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§1. Introduction.

Slippage problems have been discussed by various authors such as Mostellar [7],
Paulson [9], Traux [10], Doornbos and Prins [1], Kudé [5], Karlin and Traux [4],
and others.

In particular a class of slippage problems has been mainly treated in a manner
analogous to the treatment of problems in hypotheses testing (Lehmann [97). In
general, the problem is as follows. Assuming that we have a populations with den-

sities p(x; #;)) G =1, -+, @) and we wish to test the hypothesis H,: §, = --- =0, against
a alternatives I;: ¢, = - =0,—4 = -.- =4, with a zero-one type loss function, where
4>0.

Hall and Kudd [2] gave a generalization of Neyman-Pearson lemma so as to be
useful in solving slippage problems where the null hypothesis is simple and the alter-
natives are simple. They also applied their generalized lemma to slippage problems
where the alternatives are composite for the population distribution for which satis-
fying certain conditions closely connected with monotone likelihood ratio. The ex-
istence of an uniformly most powerful test under some conditions was also given.
Furthermore, Hall, Kud6 and Yeh [3] treated a similar test for the slippage problem.

In this paper we shall start with a new generalization of Neyman-Peason lemma
with respect to vector-valued decision function which will be given in Theorem 1 in
section 2. This Theorem 1 is crucially important for establishing unbiased slippage
test as we shall show in section 3. In view of these results the author proceed to
give another generalization of Neyman-Peason lemma which will be useful in treating
a certain type of testing hypothesis whose formulation is given in section 4. This
certain type of testing hypothesis is: under the hypothesis H,, a random variable
X has a density equal to one of the densities h,(x) (i=1, ---, k), while each of its
alternatives H, has the density /., ,(x) (=1, .-+, a). For the particular case, i.e. a =k,
is given in section 5.
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§2. A generalization of the fundamental lemma to vector-valued decision
functions (I).

Let ¥ be a Enclidean space and 9 be a o-field of subsets of X with a measure
pon N Let £y, fay -+ far hoy By, -+, By be real-valued functions defined on the space
% and integrable y. Suppose that for a given constants ¢, and ¢; t=12,--,a) there

exists a vector-valued decision function o(x)= (¢,(x), ,(x), -+ , p(¥) With 3o (x)=1,
1=0
0=¢,£1 for i=0,1, ---, a, satisfying

@1 [eahndp=c, and [e@fDdp@=c,
for 1=1,2, .-+, a.
Denote by C the class of vector-valued decision functions ¢ for which (2.1) holds.

Unless otherwise explicitly expressed, all integrals y considered in the present and

following sections are L Then we have the following theorem.
THEOREM 1.
(1) Existence. ¥f§[§1j¢i(x)hi(x)dﬂ(x)] exists.
(i) Sufficiency. If a decision function ¢ in C satisfies
0X) =1, &x), 0 when khy>,=,< rI}aX (ki fi+h)],

2.2
o) =), 0 when k;fyth;=, <max[(kfith],

where &(x) and n(x) are arbitrary, subject to the decision function ¢, for some k, and
ky 1=1,2, -, a), then this ¢ maximizes

23 2 feor@dut
among C.

(iliy The set D of points in (a-+1)-dimensional space whose coordinates are
(J(pohod/},, J(plfldy, ey, fgpafady) for some decision function ¢ is convex and closed.

(iv) Necessity. A decision function in C satisfying (2.2) is attainable, provided
(o C1» -+ 5 Cg) is an inner point of D, and if a member of C maximizes (2.3) then for
some k, and k;, it satisfies (2.2) a.e. p.

Proor. (i) Consider a sequence {¢™(x)} of the set C such that i} jgo{"’(x)hi(x)dy(x)
i=1

tends to Sup [i fgoi(x)hi(x)dg(x)]. By the generalization of the weak compactness
e=C Li=1

theorem to vector-valued functions (Kudd [6]), there is a subsequence {¢“?(x)} of
{p™(x)} and ¢°%x) such that

2.4 j§0§nj>f(x)dp(x)if991§O>f(x)d‘u(x) (i=0,1, -, a)

for all integrable function f(x) with respect to g. Since



Generalization of Neyman-Pearson Fundamental Lemma to Vector-Valued 75

25) [ crrndpe = [ e h(Dduco
©(x) belongs to C. On the other hand,

26) S e hedp 3 [ o hi)dpt)
By the uniqueness,

2.7 1§fp§[’>(x)/li(x)d#(x) = %35 [%}1 5¢i(x)/zi(x) d‘u(x)] .

