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   § 1. Introduction. 

   Slippage problems have been discussed by various authors such as Mostellar [7], 

Paulson [9], Traux [10], Doornbos and Prins [1], KudO [5], Karlin and Traux [4], 
and others. 

   In particular a class of slippage problems has been mainly treated in a manner 

analogous to the treatment of problems in hypotheses testing (Lehmann [9]). In 

general, the problem is as follows. Assuming that we have a populations with den-
sities p(x ; 6) (i= 1, ••• , a) and we wish to test the hypothesis Ho: 0,= ••• = Oa against 
a alternatives Ha: 01= ••• =0,—,11= ••• =Oa with a zero-one type loss function, where 

zl> 0. 
   Hall and KudO [2] gave a generalization of Neyman-Pearson lemma so as to be 

useful in solving slippage problems where the null hypothesis is simple and the alter-
natives are simple. They also applied their generalized lemma to slippage problems 

where the alternatives are composite for the population distribution for which satis-
fying certain conditions closely connected with monotone likelihood ratio . The ex-
istence of an uniformly most powerful test under some conditions was also given. 

Furthermore, Hall, Kud6 and Yeh [3] treated a similar test for the slippage problem. 

   In this paper we shall start with a new generalization of Neyman-Peason lemma 

with respect to vector-valued decision function which will be given in Theorem 1 in 
section 2. This Theorem 1 is crucially important for establishing unbiased slippage 

test as we shall show in section 3. In view of these results the author proceed to 

give another generalization of Neyman-Peason lemma which will be useful in treating 
a certain type of testing hypothesis whose formulation is given in section 4. This 

certain type of testing hypothesis is : under the hypothesis H0, a random variable 

X has a density equal to one of the densities 1 ,(x) (i =1, •-• , k), while each of its 

alternatives H, has the density h„,(x) (i = 1, ••• , a). For the particular case, i. e. a = k, 
is given in section 5.
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   § 2. A generalization of the fundamental lemma to vector-valued decision 
       functions (I). 

   Let X be a Euclidean space and be a a-field of subsets of ?e, with a measure 

it on Let f1,f                 2, ••• fa, h0, h1, , ha be real-valued functions defined on the space 
I and integrable p. Suppose that for a given constants c0 and c, (i =1, 2, • • • , a) there 

exists a vector-valued decision function c0(x) = (co „(x), co,(x), • • • , a(x)) with coi(x) =1, 
                                                                                                            i=0 

0 � 1 for i= 0, 1, • •• , a, satisfying 

(2.1)f coo(x)ho(x)d,c2(x)= co and co i(x) f,(x)d p(x) c, 

for i=_-• 1, 2, ••• , a. 
   Denote by C the class of vector-valued decision functions co for which (2.1) holds. 

Unless otherwise explicitly expressed, all integrals considered in the present and 

following sections are . Then we have the following theorem. 

   THEOREM 1. 

   (i) Existence. Max [ coi(x)hi(x)dp(x)] exists. 
                         ccEc i=1 

   (ii) Sufficiency. If a decision function co in C satisfies 

            co0(x)=. 1, (x), 0 when koho> , = , < max[(k,f,±h,)] , 

(2.2) 
            yoi(x)=.)7j(x), 0 when kjfi+hj=, < max [(k,f,+h,)], 

where (x) and i21(x) are arbitrary, subject to the decision function co, for some k0 and 
k, (i = 1, 2, ••• , a), then this co maximizes 

(2.3)a f co,(x)h,(x)dp(x) 
                                                  i=1 

among C. 

   (iii) The set D of points in (a±1)-dimensional space whose coordinates are 

(f cook:4p, f co,f1dp, ••• , f coafadie) for some decision function co is convex and closed. 
   (iv) Necessity. A decision function in C satisfying (2.2) is attainable, provided 

(co, c1, ••• , ca) is an inner point of D, and if a member of C maximizes (2.3) then for 
some k0 and ki, it satisfies (2.2) a. e. 

