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   § 1. Introduction 

   In his recent paper [1], Kitagawa has suggested an urgent need for building 
up a new mathematical model which should reflect some essential features of bio-

mathematics. As the first step consideration to reply to this need , we have intro-
duced in our previous paper Kitagawa and Yamaguchi [2] several notions such as 

cell space, local mapping transformation satisfying the principle of local majority, 

stable configurations, inhibitation state ch and etc. The cell space defined there is a 

finite, two-demensional rectangular array of cell automata, where each cell is assumed 

to be an identical square cell. These notions in such a cell space formulation have 

been generalized and deeply discussed in Kitagawa [4]. The author of the present 

paper introduced in her paper Yamaguchi [3] the stability index for stable con-
figurations defined in our paper [2]. 

   The purpose of this paper is to investigate several characteristic structural 

properties of stable configurations in a cell space consisting of triangle unit cells 
which has been introduced by Kitagawa [4]. We shall call such a cell space a 
triangular cell space. The basic definitions and notations introduced in the previous 

papers [2] and [4] will be used here also. 
   In SECTION 2 we shall give some basic definitions in our triangular cell space 

such as triangular basic cell space and local majority transformation in that space. 

   In SECTION 3 we are concerned with construction of stable configurations under 

our local majority transformation in our triangular cell space. For this purpose we 

shall introduce a notion of determinative cell subspace. This notion is shown to be 

crucial for our construction of any stable configuration as well as for our decision 

whether any given configuration in a triangular cell space is stable or not. We 
have incidentally reached this notion through our proof of our THEOREM 1 which 

asserts that the number of all the possible stable configurations in a 4(n) cell space 

is equal to 23(71-1'. 

   * Research Institute of the Fundamental Information Science , Faculty of Science, Kyushu 
University, Fukuoka. 
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   In SECTION 4 we shall give several examples in order to illustrate our main 
result obrained in SECTION 3. These examples yields us a preparatory consideration 
to the proof of THEOREM 2 to be given in SECTION 5. 

   The purpose of SECTION 5 is to discuss a structural feature of stable configura-
tions in a zr) cell space . THEOREM 2 amounts to assert that any stable configura-
tion in a 4(71) cell space can be decomposed into a superposition of certain elemen-

tary stable configurations each of which corresponds to their respective simple 

configuration assigned in a certain common determinative subspace. 

   It is also possible to define and discuss a stability index of stable configuration 

in our triangular cell space quite similarly as in our previous paper [3]. 

   Fourthermore it is interesting to consider stochastic transition phenomena of 

configurations in our triangular cell space by introducing a certain probability 

scheme of firing points, as we have done in our joint paper [2].

   § 2. Definitions 

   Kitagawa [4] generalized the notion of stable configurations to cell space whose 

unit cells are either triangles or hexagons. In the present paper we shall confine 

ourselves with cell space consisting of triangular unit cells, which is called a trian-

gular cell space. In what follows let us consider a triangular cell space which has 
the form of large regular triangle in itself with n cells in each boundary side. We 

shall denote it by LP' (triangular) cell space. A notation for illustrating the loca-

tion of each unit triangular cell in such a d(n) cell space is indispensable for our 

consideration. A set of the locations of 2(n — 0+1 cells in the i-th row from the 

bottom in 21(n) cell space is represented by the vector 

<2.1)((i, 1), (i, 2), (i, 3), (i, 2(n—i)-)--1)) 

for i= 1, 2, ••• , n. We shall call this a cell coordination in dm cell space. 

   EXAMPLE 2.1. A cell coordination in 4") is shown in the following Figure 2.1. 