Hence Max [é j‘oi(x)hi(x) d‘u(x)] exists.

=0
(i) Let ¢ in C satisfy (2.2) and ¢ be any other one in C. We consider
2 feh@du)—3 [ #0hxdun) = [ e(dux) ,
where
2.8) g =[eukohot T okifith) |~ Sokihit T e kifit 1) ]
i=1 i=1
We devide the sample space X into three disjoints regions:
(o) =1}, {t:0M=6x)) and (x:¢(x)=0}.
We shall verify that the g(x)=0 in each of these regions.
For {x:¢,(x)=1}, we have
() 2 (1= Pokohy—max (kefot-h) 33 60> (L= Gk fu—kohs 33 6:=0,
for {x:p(x0)=¢&M®},

2002 E— 80kt T okefith)—max (b fith) 2 6s= kyho—loh, 336:=0.

7
=1 i=1

And by the same argument we have g(x)=0 for x in {x: @(x)=0}. Therefore

@9 3 feondpx z 3 [ 6hxdp@) .

The assertion of (ii) is thus proved.

(ii)) The closedness of the set D follows from the generalization of the weak
compactness theorem to vector-valued decision functions and the convexity of the set
D follows from

Se1—08]=1, 0=i<1.
=0

We note that the set £ of points in (¢+2)-dimensional space whose coordinates

are U.goohodl,e,jgplfldp, v, fgoafady, jégpihid‘u) for some decision function is also
i=1

convex and closed. The points of E, the first (a+1) coordinates of which are ¢, ¢,,

«, ¢4, form a closed interval [c*, ¢**]. Since (¢, ¢y, -+, oy €¢**) is a boundary point

of E, there is a hyperplane through it such that every point of E lies below or on
this hyperplane. Let us write the equation of the hyperplane

kof @ohodprt S ke[ oifidpthan [ 2 gibidp= 3 icit kanc*
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Since (¢, ¢y, -+, ¢,) 1S an inner point of D, the k,,,+ 0 and
(2.10) JIB tishifdeit g, |de = f[ D (e kuf et kg [dp

for all points in E, where ¢** is the decision function given rise to the point (c,, ¢,
-, e ¢**). Thus ¢** maximizes the left-hand side of (2.10). Since the integral is
maximized by putting ¢ as the form of (2.2), p** satisfies (2.2) a.e. p the assertions
(iil) and (iv) are thus proved.

In the present section we restrict i {x) (=0, 1, ---, @) to be probability density
of X with respect to g, and denote fg;i(x)hi(x)d#(x) by E(X) ¢=0,1, -, a).

DEFINITION 1. A decision function ¢(x)= (p,(¥), ©,(X), -, ¢o(%)) is of size a if
(2.11) Ep(X)zl—a.

It is of exact size a if the equality holds.

DEFINITION 2. ¢(x) is symmelric in power if
(212) E1901(X): e = Ea¢a<X) .

The common value of (2.12) is called the power of ¢. It is called the most powerful
symmetric of size a (MPSS «) if it maximizes each term of (2.12) subject to (2.11) and
2.12).

Throughout this paper, we consider a measurable transformation group G on ¥,
which is isomorphic to the permutation group, /] = {z,} on (1, 2, ---, a) or its transitive
subgroup.

DEFINITION 3. ¢(x) is invariant under the group G={g} if
(2.13) o) =0(gx) and @(x)=¢r,(gx) for all g and i,
where ©t, is a permutation on (1,2, -+, @) corresponding to g.

Now we assume that there is a measurable transformation group G on X, which
is isomorphic to the permutation group, z, or to its transitive subgroup, such that
SFi(x) =T, (gx), hi(x) = hzy (gx) and hy(x)=hy(gx) for all g and i, and p(A)= n(gd)
for all A= and g. Then the following Corollary follows.

