqq t<\infty, \cdots \tag{3.1}
\end{equation*}
$$

where $\beta \geqq 0$ is a non-negative constant.
We shall consider the following detection problem;

$$
\begin{array}{ll}
H_{0}: & x(t)=\xi(t) \\
H_{1}: & x(t)=\alpha t+\xi(t) \tag{3.2}
\end{array}
$$

where $\alpha>0$, is a constant signal to be detected.
Let $P_{i t}, i=0,1$, be the distribution of the observation $\{x(s), 0 \leqq s \leqq t\}$ under H_{i}, $i=0,1$, respectively.

Then, the detection problem (3.2) is nonsingular and the logarithm of the likelihood ratio of $P_{1 t}$ with respect to $P_{0 t}$ is given by

$$
\begin{align*}
L(x ; t)= & \log \frac{d P_{1 t}}{d P_{0 t}}(x) \\
= & L_{0}(x ; t)+\frac{\beta}{2} \cdot\left\{2 m(t) x(t)-(m(t))^{2}\right\} \\
& +\frac{\beta^{2}}{2}\left\{2 \int_{0}^{t} m(s) x(s) d s-\int_{0}^{t}(m(s))^{2} d s\right\}, \tag{3.3}
\end{align*}
$$

where $m(t)=\alpha t$, and

$$
\begin{equation*}
L_{0}(x ; t)=\alpha x(t)-\frac{\alpha^{2}}{2} t . \tag{3.4}
\end{equation*}
$$

Suppose that we adopt $L_{0}(x ; t)$ as a statistic for the problem (3.2) instead of the \log-likelihood ratio $L(x ; t)$.
$L_{0}(x ; t)$ is actually not optimal for the problem (3.2) (See [3]) but it has several sub-optimal properties because it become optimal when $\beta=0$, that is, the noise $\xi(t)$ were white, and $L_{0}(x ; t)$ does not contain the parameter β which is intrinsic in the noise.

We set error probabilities to the equal to the prescribed value γ, that is,

$$
\begin{equation*}
P\left(\text { to } \text { accept } H_{1} \mid H_{0}\right)=P\left(\text { to accept } H_{0} \mid H_{1}\right)=\gamma \text {, } \tag{3.5}
\end{equation*}
$$

and consider only such decision rules that (3.5) holds.
We define a stopping τ^{*} by

$$
\begin{equation*}
\tau^{*}=\inf \left\{t>0 ; L_{0}(x ; t) \leqq-\lambda_{0} \text { or } L_{0}(x ; t) \geqq \lambda_{1}\right\} \tag{3.6}
\end{equation*}
$$

where λ_{0}, λ_{1} are positive constants such that our following decision rule satisfies (3.5).

Our decision rule based on the observation $\{x(s), 0 \leqq s \leqq t\}$ will be formulated as follows; When $L_{0}\left(x ; \tau^{*}\right)=\lambda_{1}$, (or $-\lambda_{0}$), we stop sampling at $t=\tau^{*}$ and decide H_{1}, (or H_{0}) to be true, while as long as $-\lambda_{0}<L_{0}(x, s)<\lambda_{1}, 0 \leqq s \leqq t$, we continue sampling.

Since each distribution of $L_{0}(x ; t)$ under $H_{i}, i=0,1$, is symmetric to the other, the constants λ_{0} and λ_{1} must be equal under the condition (3.5).

Let us put

$$
V(t)=E\left\{\xi(t)^{2}\right\}=\left(1-e^{-2, s t}\right) / 2 \beta .
$$

Let us consider a continuous function $f(t), 0 \leqq t<\infty$, such that

$$
\begin{equation*}
f(0)=-\lambda^{*}<0, \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
f(t)=O\left(t^{\alpha}\right) \nearrow \infty \quad \text { as } t \rightarrow \infty, \tag{ii}
\end{equation*}
$$

for some positive constant $\alpha>0$.
We shall now define a stopping time τ as follows;

$$
\begin{equation*}
\tau=\inf \left\{t>0 ; \xi(t) \leqq f(t) \text { or } \xi(t) \geqq 2 \lambda^{*}+f(t)\right\} \tag{3.7}
\end{equation*}
$$

The stopping time τ^{*} defined by (3.6) is a special case of τ by (3.7). Indeed, τ^{*} corresponds to the case where $f(t)=\alpha t / 2-\lambda^{*}$ and $\lambda^{*}=\lambda_{0} / \alpha$.