   In our previous paper [2] dealing with an mxn square cell space, a basic square

         (4,1) 

         (3,2) 

      (3,1) (3,3) 

      (2,2) (2,4) 

   (2,1) (2,3) (2,5) 

   (1,2) (1,4) (1,6) 

(1,1) (1,3) (1,5) (1,7) 

Fig. 2.1. Cell coordination in 4(4),
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cell space was defined as a  2x  2 cell space. Now in our present 4(n) triangular cell 

space, we shall define every 4(2) cell space as a basic cell space . In what follows 
we shall call it a S" basic (cell) space. A few examples in ZI(" are shown in Figure 

2.2 (a), (b), (c) and (d). Generally speaking there are two kinds of 4(2) basic cell

                                             (2,2) (2,4) 

 (2,1)(3,1)(4,1)(2,3) 

 (1,2)(2,2)(3,2)(1,4) 

(1,1) (1,3) (2,1) (2,3) (3,1) (3 ,3) 

             Fig. 2.2. Examples of 4(2) basic space in 4(4).

spaces with reference to our consideration in the 4(n) triangular cell space as shown 
in Figure 2.3, (a) and (b). However in the following discussions in this paper there 
is seldom any need for distingushing one of these two 4(2) basic cell spaces with 
each other, and we shall denote both of them simply by 42 .

         ( j) 

  (41,j)(i+1,j-1) 

 (i,j+l)(i, j) 

(i,j) (i,j+2) 

Fig. 2.3, (a). 49)).Fig. 2.3, (b). z1p3).

   Now regarding the possible states of each cell in 4° cell space we shall assume 
that there are exactly two alternatives, which are denoted by 1 and 0 respectively. 
An assignment of each state xi; to each (i, j) cell in Zi(n) cell space is called a con-
figuration in the 4(m) cell space, and will be denoted by Sn)(X). Specially when all 
xi; in zrn)(X) are equal to 1, we shall denote the configuration by I'n'. Similary when 
all xi; in ZI(n)(X) are equal to 0, we shall denote by 0(n). 

   Now let us consider 4(2)(X) and 4(2)(y) which are defined over the same 4(2) 
basic space. Now let us define a local majority transformation (LMT) in our 4(n) 
cell space as we have done for an mxn square cell space in our previous paper [2] . 

   DEFINITION 2.1. A local mapping transformation defined for a 4(2) basic space 
LT : 4(2)(X).— 4(2)(Y) is said to satisfy the principle of local majority and will be simply 
called a local majority transformation (LMT), if 

                                 I(2) if Sii(X)> 2 

(2.2)LMT : 4P; (X) --> 4)(Y) = 4,j(X) if SQ(X)= 2 

                                 0') if Sif(X)< 2 , 
where we have put, for 34)(X),
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(2.3) x2i+X2,j+1+Xi,j+2+x2+1pi 

and, for 4)(X) 

(2.4)So(X)E-- Xij+Xi+1,j-2+Xi+1,j-1+X2+1,1 • 

   Now let us introduce 
   DEFINITION 2.2. A configuration Sn)(X) in a d(n) cell space is said to be stable if 

it is invariant under any application of LMT with reference to any 4(2) basic cell space 
located in the d(n) cell space. 

   § 3. Construction of stable configurations 

   Before we shall give a systematic proceduce for constructing stable configura-
tions, let us solve the problem how many stable configurations are possible in a 
d(n) cell space. By induction we observe the following fundamental 

   THEOREM 1. The number of all the possible stable configurations under LMT in 
a Sn) cell space is 23(n-" for n 2. 

   PROOF. The proof is given by induction regarding n. For n = 2, the cell space 
4(" is equivalent to a basic cell space consisting of four triangle cells. In order 
that 4(" cell space is stable, the states of any three cells in dm can be arbitrarily 

given and then the state of one remaining cell has be be uniquely determined. 
Hence for n = 2, we have just 2' possible stable configurations, which shows the 
validity of the assertion to Theorem because 2' = 23(2-1). 

   Now let us assume that our assertion is valid for all n m. Let us construct 
a stable configuration in a 4(m+1) cell space by adding to a fixed configuration in 
4(m) cell space a configuration in the cell subspace defined as an assemble of cells 

(3.1){(1, 2m+1), (1, 2m), (2, 2m-1), (2, 2m-2),                  

• • • , (i, 2(m +1-i) + 1), (i, 2(m +1-i) , -

                 (m -1, 5), (m-1, 4), (m, 3), (m, 2), (m+1, 1)1 , 

according to our coordination introduced in SECTION 2. The situation is illustrated 
in Figure 3.1. 