COROLLARY 1. Consider the class of decision functions satisfying

@219 Eg(X)=1—a a=O 1) and [o@f(dp(x)=c for all i.

Let C, be the class of ¢ for which (2.14) holds.
(i) Given any a, the most powerful symmetric of size o (MPSS ) decision function
exists among C,, furthermore, it is invariant.
1) If ¢ = C, satisfies
p(0)=1,¢0 when  kohy >, =, < max[(kf;+h)],
(2.15) '

o;(x) = lf-]é’i")g) 0, when kf;+h;=, < max[(kf;+h)],

where J(x) is the number of times that max[(kf;+h)] is attained, for some k, and k,

then it is a MPSS « decision function among C,.
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(iil) ky and k in (1) is attainable for ¢ = C, if the point (1—a, ¢, -+, ¢) is an inner
point of the set D, and if ¢ is MPSS a among C, then it satisfies (2.15) a.e. p.

ProoOF. (i) By (i) of Theorem 1, I\'Iax[iEigci(X)] exists, say, ¢(x). As the

¢ECq —1=1
group G is finite, there is a right invariant probability measure v on (G, 5) measurable

space, where 3 is a o-fleld of subsets of G. We may define ¢ as
(2.16) G0 =[Calgndr(e)  i=0,1,,a.
This é is invariant and belongs C,. We see that
SESX0) =3 [, e0h(0du0d(g)
= [[ 2 [ers@0in, (ex)duen)] due)
= [[ 2 Erpifr,a(0] d(e)

=[[ B E£0O]du(e) = BES(X).
Hence ¢ is MPSS a among C,.
(i) The proof is analogous to that of (ii) of Theorem 1, we shall omit it.
(iif) By (ii) of Theorem 1, there are k,, k,, -, k,. We note that the (2.10) of
Theorem 1 implies

2.17) I é(hngﬁki Frgdrgit ooy | dpe

= “:él (hi+ kifi)‘ﬁ?*ﬂLkoho@Sk*] dp  for all geG.

We can see this by putting ¢(g7%) = ¢z,:(x) and ¢,(g7x)) =0,(x). Then by (ii) we
have

.18 JI= (her Bt e 1Y o ko, di

Thus the assertion is proved by putting kot a ke _ k.

§ 3. Unbiasedness on slippage test.

Let § be a parameter in a parameter space £ and X a random variable with
probability density ps(x) with respect to a o-additive measure ¢ on a o-field of sub-
sets of a sample space X. Suppose the parameter space is divided into a+4-1 disjoint
subsets @, £2;, ---, £,. We shall consider a decision problem involving a+1 possible
decisions denoted by D; (=0, 1, ---, a) corresponding to a+1 hypotheses H,: 0 < Q,,
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H:0=2,--,H,: 6 Q, respectively, where under H, X has density equal py(x),
d<= 0, and under H; the density ps(x), § = 2; for i=1,---, a. The vector-valued
decision functions of the form ¢(x)= (¢,(x), ©,(x), -+, ¢.(x)) with ¢,(x) denotes the
probability of marking D, for i=0,1, ---, ¢, as the random variable X taking value
x, are considered. Of course we have

i%(x)il, 0=, <1.
i=o

Because of similarity to the theory of a testing hypothesis, we shall call H, the
null hypothesis, H; (i=1, ---, a) the alternative, and this problem is called hereafter
a test of H, against H; for 1=1, ---, a.

DEFINITION. A decision function ¢(x) is unbiased of size a if

@D Eop,(X)= - = EopaX), ZEspX)Sa  for 6,59,
and
3.2) SEedX)za for 6,0, i=1,a.

i=1

Let X be a random variable with probability density

3.3 Ps(x)=C(0) exp [0'T(x)]
with respect to p, where § and T(x) both are the points in a-dimensional Euclidean
space, i.e. 8/ = (6D, 0, ..., ) and T'(x) = (T\(x), --- , To(x)). Assume that the para-
meter space is divided into @ curves and a point which are given by #=40,(z),
—oo<Lr<oo, i=1,---,a and a common starting point f,=6,(0). We also assume
that there are transformation groups G={g} and /7 = {r,} as stated in the previous
section such that pg,(x) = pe,(g%), bo;o(X) = Doy (8%) and Ty(x) = Tr,(gx) for all i, 7,
g< G. Then we have the following theorem.

