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1. Introduction.

In the paper [3], Samuel considered a classification problem of two populations
which is sequential in the following sense. A group of n individuals is known to
belong to either z, or =,. The individuals of the group arrive sequentially for in-
spection and classification, and the classification of the i-th individual has to be
made immediately after he has been inspected, i=1, 2, ---, n. In the paper [3],
Samuel presented a complete class of decision rules.

In this paper, an approach to the problem from the stand point of game theory
under the same formulation after generalising the problem to the classification to
m populations. In §3, we can prove the existence of optimal solution and in §4,
we present Bayes rules and essentially complete class. In §5, we prove that the
players, the nature and the statistician, have optimal solution, and thus the games
have the values.

2. Formulation.

The m populations =y, @y, -+, 7, with the known distribution functions P,, P,,
-«, P, are given, and a group of 7 individuals is known to belong to one of =,
j=1,2,---, m. The nindividuals arrive sequentially for inspection and classification,

and the classification of the i-th individuals has to be made immediately after he
has been observed, i=1, 2, -+, n. ;
Assume the following loss for classifying an individual:
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where a;; (1) are given positive numbers.

Let X,, X,, -+, X, be the independent random variables corresponding to » in-
dividuals and its observed value be x, x,, ---, x,. Let for each 1, i=1, 2, ,n, X
has the same distribution P, corresponding to 7y, 0 =1, 2, ---, m where 8 is unknown.
We may without loss of generality assume that P, 6=1, 2, -, m, are probability
measure corresponding to density function f(x, 6), §=1, 2, ---, m with respect to a
specified measure space (X, 9, y), where X is a space of outcomes x, A is a o-field
of subsets of ¥ and assume, g is o-finite and ¥ is a Euclidean space or A is with
countable number of generators. Thus

PAA)= [ fix, 0)dp for all A=A

Let x;=(x,, -+, x;), i=1, 2, ---, n, then any (randomized) compound decision rule
for the above problem can be written as @, = (4,(x)), @.(x,), -+, Pn(x,)) With

i(x)= (¢§D(xi), ) ¢§7")(xi)) ’ 1=1,2,-,n.

Where 0= ¢P(x)<1, j=1,2, -, mand 3 ¢P(x))=1, then ¢ (x,) is the probability
j=1
with which one classifies the i-th individual to 7; when X;=x; is observed, and
being measurable functions in the i-th product space. Set
f(xiia):ﬁf('xﬁe)! i=l,2,---,n;€9———1,2, e, M
=1
Let
0= () = (BPx, -+, HPEN 0= PRI =1,
j=12, -, m, and zm) PP(x) =1 except p'-null sets},
i=1
i=1,2 -,n.

Let R(f, @,) denote the risk defined as average expected loss, incurred by using @,
when the group actually belongs to 7y, 6 =1, 2, ---, m. Then risk incur red dy i-th
inspection and classfication are

RO, $0=F an,f $0Cx0f x, O)dpe

= £ a0, 90 (x0fx, O)dp @2)

where N= {x,; f‘, ?P(x;)+ 1} and p(N)=0 so that, compound risk is define by
J=1

m

RO, 0,)=-> 3 R0, ). @3

i=1

Let p=(py, Doy -+, D), s =0, i=1,2, .-+, m and %piz 1 be a prior probability dis-
i=1

tribution on (z,, m,, -+, 7,), then Bayes risks for p, in each i-th inspection, are

R(, $9= 3 oR©, 6) @4)



A sequential classification into one of several populations 21

and compound Bayes risk is

R(p, @)= poRO, 0= | T R(p, 6. 25)

Note: If ¢,=@® and N={x;; > PP (x)# 1} # ¢, (' (N)=0) we defined ¢, as the
j=1
following if x; & N, ¢P(x,)=¢"(x;) for all j, if x,= N, we define arbitrary such
that 0= ¢@(x)=<1 for all j and 3} ¢@(x) =1, then, obviously, R(d, ¢,)=R(0, $,) for
i=1
all 6, i.e. ¢, is as good as ¢;, so that, we can always find rule such that 0= ¢?(x;)
<1,j=1,2 -, m and 3 ¢P(x)=1 for all x,.
i=1
In our problem, for each i, i=1, 2, ---, n, let ¢’ =R, ¢,),0=1, 2, ---, m, ¢p,=P®
and let S® be a set of all points of a®=(a®, -+, a®). The payoff function is de-
fine by
M@, a)=a§’, 0=1,2 --,m.
Then (I, S, M) is an S game, as defined page 47 of [1], in i-th inspection in our
consideration.
Let ag = R(a, @n): 7]7: 2 ag’>, - 1: 2’ e, m for a(D:(a{i}! Tty a;rLL)) & S(i)r i= 1’ 27 )
=1
n. Let S be a set of all points a=(a,, a,, -+, a,) and the payoff function defined
by