   PROOF. (i) Consider a sequence {co(n)(x)} of the set C such that E Scol")(x)hi(x)dp(x) 
tends to Sup [ coi(x)hi(x)dp(x)]. By the generalization of the weak compactness 

           C i-         V-1- 

theorem to vector-valued functions (Kud6 [6]), there is a subsequence {cocnj)(x)} of 

{co(n)(x)} and co°(x) such that 

(2.4)f colni)f(x)dp(x)-2--i corf(x)clp(x) (i 0, 1, ••• , a) 
for all integrable function f(x) with respect to Le. Since
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(2.5)  c,-Oni)(x)ho(x)dp(x)  0)(x)72.0(x)dp(x) 

c_7)(')(x) belongs to C. On the other hand, 
                  a nft 

(2.6)Ea,.f)(x)hi(x)dp(x)=, E yi°)(x)hi(x)d p(x) 
      i=1i-=1 

By the uniqueness, 

(2.7)yit)(.1-)hi(x)dp(x) = Sup [yi(x)hi(x)dp(x)]. 
        ,=1ccEC i-1 

                        a Hence Max [ E f y,(x)hi(x)dp(x)] exists. 
        vEc ,=1 

   (ii) Let y in C satisfy (2.2) and (6 be any other one in C. We consider 

               c.;i(x)hi(x)dit(x)—ii(x)hi(x)cItt(x)----g(x)dp(x) , 
     i=1i=1 

where 

(2.8) g(x) =[c,.2 ok oho+ co (k ifi+h,)]—P okoho+E cl3i(kif,--;-- hi)]. 
       i=1i=1 

   We devide the sample space X, into three disjoints regions : 

             Ix : yo(x) 11, { x : yo(x) (x)} and { x : c.0(x) _= 0} . 

We shall verify that the g(x) 0 in each of these regions. 

   For Ix: coo(x)_= 11, we have 

                                                                a 

       g(x)�(1—cCo)koho—max (kifi+hi) E > (1-5o)kofo—koho E cPi = 0 , 

for x : coo(x)-= (x)}, 

    g(x)� (--c%)koho+ co,(kifi+ hi) —max (kifi+ hi)±(pi = koho—kohoi= 0 . 
      i=1i=1i=1 

And by the same argument we have g (x)� 0 for x in Ix : coo(x)= 0}. Therefore 

(2.9)E fc.oi(x)hi(x)dtc(x)� fei3i(x)hi(x)dp(x) 
       2=0i=i 

The assertion of (ii) is thus proved. 

   (iii) The closedness of the set D follows from the generalization of the weak 
compactness theorem to vector-valued decision functions and the convexity of the set 

D follows from 

                     [Acoi+ (1-2)(3i] = 1 , 0 2 1 . 
                                     i=0 

   We note that the set E of points in (a+2)-dimensional space whose coordinates 

are (f yohodp, ••• , f coafacip, ficaihicl,u) for some decision function is also 
convex and closed. The points of E, the first (a+1) coordinates of which are co, c1, 
••• , ca., form a closed interval [c*, c**]. Since (c0, c1, ••• , ca, c**) is a boundary point 
of E, there is a hyperplane through it such that every point of E lies below or on 

this hyperplane. Let us write the equation of the hyperplane 

          koyohodp+kifEgoihidp=kici+ka÷ic** . 
       =1,i=0E
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    Since (c,,c„-• , CO is an inner point of D, the k„,-# 0 and 

(2.10) $[± (hi--kifi)yi k oh 0(1)01d (hHkif i)C1k oh 0C=Ilditt 
for all points in E, where co** is the decision function given rise to the point (c0, c1, 

   ca, c**). Thus (p** maximizes the left-hand side of (2.10). Since the integral is 

maximized by putting co as the form of (2.2), co** satisfies (2.2) a. e. p the assertions 

(iii) and (iv) are thus proved. 
   In the present section we restrict hi(x) (i = 0, 1, ••• , a) to be probability density 

of X with respect to itt, and denote yi(x)h,(x)dp(x) by Eicoi(X) (i = 0, 1, ••• , a). 

   DEFINITION 1. A decision function co(x)=-_ (goo(x), c9i(x), cp,a(X)) is of size a if 

(2.11)E0C00(X) � . 

It is of exact size a if the equality holds. 
   DEFINITION 2. co(x) is symmetric in power if 

(2.12)Eicoi(X).= •- Eacca(X). 

The common value of (2.12) is called the power of cc. It is called the most powerful 

symmetric of size a (4IPSS a) if it maximizes each term of (2.12) subject to (2.11) and 

(2.12). 
   Throughout this paper, we consider a measurable transformation group G on X, 

which is isomorphic to the permutation group, 11= {7c } on (1, 2, ••• , a) or its transitive 

subgroup. 