   First of all it is noted that any stable configuration in 4'44) should be a stable 
configuration in 4(m'. We are now searching for all the possible stable configurations 

in 4'771+1) by adding the assemble states of (3.1) to each of different stable configura-
tions in the ZI(m) cell space whose total number is 23(m-1) according to our assumption 
of induction. Secondly the state of the cell (2, 2m-2) is uniquely determined by con-
sidering the 4") basic cell space consisting of the cells (1, 2m-2), (2, 2m-3), (2, 2m-4) 
and our new cell (2, 2m-2), because it should be stable. Similarly each state of all 
the cells (i, 2(m+1-i) (= 2, 3, ••• , m-1) is uniquely determined. Now let each one 
state of two cells (1, 2m) and (1, 2m+1) be arbitrarily chosen. Then all the states 
in (i, 2(m+1-i)±1) (i= 2, 3, ••• , m) are uniquely determined, and there are two cells 
whose states ars still undetermined, that is, the cells (m, 2) and (m+1, 1). By 
choosing arbitrarily a state of the cell (m+1, 1), for instance, the remaining state
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 (m+1,1) 

                          (m,2) 

                      (m,l) (m,3) 

                        (m-1,2) (m-),4) 

                   (m-1,)) (m-1,3) (m-1,5) 

      lir     AM A 
                (1,2)1,2(m-i) 1,2(m-itl) 

            (1;1) ( 1 ,3) 1,2(m-11-1) 1,2(m-ii-1)t1 

AWMAYAVAla.    Ilk 
     (2,2) (2,4)2,2m-4) 2,2m-3) 

                                  \ 
   (2,)) (2,3) (2,5)2,2m-3)\ 2,2m-I) 

   (1,2) (1,4) (1,6)(1,2m-2) (1,2m) 

(1,1) (1,3) (1,5) (1,7)(1,2m-11 (1,2m1-11 

  Fig. 3.1. An extension of J°' cell space into d(7714-1) cell space 
                by adding the subspace (3.1).

in the cell (m, 2) is now uniquely determined. Therefore we find there is just 23 

stable configurations in 4(m+1) cell space to each assigned stable configuration in 4(m) 
cell space. Consequently the number of all the possible stable configurations in 

4(771÷1) cell space is equal to 23(m-1)x 23 = 23((m+1)-1), which are all different with each 

other, completing our proof by induction. 

   Incidently the proof to THEOREM 1 has shown that any stable configuration in 

a Sn) cell space can be obtained in a uniquely way by assigning the states of suit-

ably chosen 3(n-1) triangular cells contained in the ZVI) cell space. In this connec-

tion it is crucial to introduce 

   DEFINITION 3.1. A set D consisting of 3(n -1) triangular cells in a 4(n) cell space 

is said to be determinative cell subspace in a LI(n) cell space if it satisfies the following 
two conditions: 

   (1°) To every configuration in the set D there corresponds one and only one stable 
configuration in the d(n) cell space whose restriction in the set D is coincident with the 

given configuration in the set D. 
   (2°) Any stable configuration in the 4(n) cell space is uniquely determined by its 

restriction in the set D. 
   There are many examples of determinative cell subspaces. We shall explain 

some of them in connection with boundary value problems in stable configurations. 
   EXAMPLE 3.1. Let us unsider the set Dr in a d(n) cell space defined by
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                  ((1,1),(1,2),(1,3),•••,(1,2n-2),(1,2n-1)) 

              = 

                     (2, 2), (3, 2), (4, 2), • •• , (n —1, 2) 

as shown with hatching in Figure 3.2. It can be readily observed that DP) is a 

determinative cell subspace.