For a large t, it is easily seen that

$$
\begin{aligned}
P(\tau \geqq t) & \leqq P\left(f(t) \leqq \xi(t) \leqq 2 \lambda^{*}+f(t)\right) \\
& \leqq P(\xi(t) \geqq f(t)) \\
& \leqq \frac{1}{2 \sqrt{ } \pi \beta} \times \frac{1}{|f(t)|} \times \exp \left\{-\beta \times[f(t)]^{2}\right\} .
\end{aligned}
$$

Thus, we have

Lemma 3.1. For all real $k \geqq 0$,

$$
E\left\{\tau^{k}\right\}<\infty
$$

Proof of lemma 3.1 is analogous to that of lemma 2.3.
Now, we obtain
THEOREM 3.1. Let τ be defined by (3.7). Then we have

$$
\begin{equation*}
E\{\xi(\tau)\}=0, \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
E\left\{\xi(\tau)^{2}\right\}=E\{V(\tau)\}, \quad \text { and } \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
\text { for each real } \lambda \text {, } \tag{iii}
\end{equation*}
$$

$$
\begin{equation*}
E\left\{\exp \left[\lambda \xi(\tau)-\frac{\lambda^{2}}{2} V(\tau)\right]\right\} \equiv 1 \tag{3.8}
\end{equation*}
$$

Proof. It is clear that τ is a stopping time with respect to $F_{t}, t \geqq 0$. The stochastic process $\{\xi(t), 0 \leqq t<\infty\}$ is the unique non-anticipated solution of a stochastic differential equation;

$$
\begin{equation*}
d \xi(t)=-\beta \xi(t) d t+d W(t), \tag{3.9}
\end{equation*}
$$

with $\xi(0)=0$. Hence, it enjoys the strong Markov property with respect to a. Brownian stopping time, for example, say, τ. (See [4]).

For any random variable g and any measurable set A, we will write

$$
E_{A}\{g\}=E\left\{I_{A} \cdot g\right\},
$$

where I_{A} is the indicator function of A.
Let \mathfrak{B}_{τ} be the σ-field generated by τ, that is, the totality of sets whose intersections with $[\tau>t]$ belong to F_{t} for every $t, 0 \leqq t<\infty$. Then, we have from the strong Markov property,

$$
\begin{aligned}
E_{[\tau \leq t]}\{\xi(t)\} & =E\left\{E\left\{I_{[\tau \leq t]} \cdot \xi(t) \mid \mathfrak{B}_{\tau}\right\}\right\} \\
& =E\left\{I_{[\tau \leq t]} \cdot E\{\xi(t) \mid \tau, \xi(\tau)\}\right\} \\
& =E_{[\tau \leq t]}\{\xi(\tau)\} .
\end{aligned}
$$

Since for $\tau>t, f(t)<\xi(t)<2 \lambda^{*}+f(t)$, we have

$$
\begin{aligned}
\left|E_{[\tau>t]}\{\xi(t)\}\right| & \leqq\left[2 \lambda^{*}+f(t)\right] \cdot P(\tau>t) \\
& \leqq \frac{1}{2 \sqrt{\pi \beta}} \times \frac{\left|2 \lambda^{*}+f(t)\right|}{|f(t)|} \times \exp \left\{-\beta|f(t)|^{2}\right\} \\
& \longrightarrow 0 \text { as } t \rightarrow \infty .
\end{aligned}
$$

Thus, it is seen that

$$
\begin{aligned}
E\{\xi(t)\} & =\lim _{t \rightarrow \infty} E_{[\tau \leq t]}\{\xi(\tau)\}+\lim _{t \rightarrow \infty} E_{[\tau>t]}\{\xi(t)\} \\
& =E\{\xi(\tau)\}=0 .
\end{aligned}
$$