   DEFINITION 3. co(x) is invariant under the group G= {g} if 

(2.13)coo(x)=-_-coo(gx) and coi(x)=co,g,i(gx) for all g and i , 

where 7r, is a permutation on (1, 2, ••• , a) corresponding to g. 

   Now we assume that there is a measurable transformation group G on X, which 

is isomorphic to the permutation group, or to its transitive subgroup, such that 

fi(x)-= f,gi(gx), hi(x)=1z7rgi(gx) and ho(x)= ho(gx) for all g and i, and p(A)= u(gA) 
for all A and g. Then the following Corollary follows. 

   COROLLARY 1. Consider the class of decision functions satisfying 

(2.14) Eocoo(X)-= 1—a a g-- (0, 1) and fc),(x)f,(x)dp(x) c for all i . 
Let Ca be the class of co for which (2.14) holds. 

   (i) Given any a, the most powerful symmetric of size a (AIPSS a) decision function 
exists among Ca, furthermore, it is invariant. 

   (ii) If co G Ca satisfies 

           C o(x) = 1, e, 0 when kilo >, < max [(kfi+hi)] , 

(2.15)                 1
co,(x)           co

j(x)=—J(x) 0, when < max [(kfi±hi)] 

where J(x) is the number of times that max [(kfi+hi)] is attained, for some k0 and k, 

then it is a AIPSS a decision function among Ca.
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   (iii) ko and k in (ii) is attainable for cz; C, if the point (1—a, c, ••• , c) is an inner 

point of the set D, and if cc is MPSS a among Ca then it satisfies (2.15) a. e. fL. 

   PROOF. (i) By (i) of Theorem 1, Niax [ E,coi(X)] exists, say, C6(x). As the 
group G is finite, there is a right invariant probability measure v on (G, i3) measurable 
space, where ;3 is a a-field of subsets of G. We may define co as 

(2.16)                     c7i(x) =.C.,',gi(gx)dv(g) i 0, 1, •-• , a . 
This is invariant and belongs Ca. We see that 

            E Eifoi(X)=E JP,o(gx)hi(x)dice(x)dv(g) 
         J=1J=1 

                  =ffi pirgi(gx)h,gi(gx)dp(gx)]civ(g) 
                                                    J-1 

                                               a                       -=.) LE En•gic3,gi(X)iciv(g)                                                  J=1 

                   = f[E Ei"c3i(X)]dv(g)= E Ei(3i(X). 

Hence j' is MPSS a among Ca.. 
   (ii) The proof is analogous to that of (ii) of Theorem 1, we shall omit it. 

   (iii) By (iii) of Theorem 1, there are ko,k„••• , ka. We note that the (2.10) of 
Theorem 1 implies 

(2.17) [ E (h,gi kif„,i)co„i koh °coo] dp 

             -5.f [ E (hi+kifJ)Cor*-Fkohocotldp for all 
We can see this by putting Oi(g-',y).= gi(x) and 00(g-'x)) c.,(x). Then by (ii) we 
have 

(2.18)[(hi+k1+-+kafi) kohoc„,] citt 
       J-1a 

                        „ a 

                      [ E Fkohocpo •                                                        J=1 

                              k'                                                          ••• +ha Thus the assertion is p
roved by putting

a= k.

   § 3. Unbiasedness on slippage test. 

   Let 6 be a parameter in a parameter space Q and X a random variable with 

probability density pb(x) with respect to a a-additive measure on a a-field of sub-
sets of a sample space X. Suppose the parameter space is divided into a-I-1 disjoint 

subsets 00       -0,-1, Qa- We shall consider a decision problem involving a+1 possible 

decisions denoted by Di (i = 0, 1, ••• , a) corresponding to a+1 hypotheses Ho: 6 E 20 ,
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 H1: 0 E Qi, ••• , Ha: 0 e Qa, respectively, where under H0, X has density equal p,(x), 

0 E S20 and under Hi the density pgx), 0 E Qi for i= 1, • •• , a. The vector-valued 

decision functions of the form c;(x)=((po(x), C.,(X), • • , ya(X)) with yi(x) denotes the 

probability of marking Di for I = 0, 1, ••, a, as the random variable X taking value 
x, are considered. Of course we have 

                                            a 

               E = 1 , 0 1 . 
                                                         i=-0 

   Because of similarity to the theory of a testing hypothesis, we shall call H0 the 

null hypothesis, Hi (i = 1, ••• , a) the alternative, and this problem is called hereafter 

a test of H0 against Hi for i= 1, ••• , a. 