  MA WA 
    A I WAA 

 A ' A 
 An         A A 'A 

AA.A AA
A 

  Fig. 3.2. IV) as a determinative subspace.

   EXAMPLE 3.2. In his recent contribution Kitagawa [4] discussed determinism 

and nondeterminism in a 4(n) cell space, (see Kitagawa [4] 4. 5. 3). He explained 

his idea with reference to an extension of stable configuration in 4(7) cell space into 

stable configuration in 4(10). His idea is applicable to an extension of stable configura-

tion in /1(n) cell space into stable configuration in 4(n+3'. We can explain his idea 

with reference to our coordinate system introduced in this paper, and we shall get 

a determinative cell subspace which is characteristic in our triangular cell space. 

   § 4. Examples of stable configuration in J(n) cell space with reference to con-
figurations in the determinative subspace DP' 

   Let us denote any configuration in the determinative subspace Dr by 

                                                 xiixi2x13 ••• x1
,2n-2X1,271- 1 

(4.1)IV)(X)=-  
                                                    X22X32X42 • • • Xn-1

,2 

The following examples are special cases of Dr(X). Since the set Dr is a deter-

minative subspace in 4(n) , there exists one and only stable configuration in the J(n) 

space whose restriction in the subspace DP) is coincident with DV(X)* 

   EXAMPLE 4.1. Let us consider the configuration Dr(X) in which all x's are 

equal to 0, namely 

                     (0 0 0 •• 0 0) (4.1)Do'(X)                                 0 0 0 ••• 0
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Then it is evident that the stable configuration determined by (4.1) is  Om, that is, 
the configuration in which all cells in the 4(n) cell space have the state 0. 

   EXAMPLE 4.2. Let us consider the configuration Dr(X) in which x„ = 1 and all 

other x's are equal to 0, namely 

                             1 0 0•••0 0\ 
(4.2)Dr(X)-= 

                                0 0 0 ••• 0 

                            Dr(1, 1), say . 

   The stable configuration {yi,} determined by (4.2) is given 

                        1 if (i, j) E Er(1, 1) 
(4.3)Yi; 

                        0 if(i,j)Er(1,1) , 

where the set of cells Eon)(1, 1) is defined by 

(4.4)Er (1, 1)= 1(i, 1) ; i= 1, 2, ••• , n1 . 

Let us denots by C(Er(1, 1)) this stable configuration. See the configuration 
C(ET)(1, 1)) in Figure 4.1, (a).

      eve 
     AY 

    AVMS& 
    eveveveve 

   AVAVAVAVAVA 
   AVAWAVAVA 17A 

  AVNAVAVAVAVAVA 
  AVAVAVAVAVAVAVAVA 

 AMWAY& WAVAVAVAVA 
 AVAVAVAVAVAVAVAVAVAVA 

AVA tiVA 17. tiVA VAVAVAVAVAVAVA 
VAVA IVA VAVAVAVAVAVAVAV 0 

Fig. 4.1, (a). Elementary stable configuration C(EO13)(1, 1)).

   EXAMPLE 4.3. Let us consider the configuration Dr(X) in which x12=1 and all 
,other x's are equal to 0, namely 

                       (0 1 0•0 0\ (4.5)Dr(X)=                                 0 0 0 •••0 

                           = DP)(1, 2), say . 

   The stable configuration {_hi} determined by (4.5) is given by
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                    { 1 if (i,  j) E Er(1, 2)                           Yii = 
                          0 if (i, E")(1, 2), 

where the set of cells E,n)(1, 2) is defined by 

(4.7)Er(1, 2) = {(i, 1) ; i= 2, 3, ••. , n} . 

Let us denote by C(Er(1, 2)) this stable configuration. See the configuration C(Er(1, 2)) 

in Figure 4.1, (b).

      eve 
      RIVA 
      AVA 17AVA 
     AV. t`1741VAVA 

   AVAVAVAVAVA 
    A° 0 VAVAVAVAVA 

    AVAVAVAVAVA 
  AVAVAVAVAVA &VIVA 

 AVAVAVAVAVAZ tiVAVAVA 
 AVAVAWAVAVAVAVAVAVA 

AVAVAVAVA TAVAVAVAVAVAVA 
01 0 AVAVA ° 0 VAVAVAVAVAVAV 0 

Fig. 4.1, (b). Elementary stable configuration C(Eo3)(1, 2)).