THEOREM 2. Let 0,(7)=(0®, 8, ... , §® 41, O, ... | fO), where 01 is the i-th
coordinate of the point 0(c), and —co <1 < oo. Suppose C(0,(z)) depends upon t only.
Then the following ¢ constitutes a MPSS « unbiased test uuiformly in ¢ for testing

Hy: 6=0,=0,0) (known)
against
H:0=0,(), —co<t<0, t+0 1=1,.,a.

The ¢ is given by
0f(x) =1 when both min T;> K, and max T, < K, K, < K

=0 when minT; <K, or maxT;>K

I

iy

when both minT; =K, and maxT;< K or both
(3.4) ' '
minT; = K, and maxT,= K

‘oj(x):——l—Gg(Dé’)(—x)—— when T]-:m{ax TizKor Ty=minT; < K,

1

=0, otherwise ,
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where J(x) is the number of times that max Ty, in addition min T, are attained. K’s
and & are determined by

(3.3) Eppu(X)=1~a and Eo[T(X)pX)]="%E,[T(X)] for all i.

Proor. By Theorem 9 of Chap. 2 in Lehman [8], Ee,0(X) is analytic function
of 09 (j=1, ---, a), where % is the j-th coordinate of the vector 0, therefore unbiased-
ness implies

Egpo(X)=1—a and Ez[T(X)0i(X)] = Ep [0 X)]Es[T(X)] for all i.
‘We note that
Bl TX)] = Eor o[ Trgi(g0)] = Eg [Ty0] and  EgLo(X)]=Es[0iX)] .
Hence, by the corollary 1 in §2, there is a MPSS «a test for each 7, given by
o) =1,§,0 when ky(c)ps(v) >, =, < max [k(D)T () Psy(X)+ po,(%)] »

1—0ix)
e

when  2(0)T {x)poo(x)+ po,(¥) =, < max [r(2)T () bso(X)+ De,(x)] -

(0=

We note that py,e(0)=-S04) b (yerio, then (3.4) immediately follows.
¢ c(0,) 0

Example. Let X=(X,, X,) be distributed according to the bivariate normal dis-
‘tribution with mean 6=(®, #*) and covariance matrix 1. Suppose the parameter
space is 2={(0,0), (z, 0), (0, z); © #0}. Then a most powerful symmetric of size «
:unbiased test uniformly in ¢ is given by

0(x)=1 when —c<x, x,<c
=0 when min (x,, x,) < —¢ or max (x,, X)) > ¢
=& when (x,, x,) is on the side of the square with center
at the origin and side length 2¢.

o (x)= }—_]?)g)(ﬂ when x;=max (x,, x,) = ¢ or x;=min (x,, x,) < —c¢

=0, otherwise .

-¢ is chosen such that p,[—c¢ < x;, x, < ¢|(0,0)]=1—a.

§4. A generalization of the fundamental lemma to vector-valued decision
functions (II).

Let X be a sample space and let 9 be a o-field of subsets of X with a countable
‘number of generatores. Suppose we have k-a densities h(x), i=1, -, k, k+1,
-+, k+a, with respect to a o-additive measure ¢ on A. We shall consider a decision
problem involving a+1 decisions D, D, ---, D, corresponding to a--1 hypotheses
Hy, H,, -+, H,, respectively, where under H, X has a density equal to one of the
i) ¢=1,2,---, k) and under H; the density hers(x) G=1,2, -, a). We shall denote
by E(,) the expectation of (,) when the X have probability density A,(x).



80 Neng-che YEu

THEOREM 3. Let Co={0(x); Eo(X)=c¢y, 1=1, -, k}.