   DEFINITION. A decision function ca(x) is unbiased of size a if 

                                                          a (3.1)E00001(X) = = EtWa(X) E Eooc_oi(X)< a for 0,E Qv, 

and 

(3.2)E Eeicoi(X)� a for 0i E 2i , i=1, ••• , a . 
                             i=1 

   Let X be a random variable with probability density 

(3.3)p1(x)=C(0) exp [0'T(x)] 

with respect to p, where 0 and T(x) both are the points in a-dimensional Euclidean 

space, i. e. 0' = (0(1), 0(2), • , 0(9 and T'(x) = (T 1(x), • • • , a(x)). Assume that the para-
meter space is divided into a curves and a point which are given by 0 =0,(7), 
—on < 7 < cc , 1, • •• , a and a common starting point 00 = 040). We also assume 
that there are transformation groups G= {g} and 11= {?Cg} as stated in the previous 

section such that puo(x)= poo(gx), poi,.„)(x)=poirgi(,)(gx) and Ti(x)=T,gi(gx) for all i, r, 
g E G. Then we have the following theorem. 

   THEOREM 2. Let 0i(r) = (0m, 0(°), ••• , 0("d-z-,0('), , 00)), where 00)±7 is the i-th 

coordinate of the point 0i(7), and —co <z- < oo. Suppose C(0i(z-)) depends upon r only. 

Then the following CO constitutes a MPSS a unbiased test uuiformly in 7 for testing 

                       Ho: = 0,= 0i(0) (known) 
against 

               Hi: = i(7) , —co < < co , z#0 i = 1, • , a . 

The co is given by 

           coo(x)= 1 when both min Ti> K0 and max Ti < K, K0 < K 

               = 0 when min Ti < K0 or max Ti > K 

                = when both min Ti = K0 and max or both 

(3.4) 
                             min Ti�Ko and max 

                   1—co(x) 

                                                               ' 

                    J(x) when T•—max Ti�K or T1= min Ti__Ko 

                          — 

               = 0 ,otherwise,
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where J(x) is the number of times that max Ti , in addition min Ti are attained. K's 
 and are determined by 

 (3.5) E0ocoo(X)= 1—a and Eeo[Ti(X)yi(X)1=1-Eou[Ti(X)] for all i . 
    PROOF. By Theorem 9 of Chap. 2 in Lehman [8] , Eeiyi(X) is analytic function 

 of 0(i) (j = 1, • •• , a), where 0(j) is the j-th coordinate of the vector 0 , therefore unbiased-
 ness implies 

     E00000(X)= 1—a and E007i(X)coi(X)]=Ee oCCoi(X)i-EolTi(X)] for all i. 
We note that 

      E8o[Ti(X)] = E87,go[T,gi(gx)]=E0,[Ti(x)] and Eco[goi(X)]=Eoli(X)] 

    Hence, by the corollary 1 in § 2, there is a MPSS a test for each z-, given by 

       C-o(x)= 1, e, 0 when ko(r)Poo(x) =, < max [k(7)Ti(x)poo(x)+ poi(x)] , 

              1—Wo(x)        <,-,j(x)= ,0            J(
x) 

           when k(r)Ti(x)poo(x)±poi(x)=, < max [k(7)Ti(x)po o(x)+ pei(x)] 

                   (0i(7))     We note that Poi(,)(x)=cc(0 0)Poo(x)erri(x), then (3.4) immediately follows. 
    Example. Let X =(X„ X2) be distributed according to the bivariate normal dis -

tribution with mean 0 =(0w , 0(2)) and covariance matrix I. Suppose the parameter 
space is S2 = {(0, 0), (z-, 0), (0, 7); z # 0}. Then a most powerful symmetric of size a 
.unbiased test uniformly in 7 is given by 

         coo(x)=1when —c < x1, x,<c 

             = 0 when min (x1, x,)< —c or max (x1, x,)> c 

                 when (x1, x2) is on the side of the square with center 

                      at the origin and side length 2c . 

               1—coo(x)  
           ./(x)=                  J(x) when xi = max (x1, x2) c or xi = min (x1, x2)� —c 

            = 0 ,otherwise . 