   EXAMPLE 4.4. Let us consider the configuration D,P)(X) in which x12= 1 (1</<n) 

and all other x's are equal to 0, namely 

                  0 0 0 0 0 0 
(4.8)Dr(X)=                                0 0 ••• 0 1 0 ••• 0/ 

                                                 (1) 

                          = Dr(/, 2), say . 

   The stable configuration fyi,1 determined by (4.8) is given by 

                    {1 if (i, j) E Er(1, 2) (4.9)Yi; =                         0 if (i
, j) E Er(1, 2) , 

where the set of cells E)11)(/, 2) is defined by 

(4.10)Er(1, 2) = {(1, 2j); j= 1, 2, 3, ••• , n-1} 

                       {(1+1, 21+1) ; j= 0, 1, 2, ••• , n—(1+1)1 . 

Let us denote by C(Er(/, 2)) this stable configuration. See the configuration
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        AD 1 
 A  &VIVA  NAV

AVA 
 AVAVAVAVA  NAVA  7AVAVA 

   AVAVAVAVAVAVA 
  AVAVAVAVAVAVAVA 

  /MSTAVAVAVAVAVA 
 AVAVAVAVAVAVAVAVAVA 

 AVAVAVAVAVAVAVAVAVAVA 
AVAVAVAVAVAWAVAVAVAVA 
TAVAVAVAVAoo VAVAVAVAT 

Fig. 4.1, (c). Elementary stable configuration C(Eo3>(5, 2)).

C(E,13)(5, 2)) in Figure 4.1, (c). 

   EXAMPLE 4.5. Let us consider the configuration D("(X) in which x11 = 1(2 < / 

  2n-1) with a certain odd niteger and all other x's are equal to 0, namely 

                                             (1) 

                    (0 0 ••• 0 1 0 0 0) (4.11)D,r(X)=                    0 0 0 

                          =Di;n)(1, /), say . 

   The stable configuration {yi,;} determined by (4.11) is given by 

                         1 if (i, j) E E,n)(1, /) 
(4.12)Yij=                          0 if(i

,j)E Er(1,/), 

where the set of cells Er(1, /) is defined by 

(4.13) Er(1, /)= {(i, j); i= 1, 2, ••• , 1-21 , j= 1-2(i-1), /-2(i-1)+1, , 11 

               U I(11,21+0; j= 0,1,2,'/-12 

 2 

               1+31+31+1 
                       2'2+,, n—2 , 

                     j=1+1, 1+2, , 2(n—i)+1} 

                U{(, 21); j/H2--1,/42-1+1,, n1-42-1 

Let us denote by C(E,P)(1,1)) this stable configuration. See the configuration
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         Ati°40      AVAVA 

   AWAVA 
    AVAVAVAVA    AVAVAVAVAVA 

   AVAVAVAVAVAVA 
  AVAWAVAVAVAVA 

  AVAVAVAVAVAVAVAVA 
 AVAVAVAVAVAVAVAVAVA  AW

AVAVAVAVAVAVAVAVA 
AVA WAVAVAVAVAVAVAVAVA 
0VAVAVAVAVAVAVAVAVAVAVAVA 

Fig. 4.1, (d). Elementary stable configuration C(Ecol3>(1, 9)).

C(Er(1, 9) in Figure 4.1, (d). 
   EXAMPLE 4.6. Let us consider the configuration Dp)(X) in which x11=-1f(2<1�2n) 

with a certain even integer 1 and other x's are equal to 0, namely 

                          (0 0 •-• 0 1 0 ••• 0 0)                            0 (4.14)Dr(X) =                0 0 

                          = IX,n)(1, 1), say . 