(i) Sup iEWgoi(X) is attained by some one in C,

¢=Cp i=1

(i) If a decision function ¢(x) satisfies Exp(X)=¢, for i=1, ..« , k with the form

() =1, &x), 0 when max h,.(x) <, =, >MO—2 éhi,(x)
i=1,",a =1

4.
o (x)=n;(x), 0 when hy, (%) =, <imax Nr ()
=1,1,a

where &(x) and 74(x) are arbitrary, subject to the decision function ¢ and M, (=0) is
a constant.
Then

(42) 2 B2 5 Braf (X0

for any other &(x) in C,.
ProOOF. (i) Consider a sequence {¢™(x)} of the set C, such that >} E..0f(X)
i=1

@
tends to Sup X E;.,0(X). By the generalization of the weak compactness theorem
¢ECy i=1

to vector-valued functions (Kud6 [67), there is a subsequence {¢®?(x)} of {©™(x)} and
¢(x) such that
43) fem2fdu — for fdu

for all integrable f(x) w.r.t. . Since
(4.4 fesrh@dpe) — [6Ph(duty  for i=1,-,k,
©9(x) belongs to C,. On the other hand,

(4.5) ZlEmf,ﬁ("f)(X) - SuCD ZlEk-)-iSDi(X) .
= p=Co 1=

Hence ¢‘“(x) maximizes ZG)E,CH%(X) among C,.
i=1

(i) Consider the integral j g(X)dp(x), where

(46) 209 = @O—BLIMy - B R+ B ()~ D heni)

o(x) satisfies F,p(x)=c¢, (=1, .-+, k) with the form (4.1) and &(x) is any other decision
function in C,.

We devide the sample space X into there disjoint regions: {x: ¢ (x) =1}, {x: @)
=&} and {x:@,(x)=0}. It will be verified that g(x)=0 in each of these regions..
For {x: ¢4 x)=1},

0= A= My B he(d)— 5 FDher)

- 1 & 1 &
= A=8)(Mo - B hal—My ) B ho() =0,
=1 i =1

for {x: @ (x)=E&(x)},
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EOZ @D— My B () + (- 0u() MaX s ()= max hr () 3 E(1)

= max k()= (8042 8:0) max (=0,
and by the same argument g(x)=0 for x in {x:¢,(x)=0}. Therefore,
a N A “ k
4D (2O C@ha @iz ) [@0—e ) £ h@dpd =0,

The proof is thus completed.

We shall cite the following definitions for the present section.

DEFINITION 1. A decision function o(x)=(@y(x), ©1(X), -+, 0a(xX)) is of size a for
H, if
4.8) EFoX)z1l—a for 1=1,2, -, k.

It is of exact size a for H, if the equality holds for all i=1, --- , k.
DEFINITION 2. ¢(x) is symmetric in power for H, if

4.9 Ep10:(X) = Eps0(X) = -+ = Epy00a(X) .

The common value of (4.9) is called the power of ¢ for H, ¢(x) is called the most
powerful symmetric of size a« (MPSS «) for H;, if it maximizes each term of (4.9) sub-
ject to (4.8) and (4.9).

Now, we assume that there is a measurable transformation group G on ¥ such
that G is isomorphic to the permutation group /1 = [l R Il ,, where I and [T, are the
permutation groups on K=(1, 2, ---, k) or its subgroup transitive on K=({, --- , k) and
on A=(1,2, -+, a) or its subgroup transitive on A=(1, ---, a), respectively. We further
assume that p(A) = u(gA) for all A= A and all g € G, hy(x) = hay,(gx) for all i=1, .-, k,
and all g € G, and hy,(X) = hyyrn,,(gx) for all i=1, ..., a and all g G, where 7,, [T,
and g, = [lg, respectively, corresponding to g&. Then we have the following corollary.

COROLLARY 2. There is a MPSS « test for testing H, against H, i=1,2, -, a.

1 'Wo(x),

It is given by the form (4.1) in Theorem 3 with &(x) a constant and nix)=" No

where N(x) is the number of times that max h,,,(x) is attained. i.e.,
i=1,--,a

0 (0)=1, & 0 when max h ()<, =, > AIO-~7}1; é hi (%)
i=1,s,a =1

4.10)
i(x) = Lj_\f(%(f)

ProOOF. Let

» 0 when hy ()=, < max hg(x).
i=1,--,a

P (| max b/ : ﬁl ho@) = M] = a,M).