• is chosen such that pr[—c < x„ x2 < c I (0, 0)1= 1—a.

    § 4. A generalization of the fundamental lemma to vector-valued decision 
        functions (II). 

   Let X be a sample space and let lC be a a-field of subsets of X with a countable 

:number of generatores. Suppose we have k+a densities k(x) , i=1, ••• , k, k+1, 
••• ,k+a, with respect to a a-additive measure a on We shall consider a decision 

problem involving a+1 decisions Do, D2, ••• , Da corresponding to a+1 hypotheses 
H„ H1, ••• , Ha, respectively, where under H„ X has a density equal to one of the 

hi(x) (i =1, 2, ••• , k) and under Hi the density hk+i(x) (i= 1, 2, •-• , a). We shall denote 
by E2(,) the expectation of ( , ) when the X have probability density h ,(x).
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   THEOREM 3. Let Co= Ici)(x); Eiyo(X) co, i= 1, ••• , kl. 

                       a 

   (i) Sup E„0c0,(X) is attained by some one in C,. 
            4 Co z=1 

   (ii) If a decision function c(x) satisfies Eicoo(X)= co for i =1, ••• , k with the form 

                                               1 k            4
,,(.1) =1, (x), 0 when max hk+i(x)<, =, > M,-kE hi,(x) 

(4.1) 
          coi(x)=72i(x), 0 when h„j(x)=, < max h„i(x), 

                                                                                                               i=1,•••,a 

where (x) and n(x) are arbitrary, subject to the decision function cp and M0 (_� 0) is 

a constant. 

   Then 

(4.2) Ek÷iCoi(X) E Ekai(X) 
             i=ii=1 

for any other 3(x) in Co. 

                                                                                                                         a 

   PROOF. (i) Consider a sequence {C_(n)(X)} of the set C, such that E Ek+icain)(X) 

tends to Sup Ek-l-iCoi(X). By the generalization of the weak compactness theorem 
             49ECo i=1 

to vector-valued functions (KudO [6]), there is a subsequence {o(ni)(x)} of {com(x)} and 

co(°)(x) such that 

(4.3) coPV(x)d,u(x) coN(x)dp(x) 

for all integrable f(x) w. r. t. a. Since 

(4.4)Scli)(x)hi(x)dp(x) hi(x)dit(x) for i =1, • • • , k , 

c9c0(x) belongs to CO. On the other hand, 

                                                                      a (4.5) E„.iCD(ni)(X) Sup E Ek÷iC0i(X) 
        i=1 0=1 

Henceco(o(x) maximizes Ek+iC0i(X) among C,. 

   (ii) Consider the integral fg(x)dp(x), where 

(4.6)g (x) = (co 0(x)— c' o(x))M o • –11-e-ci(coi(x)— i(x))hk+i(x) , 
                                                                            1=1 

co(x) satisfies EiC00(X) = Co (1 = 1, ••• , k) with the form (4.1) and-0(x) is any other decision-
function in Co. 

   We devide the sample space into there disjoint regions : {x : coo(x)= 1}, Ix : c90(x) 
= (x)} and Ix : CO,(X)= 0}. It will be verified that g(x)� . 0 in each of these regions.. 
For {x: coo(x)= 1}, 

            g(x) = (1—00(x))11/10• k1 hi,(x)— C3i(x)h„i(x) 

            1 k1k             _�(1—Coo(x))(1,1,--k= 0 , 
for Ix: coo(x)= (x)},
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                   1    g (x) -ap,(x),(x)) M•k                     • hi,(x)+ (1—coo(x))imaxhk+i(x)—i maxh„i(x)  E  ci(x)                                                                                                                                           =1.•••,a 

                                                a        _= max h„i(x)— E foi(x)) max h„i(x)= 0 , 
        i=1,•••,ai=1i=1,•••,a 

and by the same argument g(x)�. 0 for x in Ix : ,(x) _= 01. Therefore, 

(4.7) (cci(x)—('),(x))h,4,i(x)dtt(x) f(rpo(x)—coo(x)) Ehi,(x)dp(x)�0 . 
 i=1•=1 

The proof is thus completed. 

   We shall cite the following definitions for the present section. 

   DEFINITION 1. A decision function co(x)=(coo(x), coi(x), ••• , yo,a(x)) is of size a for 

H, if 

(4.8)Eigo,(X)�1—a for i= 1, 2, ••• , k . 