We have shown that (i) holds.
Let us write

$$
U(t)=\xi(t)^{2}-V(t)
$$

Then, $U(t)$ is a functional of the Markov process $\{\xi(s), 0 \leqq s<\infty\}$ and hence we have

$$
\begin{aligned}
E_{[\tau \leq t]}\{U(t)\} & =E\left\{E\left\{I_{[\tau \leq t]} \cdot U(t) \mid \mathfrak{B}_{\tau}\right\}\right\} \\
& =E\left\{I_{[\tau \geqq t]} \cdot E\{U(t) \mid \tau, \xi(\tau)\}\right\} \\
& =E_{[\tau \leq t]}\{U(\tau)\}=E_{[\tau \leq t]}\left\{\xi(\tau)^{2}-V(\tau)\right\} .
\end{aligned}
$$

Since, for $\tau>t,|\xi(t)| \leqq 2 \lambda^{*}+f(t)$, it follows that

$$
\begin{aligned}
\left|E_{[\tau>t]}\{U(t)\}\right| \leqq & {\left[V(t)+\left(2 \lambda^{*}+f(t)\right)^{2}\right] \cdot P(\tau>t) } \\
& \leqq-\frac{1}{2 \sqrt{ } \pi \beta} \frac{\left[V(t)+\left(2 \lambda^{*}+f(t)\right)^{2}\right]}{|f(t)|} \cdot e^{-\left.|\beta| f(t)\right|^{2}} \\
& \longrightarrow 0 \quad \text { as } t \rightarrow \infty .
\end{aligned}
$$

'Thus, we have

$$
\begin{aligned}
E\{U(t)\} & =\lim _{t \rightarrow \infty} E_{[\tau \leqslant t]}\{U(\tau)\}+\lim _{t \rightarrow \infty} E_{[\tau>t]}\{U(t)\} \\
& =E\left\{\xi(\tau)^{2}-V(\tau)\right\}=0
\end{aligned}
$$

We have shown that $E\left\{\xi(\tau)^{2}\right\}=E\{V(\tau)\}$.
Let us put for each real λ,

$$
Z(t, \lambda)=\exp \left[\lambda \xi(t)-\begin{array}{c}
\lambda^{2} \\
2
\end{array}-V(t)\right], \quad 0 \leqq t<\infty
$$

Then, it is clear that $Z(t, \lambda)$ is F_{t}-measurable and $E\{Z(t, \lambda)\} \equiv 1$.
Thus, we have

$$
\begin{aligned}
E_{[\tau \leqq t]}\{Z(t, \lambda)\} & =E\left\{E\left\{I_{[\tau \leqq t]} Z(t, \lambda) \mid \mathfrak{B}_{\tau}\right\}\right\} \\
& =E\left\{I_{[\tau \leqq t]} E\{Z(t, \lambda \mid \tau, \xi(\tau)\}\}\right. \\
& =E_{[\tau \leqq t]}\{Z(\tau, \lambda)\}
\end{aligned}
$$

Now, we shall evaluate $E_{[r>t]}\left\{\exp \left[\lambda \xi(t)-\begin{array}{c}\lambda^{2} \\ 2\end{array} V(t)\right]\right\}$.
Since, for $\tau>t, f(t)<\xi(t)<2 \lambda^{*}+f(t)$, we have for each non-negative real λ,

$$
\left.\begin{array}{rl}
E_{[\tau>t]}\{Z(t, \lambda)\} \leqq & \exp \left\{\lambda\left[2 \lambda^{*}+f(t)\right]-\lambda^{2}\right. \\
2
\end{array} V(t)\right\} \cdot P(\tau>t), \quad \begin{aligned}
& 2|f(t)| \sqrt{ } \pi \beta^{2} \\
& =\exp \left\{2 \lambda \lambda^{*}-\beta|f(t)|^{2}\left(1-\frac{\lambda}{\beta f(t)}\right)\right\} \\
& \\
& \\
& \longrightarrow 0 \quad \text { as } t \rightarrow \infty
\end{aligned}
$$

and for each negative real λ,

$$
\begin{aligned}
E_{[\tau>t]}\{Z(t, \lambda)\} \leqq & \exp \left\{\lambda f(t)-\frac{\lambda^{2}}{2} V(t)\right\} \\
& \longrightarrow 0 \quad \text { as } t \rightarrow \infty
\end{aligned}
$$

Thus, it follows that for each real λ,

$$
\begin{aligned}
E\{Z(t, \lambda)\} & =\lim _{t \rightarrow \infty} E_{[\tau \leqslant t]}\{Z(\tau, \lambda)\}+\lim _{t \rightarrow \infty} E_{[\tau>t]}\{Z(t, \lambda)\} \\
& =E\{Z(\tau, \lambda\} \equiv 1 .
\end{aligned}
$$

This completes the proof of theorem 3.1.
Q. E. D.