   The stable configuration {yo} determined by (4.14) is given by 

                        1 if (i, j) E Er(1, /) 

(4.15) =                         0 if (i
, j) E Er(1, /), 

where the set of cells E,;")(1, 1) is defined by 

(4.16) Er(1, 1) = {(i, j) ; i= 2, 3, , 2 , j =1-2i±3, 1-2i+4, ••• , 1-1} 

               U {(-I2-1, 2 j+1) : j = 0, 1, 2, ••• , L-2-2 } 

             U=-21-±2'21+3'n121 

                        j =1+2, ••• , 2(n—i)+11 

               U {(21, 21); 1=2/,2/+1, •-• , n-1--2-} 
Let us denote by C(E&")(1, 1)) this stable configuration. See the configuration
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     LA 
 AVAVA 

     AVAVAVA 
    AVAVAVAVA 

   AWAVAVAVA 
   AVAVAVAVAVAVA   AVAVAVAV

AVAVAVA 
  AVAVAVAVAVAVAVAVA 

 AVAVAVAVAVAVAVAVAVA 
 t 27AVAVAVAVA TAZAVAVAVA 

At 27AWAVAVA VAVAVAVAVAVA 
01 7AVAVAVAVAVAVAVAVAVAVAVA 

Fig. 4.1, (e). Elementary stable configuration C(Eo 3)(1, 8)).

       t I°A     N
AVA 
    AVAVAVA 

    AVAVAVAVA 
    t WAVAVAVAVA 
   AVAVAVAVAVAVA 

  AVAVAVAVAVAVAVA 
  A WAVAVAVAVAVAVA  evev

eveveveveveveve 
 AVAVAVAVAVAVAVAVAVAVA 

AVAVAVAVAVA VAVAVAVAVAVA 
AVAVAVAVAVAVAVAVAVAVAVAVA 
Fig. 4.1, M. Elementary stable configuration C(EO13)(1, 16)).

C(Er(1, 8)) in Figure 4.1, (e) and the configuration C(Er(1, 16)) in Figure 4.1, (f). 

   § 5. Structure of stable configurations in 4(n) cell space 

   In SECTION 4 we have introduced a set of the configurations {Dr(1, (i= 1, 2, 

 , 2n-1) and {D j' 2)} (j= 2, 3, , n-1) in the determinative subspace Dr. Now 
it can be readily observed that any configuration Do '(X) can be uniquely expressed
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as a boolean sum of these configurations. In fact we have 

   LEMMA 5.1. We have 
              2n-1 n-1 

(5.1)DP)(X)= E xi)+ E, 2) ,              i=1j=2 

where the additions in the right hand side are given according to Boolean algebra. 

   In SECTION 4 we have introduced a set of stable configurations {C(EV(1, i))1 

(i=- 1, 2, ••• , 2n-1) and IC(En)( j, 2))1 (j= 2, 3, ••• , n-1) in Sn) cell space where each 
C(EP)(1, i)) and each C(EP)(j, 2)) are uniquely determined by each DV(1, i) and each 

DP) (j , 2) respectively. Let us call these stable configurations as elementary stable 

configurations. By use of these elementary stable configurations we shall show 

that any stable configuration C(X) can be expressed as a superposition of these 

elementary configurations. In fact we have the following fundamental 

   THEOREM 2. Any stable configuration C(X) in a 4(n) cell space can be expressed 

as a superposition of the elementary stable configurations to the effect that 

           2n-1n-i 

(5.2)C(X), ExiiC(EV(1,i))+ xj,,C(E,Sn)(i, 2)) ,        Ej=1 
where the additions in the right hand side are given according to Boolean algebra. 

Conversely, for each assigned configuration Do )(X) in the determinative subspace Dr, 
the right hand side of (5.2) gives us a stable configuration in Z1(n) cell space. 