MO, d=a= ' S, =12, m.
=1
“Then (I, S, M) is also an S game in the compounded decision problem in our con-

sidiration.
Let E={p=(p;, =+, Pm); p:=0,1=1,2,---, m and gpizl} be a set of all prior

. . . . m
distributions over I, i.e. the mixed extension of /,. We known M(p, a®®) =3 pya§’
6=1

for pc E, a? <= S® and M(p, a)= Lﬁ)lpgag: i ﬁ‘, M(p, a®®) for pe E, a< S.
= i1

3. Existence of optimal solution.

In the following we use the usually topology in m space, and thus the set E is
closed, bounded convex subset of m-space.

LEMMA 3.1. For each i, i=1,2,---,n, S® is a convex set and S is also a convex
set.

ProOOF. Let a®=(af’, ---, aP), b =(b®, ---, bP) = S where af’ = R0, ¢,), by =
R, ¢)), ¢4 ;€ @P, for any 0<a <1, aa®+1—a)h® =(aa®?+1A—a)b{, ---, aa® +
(d—a)by), then by (2.2)

aop+(1—a)bi = 3 ap; [ [ad? (e)+HUL—)pi7(e)] fCxi, Ot

and 0= adf(x)+(1—a)d?(x;)=1 for all j and let

Ni= L BP0 £ 1, No=(x S¢0G)# 1),
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N={xi; 33 [ag?(e)+(L-a)g@ ()] # 1 ,

since p'(N)=0, k=1, 2, and pi(N)=0, so that aa®+-(1—a)b® <SP, S® is convex
set. Let
a:(aly a,, ""am)y b:(bly b2y "‘,bm)ES,

n

where a,;:%é}a,(f’, b(,_ 6P, af = R(G, ¢, b = R, $), s, e = OP, since, for

=1

o,

any 0 a =<1, aa+({1— a)bg_nié) LaaP+(1—a)by] and from above, we can get S
is a convex set.

LEMMA 3.2. For each i, 1=1,2, -, n, S® is a closed and S is also closed.
PROOF. For each 1,i=1,2, -, n, let s =@, -+, b). Where b = R(0, ¢,
0=1,2,.-,m, k=1,2, --- be any one sequence of points in S®, where ¢, = (@, -,

Py e @®, k=1,2,--- we know, by [5], p. 354, weak compactness theorem, for
sequence {¢f’} there exists a subsequence {¢{} and 0= ¢ <1 such that

Jowa s, Odpt — 9P fx, O)dp

for all §=1,2, ---, m and for sequence {¢{} there exists a subsequence {¢3,} and

0<¢® <1 such that
[ o) [, Odpt —> [ P2 flx,, )

for all =1, 2, ---, m and so on, finally, for sequence {¢{,.,_,,} there exists a sub-
sequence {7} and 0= ™ <1 such that

[ im0 fxi, Ot —> [ P fGe, O)dpe
for all 6=1, 2, ---, m also, in the proof of the weak Compactness theorem, we know

lim f bt = [ PO Ce)dp

k1 m—o
for all AeN* and j=1,2, -
Since, for each k..., E(p,m m(xz)-—l a.s. so thatj dyt= J Z)gbmz wx)dpt for

all A% and all k.., thereforef dyt :L 3 PP(x)dyt for all A=A and we also
j=1
have g)gbé”(xi):l a.s. so that ¢,=(@®, -+, o™ e @® and lim bam m—R(ﬂ &i)
=

k1gm—
for =1, 2, ---, m therefore lim s{,..,S®, which establishes the closedness of
S, izmee
Let sg=C(biw, -+, bmr), k=1, 2, --- be any one sequence of points in S where by,

~'~Eb‘o’£, bR =R, Pu), 0=1,2, -, m, $u= (@R, -, o) & OO
From above, we know, for sequence {b§}, there exists subsequence {b§,} and
=P, -+, p™) € @ such that lim bR, = R(0, ¢,) for all 6=1,2, -+, m and for

kq—oo

sequence {b§,}, there exists subsequence {bf,,} and ¢, = (P, ---, ™) € O® such
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that klim o = R0, ) for all 6=1,2,--,m and so on, finally, for sequence
1270

{06, cm-1} there exists subsequence {b§,..,} and ¢, = (D, -, o) € @™ such that

lim bfR,., =R, ¢n) for all 6=1,2, ---, m, therefore lim b,,., =R, ¢;) for
2 m—R mTe

Fy kr2-

all =1,2, -, m, i=1,2,, mand lm bppen = 3 RO, ) for all 6=1,2, -,
=

k2 -m—oo

m so that lim $4,., €S, and finally S is a closed set.
K12 m—o

For lemma 3.1, lemma 3.2. and the theorem 2.4.2 of page 49. [1], we have the
following theorem.