The stopping time τ^{*} is the special case of τ in (3.7) and hence from theorem 3.1 it is seen that

$$
\begin{aligned}
& E\left\{\xi\left(\tau^{*}\right)\right\}=0, \\
& E\left\{\xi\left(\tau^{*}\right)^{2}\right\}=E\left\{V\left(\tau^{*}\right)\right\},
\end{aligned}
$$

and for each real λ,

$$
E\left\{\exp \left[\lambda \xi\left(\tau^{*}\right)-\frac{\lambda^{2}}{2} V\left(\tau^{*}\right)\right]\right\} \equiv 1
$$

Corollary.

$$
E\left\{\tau^{*} \mid H_{0}\right\}=E\left\{\tau^{*} \mid H_{1}\right\}=2 \lambda_{0}(1-2 \gamma) / \alpha^{2},
$$

where λ_{0} is such a constant that the error probabilities satisfy (3.5).
Proof. Let $E_{0}=\left\{\xi\left(\tau^{*}\right)=\frac{\alpha}{2} \tau^{*}-\frac{\lambda_{0}}{\alpha}\right\}$ and E_{1} be the complementary event of E_{0}.
Then, by noticing that τ^{*} is equal to τ when $f(t)=\frac{\alpha}{2} t-\lambda^{*}$ and $\lambda^{*}=\lambda_{0} / \alpha$. and also that $P\left(E_{1} \mid H_{0}\right)=\gamma$ and $P\left(E_{0} \mid H_{0}\right)=1-\gamma$, it follows from theorem 3.1 that

$$
\begin{aligned}
E\left\{\xi\left(\tau^{*}\right)\right\}= & \frac{\alpha}{2}\left[E\left\{\tau^{*} \mid E_{0}\right\} \cdot P\left(E_{0} \mid H_{0}\right)+E\left\{\tau^{*} \mid E_{1}\right\} \cdot P\left(E_{1} \mid H_{0}\right)\right] \\
& -\frac{\lambda_{0}}{\alpha} P\left(E_{0} \mid H_{0}\right)+\frac{\lambda_{0}}{\alpha} P\left(E_{1} \mid H_{0}\right) \\
= & \frac{\alpha}{2} E\left\{\tau^{*} \mid H_{0}\right\}-\frac{\lambda_{0}}{\alpha}(1-2 \gamma)=0 .
\end{aligned}
$$

Thus, we have proved corollary.
Q. E. D.

References

[1] Doob, J.L.: "Stochastic Processes," Wiley, N.Y., 1953.
[2] Dvoretzky, A., J. Kiefer and J. Wolfowitz: Sequeutial decision problems for processes with coutiuuous time parameter, testing hypothesis, Ann. Math. Statist., 24 (1953), 254-264.
[3] Grenander, U.: Stochastic processes and statistical inference, Arkiv for Mathematik, 1 (1950), 195-277.
[4] McKean, Jr. H.P.: "Stochastic integrals," Academic Pr. 1969.
[5] Parzen, E.: Probability density functionals and reproducing kernel Hilbert spaces, Proc. Symp. Time Series Analysis, (1963), 155-169.
[6] Shepp, L.A.: Radon-Nikodym derivatives of Gaussian measures, Ann. Math. Statist., 37 (1966), 321-254.
[7] Shepp, L.A.: A first passage problem for the Wiener process, Ann. Math. Statist., 38 (1967), 1912-1914.
[8] Shepp, L.A.: Explicit solutions to some problems of optimal stoppings, Ann. Math. Statist., 40 (1969).

[^0]: * Faculty of Engineering Science, Osaka University, Toyonaka, Osaka.