   In order to prove THEOREM 2, let us rewrite (5.1) and (5.2) in a form which is 

more suited to mathematical induction by introducing a new notation system to the 

effect that, for i= 1, 2, 3, ••• , 2n-1, 

                      = (5.3)F n(i) = Er(1, i) 

                       G n(i) DP)(1, i) 

and, forli= 2n±(j-2), j= 2, 3, ••• , n-1, 

                                  ui= xj, 

(5.4) F n(i) = ( j , 2) 

                       Gn(i)= Dr( j, 2) 

These notation yield us 
                                                   3(n-1) 

(5.5)C(X)= E uiFn(i) 

                                                       3(n-1) 

(5.6)D(n)(X) uLGn(i) 
                                                            i=1 

   Then the content of THEOREM 2 is equivalent to assert 

   LEMMA 5.2. (1°) Any stable configuration whose restriction is given by (5.6) can 

be expressed as (5.5). 

   (2°) For any assigned vector (u1,u2, ••• ,u,(n_i)) where each ui may be either 1 or 
0, the righthand side of (5.5) gives us a stable configuration in 4(n) cell space. 

   PROOF OF LEMMA 5.2. Let us write for a moment
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(5.7) C(4m; r) = E uiF„(i) 
                                                                                 i=-1 

(5.8)Dr(dm ; = E 1,G.(i) 

for r = 1, 2, ••• , 2(n-1). 
   Let us prove LEMMA 5.2 by induction regarding r. For r= 1, the assertion of 

LEMMA 5.2 is evident. 
   Now let us assume that the assertion of LEMMA 5.2 is valid for r in. For the 

moment let us denote by xi ,(C) a state of the (i, j) cell in the J(n) cell space which 
is associated with a stable configuration C. Then what we have to prove is to 
show the Boolean equation 

(5.9)xi,(C(4(71); r +1)) = x,(C(J("' ; r))+u,ix„(F n(r +1)) , 

where the addition in the righthand side is given by Boolean algebra. 
   The proof of (5.9) can be obtained by direct construction of C(4(n) ; r+1) by 

considering the effect of ur+1Gii(r+1) from the bottom of C(dP) ; r) to the top in a 
sequential way. Let us write, for the moment, 

                           x,(C(ZI(n) ; r)= x2-)j 

(5.10)xi, (C(d') ; r+1))= x?1) 

                           xi, (F,i(r+1))= y?,1-1) 

   Let us denote the bottom situation by using these notations as in Figure 5.1, 

(a) and (b) which is corresponding to the case of Do )(1, i) for some even integer i.

       (1)       X 
         2, j 

      x (Ir)          
,j+1 

 X (r)
jX (Ir)-I- 

Fig. 5.1, (a) . zWX).

           (r-t-I       Y 
2 , j 

         Y„(r-f-1)  I,j+-1 

 v(r+1)„(r-t.1)             Y 
I,j+2 

Fig. 5.1, (b). 4,C?).i(Y )

Since in this caseylr,j1) =3,f7,1A=0and(r+1)=1=1,we have 

               xi71)==x 
(5.11) 
                              xir,— x(r)—1— x+„ 

   In order that this basic cell space is stable, it thrns out 

(5.12)x = x -= 1 — x . 

The equalities given in (5.11) and (5.12) amounts to assert the validity of (5.9) for 
this particular basic cell. Similar observations can be applied to all the cells having 
the coordinate (1, j) (1 j 2n-1). Then we can proceed to the unique determina-
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tion of the state of cell having the coordinate (2, j),  1  r  j 2n-3, which will again 
show the validity of (5.9). We can proceed from the bottom of J(n) to the top of 

4') step by step in a sequential way. In each stage we can confirm the validity of 

(5.9) and we can prohongate its validity to the next higher stage by induction. 
This completes the proof of (5.9) for the case when Gn(i) is one of Dr(1, 1) with 

an odd integer 1. In the case when Gm(i) is one of Dr( j, 2) our determination of 

the stable configuration will be done step by step in a sequential way with the sole 

difference that it goes from the left to the right now. This completes the proof of 

LEMMA 5.2 and hence that of THEOREM 2.
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