THEOREM 3.1. For our problem, in each i-th inspection i.e. for the S game (I,
S® M), i=1,2, -, n, we have a value and player 1 (nature) has a good strategy and
also, player II (statistician) has a good strategy in S®. Also, in compound decision
problem, i.e. for the S game (I, S, M), we have a value and player II has a good
strategy in S and player I has a good strategy.

Let, for each i=1, 2, ---, n, the value of the S game (I,,, S®, M) be v; and the
value of the S game (I,,, S, M) is v.

Let, for each i=1, 2, -+, n, a good strategy for player I be p® =(p{®, -, pc E
and a good strategy for player II be a®®=(a{®, ---, a) € S, where af’ = R(4, ¢,),
6=1,2,---,m. Let, in compound decision problem, a good strategy for player I be
qg=(qy -, qn) € E and a good strategy for player II be b=(b,, ---, bp)E S where

bg:%ébéﬂ and bgL): R(ey ¢§0))r l:17 2’ e, N, SO that vi:M(Z)(i), a(i))) i= 1, 27 e,

and v=M(q, b). Since, for each i, M(p, a®) < v, < M(p®, ¢V) for all pe E, ¢ e SO,
and M(p, b)<v=<=M(q, c) for all pc E, ce S. Then M(q, a®)<v; fori=1,2, -, n so
that, we have

v

A

v;.

1o

1
n =

k2

Let @={0,=(d:(x)), -, u(xn); Gilx) € PP, i=1,2, -, n}.

From [1], p. 11, definition 1.4.1. and definition 1.4.2. we know, for each i, i=1,
2, .-+, n, the game (I, ?°, R) and the S game (I, S®, M) is equivalent. Also the
game (I, @, R) and the S game (I, S, M) is equivalent.

By [1], p. 16, theorem 1.6.2. and p. 28, theorem 1.8.2., the values of two equi-
valent games are equal. So that, from theorem 3.1, for each i, the game (I,, @,
R) has a value same as the S game (I, S®, M), also, the game (I,,, @, R) has a
value same as the S game (I, S, M).

4. Bayes decision rule and essentially complete class.

We consider the games (I, @°, R), i=1,2, -+, n and (I, @, R).

THEOREM 4.1. Let p=(py, by, -+, ) € E. If R(p, ¢)= inf R(p, ¢.) for each
B0

i, 1=1,2, -, n, then @Y = (¢, -+, ) is a compound Bayes rule with respect to b,
L.e.

R(p, @)= inf R(p, @,).
On=0

ProOOF. By (2'5) and assumption
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R(p, O9)=-1 3 R(p, p™) = 1 S R(p, 6= R(p, B

i=1 =1
for all @,=(¢,, ---, ¢,) € D, so that R(p, cD;‘”):@iquR(p, @.,). The theorem is thus
proved. *

For each 7, i=1, 2, ---, n, and each p< E we can find a Bayes rule: as follows.
Since

R(p, $= 33 0oR(6, $)

3 {03 poas, fx,, 01 Geddpet,
Jj=1 =1
let

Ax)= 3 poan, fx, 0, j=1,2, -, m.
Define the decision rule by,

“n 0= o8(x)=1 for k=1,2, .-, m and Blx)=1

k=1(xg)

(

when
I(x)={k; Ax;)= min A;(x))}.
1Sj=m
Let
Din(x) = (B3 (x), -+, PP (xy)) .

As we have

R(p’ ¢1)—"R(p, ¢ip)

I

5 3 [ 04,00~ A )10 (e (e dgs

j=1 k=1
>0 for all ¢, € @,

therefore the decision rule defined by (4.1) is Bayes with respect to p, i.e. R(p, ¢;p)

:¢ in;(_)R(p, ¢;). We thus have the following
is0¢

THEOREM 4.2. For each i, i=1, 2, -+, n, decision rule ¢,(x;) = (d{P(x), -+, d{™(x;))
defined by (4.1) is a Bayes decision rule with respect to p and @, =¢,, -, @,) is a
compound Bayes decision rule with respect to p.

We also have the following.

THEOREM 4.3. The essentially complete class of our compound decision problem is
give by

C={0%; p=(py, -, ) EE}
where .
DL =(P1(x), -+, Bapltn))
and
¢ip(xi):(¢%:) (x), -, 52"(&))
is defined by (4.1).
PrROOF. For each p= E and @, = ®—C there exist @? = C such that

R(py @;’Ip)) é R(p; @n) .
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5. Optimal solution.