It is of exact size a for Ho if the equality holds for all i= 1, ••• , k. 

   DEFINITION 2. co(x) is symmetric in power for Hi if 

(4.9)Ek+iSpi(X)— Ek+2402(X)— • • • = Ek+a,,,(X) • 

The common value of (4.9) is called the power of c9 for Hi. co(x) is called the most 

powerful symmetric of size a (MPSS a) for Hi, if it maximizes each term of (4.9) sub-

ject to (4.8) and (4.9). 
   Now, we assume that there is a measurable transformation group G on X such 

that G is isomorphic to the permutation group H = lKO HA, where HK and HA are the 

permutation groups on K= (1, 2, ••• , k) or its subgroup transitive on K= (1, •-• , k) and 
on A= (1, 2, ••• , a) or its subgroup transitive on A= (1, ••• , a), respectively. We further 

assume that p(A)= te(gA) for all AE and all g G, hi(x)=h,,Kgi(gx) for all i =1, ••• , k, 

and all g E G, and 12,+,(x)= hk+„Agi(gx) for all i = 1, ••• , a and all g E G, where 2-cA, E HA 
and 7rE, E HK, respectively, corresponding to g. Then we have the following corollary . 

   COROLLARY 2. There is a MPSS a test for testing H, against Hi, i= 1, 2, ••• , a . 

It isgivenbytheform(4.1)in Theorem 3 withe(x)a constant and7);(x)=1N(
x) „ 

where N(x) is the number of times that max hk+i(x) is attained. i. e., 

                                             1 k             c0
0(x):= 1, e, 0 when max hk+i(X)<, =, > Mo.kE hi,(x) 

(4.10)                 1
yoo(x)            Co

i(x)=N(x), 0 when hk+i(x)=, < max hk÷i(x). 
                                                                                                                                   i=1,•••,a 

   PROOF. Let 

              Pi[( max hk+1.(x)/1-kE h.,(x))_< M] = a .(M) 
              i=1,•••,a/k 

The probability is computed under Pi (i = 1, 2, ••• , k). We shall verify that ai(Ili) is 
independent of i, i. e. ai(M) = a(M) for i = 1, 2, •-• , k. To see this , let 

                                     /1 k              ai(M) = PI(max hk,i(x)/E hi,(x))IV]               PI( .                              max
=1,•••,ak 

                    =Jhi(x)dp(x) . 
                                                                hi'(x)�_m
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By letting y = gx, this is equal to 

                                        h(g-iy)dtt(g-ly) 
                        i=nr,ahk'Agi(Y)z,1.1h1r-irgif ("""f 

                             khir,,,i(Y)dPO) 
                              Tax, ahk-l-irAgi01)klt,Kgi''y)<_m 

           = 

                      max hk±i(Y)Ehi' (v)L5_-3fhz"(Y)Clit(Y) 
                                                  0 =1 

                -= a,,,(M) , i" (1 , 2, • •• , k) . 

Therefore ai(M) = a(A//) for i =1, 2, ••• , k. 

   Since a(M) is upper semi-continuous and monotonically increasing 

                                               k 

          Pi[(max hk+i(x)/ hi,(x)) = M] = a(M)—a(M-0) . 
                   i=1,•••,aK it 

For any a : 0 < a < 1, there exists an Mo such that a(Mo) �. a a(M 0-0). Put 
 = [(1—a)— a(Mo-0)1/[a(M0)— a(M, —0)1 and consider the decision function co(x) 

defined by (4.10). The size of ca(x) for Ho is 

(4.11) Eicoo(X) = a(M0-0)+(1— a)— a(M0— 0)                             a(M o)— a(Mo— 0)[a(Mo)—a(Mo-0)] =1—a 

   We note that the ca(X) is invariant, and hence 

                           E k+iC01(X) = = E kl-aC a(X) 

   By (ii) of Theorem 1, yo(x) is obvious a MPSS a test for Ho against Hi (i = 1, 2, ••- , a). 

   § 5. Remark. 

   We can consider a special case when k = a, in this case 7-c is assumed to be the 

permutation group on (1, 2, ••• , a) or its subgroup transitive on (1, 2, ••• , a). Theorem 
and corollary above also hold in this case when 7rgi = 7rKgi = 7rAgi for all i= 1, ••• , k. 
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