The probability is computed under P; (i=1, 2, ---, k). We shall verify that a;(M) is
independent of i, i.e. a;(M)=a(M) for i=1,2,..., k. To see this, let

)= P max h(9/ 4 () < M]

hi(x)dp(x) .

j IRICOYE, T on
max -3(Z) /-~ i/ (z)=M
i=1,ya P L=
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By letting y = gx, this is equal to

h(g= ) du(gy)

3
If 1

m. 13 ; - S R i (=M
z‘:ﬁ?(.,a “‘"Agl(y)/" vEy "Egt w

:ji

1 I\c‘ i hﬂng(y)dﬂ(y)
;T,a-lf'ah‘k+"‘1gi(y)/ k2 MRt S

= X h(vd 4
J max nai/ | | TRl (Ndp(y)
i=1,-",a =1

= ai/r(Al) y i” S (11 21 Tty k) .

Therefore a,(M)=a(M) for i=1,2, -, k.
Since a(M) is upper semi-continuous and monotonically increasing

PL( max b/ %éhi,(x)) — M] = a(M)—a(M—0).

For any «a:0<a<]1, there exists an M, such that a(M,)=<a =< a(M,—0). Put
&=[(l—a)—aM,—0)]/[alM)—a(M,—0)], and consider the decision function ¢(x)
defined by (4.10). The size of ¢(x) for H, is

(A—a)—a(M,—0)
a(My)—a(M,—0)
We note that the ¢(X) is invariant, and hence

Epri0y(X) = -+ = Epapa(X) .
By (ii) of Theorem 1, ¢(x) is obvious a MPSS « test for H, against H; ¢ =1, 2, -, a).

4.11) Ep(X) = a(M,—0)+ [a(M)—a(M,—0)]=1—a.

§5. Remark.

We can consider a special case when k=gq, in this case z is assumed to be the
permutation group on (1, 2, -+, @) or its subgroup transitive on (1, 2, -+, @). Theorem-
and corollary above also hold in this case when 7 i=mg i=m,,1 for all i=1, -, k.

8§ 6. Acknowlegements.

The author is deeply indebted to Professor T. Kitagawa and Professor A. Kudo
for their valuable suggestions and guidances. The author is now at Kyushu University
on leave of absence from the Department of Mathematics, Tamkang College of Arts
and Sciences, Taipei, Taiwan China.

Kyushu University and Tamkang
College of Arts and Sciences

References

717 Doornbos, R. and Prins, H.]J. (1958). On slippage tests. Indagationes Mathematicae 29,
38-55.

[21 Hall, I.J. and Kudé, A. On slippage tests—(I) A generalization of Neyman Pearson’s
lemma. lowa State University (1968), submitted to Annals of Mathematical Statistics.



£3:

[4:

[ W |
> Ul

Lt L)

L7
(8]
[9]

[10]

Generalization of Neyman-Pearson Fundamental Lemma to Vector-Valued 83

Hall, 1. J., Kudg, A. and Yeh, N.C. On slippage tests—(II) Similar slippage tests. Iowa
State University and Kyushu University (1968), submitted to Annals of Mathematical
Statistics.

Karlin, S. and Traux, D.R. (1960). Slippage problems. Annals of Mathematical Statistics
31, 296-324.

Kudd, A. (19362). On the testing of outlying observations. Sankaya 17, 67-76.

Kudo, A. (1956b). On the invariant multiple decision procedures. Bulletin of Mathematical
Statistics 6, 57-68.

Mostellar, F. (1948). A k-sample slippage test for an extreme population. Annals of
Mathematical Statistics 19, 58-65.

Lehmann, E.L. (1959). Testing statistical hypotheses. New York, John Wiley and Sons
Inc.

Paulson, E. (1952). An optimum solution to the k-sample slippage problem for the normal
distribution. Annals of Mathematical Statistics 23, 610-616.

Traux, D.R. (1933). An optimum slippage test for the variance of k normal distributions.
Annals of Mathematical Statistics 24, 669-674.

»