In the following, we consider the optimal solution for the game (I, @, M).
METHOD 1. Since for each @,=(d,(x), -, d.(x, ) =D, we have R(p, D,)
:‘,%*ﬁ? ﬁPoR(ﬁ, $,) and |R(6, ¢i)|§j§ as;. So that, by [1], p. 40, theorem 2.2.7.
=1 §=1 =1
min:wa(p, @) is continuous function of p(e E). Since E is closed and bounded, C is

a essentially complete, therefore there exists ¢ € E such that
sup inf R(p, @,)= inf R(q, @.)
PEE Op<=0d On=0

and there exists @2 = C corresponding to ¢ such that

inf R(q, 0,)=R(g, 9%).

By section 3, we know the game (/,, @, M) has a value v. So that, we get the fol-
lowing theorem.
THEOREM 5.1. Thlere exists g E such that

inf R(q, @,)=sup inf R(p, D,)
Opso PEE Pp<=0

and let @2 =C be corresponding to ¢. Then v=R(q, @%) is a value of the game
I, @, R) and ¢ is a good strategy for nature and @¢ is a good strategy for statis-
tician.
METHOD 2. For each p € E there exists @2 < C such that
R(p, %)= inf R(p, @)
Onco

so that,
sup inf R(p, @,)=sup R(p, OL)
P=E On=0 p=E

we can easily prove, R(p, @%) is a continuous function of p, so that, there exists
g < E such that

sup R(p, @5y = R(q, 3).

pEE

Therefore, we can get the following theorem.
THEOREM b5.2. There exists ¢ = E such that

sup R(p, @2) = R(q, D%)
pP=E

where @2 < C is corresponding to p. Then v=R(qg, ®L) is a value of the game (I, D,
R) and q is a good strategy for nature and D% is a good strategy for statistician.

ExXAMPLE. Now, we given one artificial example for case m=2, n=2 and a¢,;,=
4, =0, a,=a,,=a>0. Let

fx, 6) = (»‘;A)I(ng Y, x=01,0=12.

For each p=(p,, p,) € E, by theorem 4.3, we can get a optimal rule as the fol-
lowing



26 J.-S. Yao

: 1 1
P =1 if x=—5—— log ij i
Plyy=1 if x> %—% log, ,%ﬁ ,
Let
B2(x) = (${(xy), P(xD),
OP(xy, x)=1 if x;+x,=1—- % log, by ,
P
Pxy, 2)=1 if x;+x,>1— 1 log, 22,
2 2
Let

BE(xy, X5) = (PP(xy, x5), PP (xy %)) .
Then @2 =(¢(x,), ¢?(x,, x,)) € C and

R(p, ®7) =2 ap, I: ( )r1< >1 z3

- ( Lz yn

z)+29>1— - loge pz

+£§2_[ . ; " pz( )11( >1 z1
n m( ).2:1-1-12( )2 z1- .rz

x1+x2§1——7~ logy

=gl 3 23 e

1 D2 ~ 1 D2
> —o logz - T1+xp>1— - logg =5
1> 082 1 11— logy 2=

+3p, X 2udp, 3 2]

115*1— logz—pl« zl+z‘2§1—>§< logo %’l—
After some calculations, we can get sup R(p, @P)—R(q, Q)‘l)~ where q ( o

) cE, 0= (¢q(x1)y 0§ (x5, 1)) and ¢§1)(x1) =1lif ;=< _—, oP(x)=1 if x,> "2_1 62(xy)
:(¢§l>(x1), OP(xy), PP (xy, x) =1 if 1+, =1, ¢P(xy, ) =1 if 1 +2,>1,

OLR(xy, %) = (P(xy, %), PP(%3, X)) -

By theorem 5.2., v= R(q, @g):%— is a value for our game (/,, @, R) and ¢=

(%, %) is a good strategy for nature, @¢ is a good strategy for statistician. The
following decision rules is also good strategies for statistician.
@ FPG)=1if 1< $Pr)=1 if 1,2 5

{2(x) = (91°(xy), #P(x1) .
OP(xy, %)=1 if x,+x, < 1, ¢P(xy, x)=11if x;+x =1
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¢§q)(x1, XZ) = (¢§I)(xl7 12), ¢§2)(x11 xz)) .
D7 =(${0(xy), $(xy, %)) and v=R(q, P})= %

) $P0)=1 if 1<y =1 if 1,25

Pi0(xy) = (P1°(xp), G7(x)) .
6P (xy, x) =1 if x,+x,=1, ¢P(x;, 1) =1 if x,+x,> 1,
§0(x, x9) = (95°(xy, %), G (x1, X)) -
a

O = (), $9(x, 1) and  v=R(g B= 5.
© $P=1if =3, $P=1if 1> 5,

P10(x) = ($1°(x), $P(x,).
P(xy, X)) =1 if 241, <1, 6Py, 1) =1 if x,+2x,21,
$i2(xy, x) = (95°(x1, Xp), (%1, 1)) -
D =(0(xy), $P(x,, 1)) and v=R(g, =5 .
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