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   § 1. Introduction. 

   In most of works on Markov decision process ([1], [2], [3] etc.) Markov transition 
laws of states are assumed to be stationary in the sense that the transition law at 
any time depends on the state and the action at present time but not on the time. 
This stationarity of motion law yields some elegant properties on optimal strategies 
in the discounted case : In [2] Blackwell has proved that in the discounted case there 
was a (p, s)-optimal stationary strategy for any initial distribution p and any s < 0, 
especially in the case of a countable action space there was an s-optimal stationary 
strategy for any s> 0, and in the case of a finite action space an optimal stationary 
strategy. In [3] Strauch has cleared the stationary property of a strong (p, E)-optimal 
strategy in the discounted case. 

   In this paper we shall be concerned with a Markov decision process with non-
stationary Markov transition laws, and we shall study the existence and the properties 
of an optimal strategy, the existence of a strong (p, s)-optimal strategy, and the 
strategy improvements. 

   Our decision problem is based on four objects S, A, q= {q„ q2, ••• } and r. S and 
A are non-empty Borel sets, each qj is a conditional probability distribution on S given 
S x A, and r is a bounded Baire function on SxAxS. Here S is the set of states, 
A the set of feasible actions, q the sequence of Markov transition laws of states, and 
r a reward function. When the system is at a time j and in a state s and an action 
a is taken, the system moves to a new state according to the conditional probability 
distribution qi(• s, a), and if the system moves to a new state s', then we shall receive 
a reward r(s, a, s'). In this situation we wish to maximize the total discounted expected 
reward over the infinite future. 

   A strategy 77 is a sequence 771, 72, , where 7C j is a conditional probability dis-
tribution on A given (s1, a1, ••• , ai_„ si) for each j, and 7r is denoted by In-,,,z2,••• 1. 
A Markov strategy is a sequence f1, f2, ••-, where each fi is a measurable mapping 
from S to A, and a 1-stationary strategy is a Markov strategy such that rr = {1,7, f, •••} 
where 7 = f„ f2, , f1}. q is called 1-stationary if q= {q, q, q, • } with {q1, q2, 

   Our main results are the following : For any initial probability distribution p, 
any s > 0 and any q there is a (p, E, q)-optimal Markov strategy, i. e. there is a Markov 
strategy 7* for which p{1(7*, q) I(7, q)—s} for every strategy Tr, where I(7 , q) denotes 
the total discounted expected reward from a strategy a- (Section 4). If for each j 
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there is a (s, 1q)-optimal strategy, there is a (s/(1--33), q)-optimal Markov strategy, 
where e� 0 and 1q = T/4.2, • (Section 4). For each j 0 -IT:* is a .1g-optimal if 
and only if the total discounted expected reward from 7* satisfies the system of 
optimality equations, where 17r* = {71i. 1, 772, •} for 2-r* {n-P, •••} (Section 4). If 
there exists a -1g-optimal strategy for each j 0, then there exists a q-optimal Markov 
strategy. If A is essentially countable, there is a (s, q)-optimal Markov strategy for 
every s > 0 and every q, and if A is essentially finite, then there is a q-optimal Markov 
strategy for every q (Section 4). Eespecially in the case when q is /-stationary, all 
of the results in Section 4 stated above hold by putting a /-stationary strategy in 

place of a Markov strategy (Section 5). Every sequence of Markov strategies is 
strongly s-dominated by a Markov strategy for every s > 0 (Section 6). For any p, 
e > 0 and any g, there is a strong (p, a, q)-optimal Markov strategy (Section 6). In 
Section 7 there are given several theorems on the improvement of strategies. 

   In [3] Strauch has derived all of his results on the strong optimality, i. e. the 
strong (p, s)-domination, the existence of the strong (p, s)-optimal Markov strategy and 
of the strong (p, s)-optimal stationary strategy etc., with the help of a "conservation ". 
But our proofs of results on the strong optimality are more direct without appealing 
to the " conservation " (Section 6).

   § 2. Probabilistic definitions. 

   By a Borel set we mean a Borel subset of some complete separable metric space. 

The class of all probability distributions on X is denoted by P(X). For any nonempty 

Borel sets X, Y a conditional probability distribution on Y given X is a function 

q(• 1.) such that for each x E X, g(• x) is a probability distribution on Y and for each 
Borel set BC Y, q(BI •) is a Baire function on X. The class of all conditional prob-
ability distributions on Y given X is denoted by Q(Y I X). The product space of X 

and Y will be denoted by XY. The class of bounded Baire functions on X is denoted 

by M(X). For any u E M(XY) and any q E Q(Y I X), qu denotes the element of M(X) 

whose value at xo E X is qu(xo) = u(xo, y)dq(y I xo). For any p E P (X) and any u E .11/1(X), 

pit denotes the integral of u with respect to p. 
   For any p E P(X), q E Q(Y I X), pq is the probability distribution on XY such that, 

for every u E M(XY), p q(u) = p(qu). Every probability distribution m on XY has a 

factorization in = pq ; p is unique and is just the marginal distribution of the first 

coordinate variable with respect to m ; q is not quite unique ; it is a version of the 
conditional distributiontion of the second coordinate variable given the first. These 

facts are given in [4]. 

   We extend the above notation in an obvious way to a finite or countable 

sequence of non-empty Borel sets X1, X2, ••-. If 'gm E Q(X.-1-11 X • X,) for n 1 and 

p P (Xi), Pq1q2 4, is a probability distribution on X1X2 ••• X„Paa                                                                 +1,._1.2 is a prob-
ability distribution on the infinite product space X1X2 • • • , g,q, Q(X3X4 I X1X2), for any 
11 E_ M(Xj., • Xn+1), n _� 1, and any m, 1 m n, gni, • • • gnu M(X, • X„), etc. 

   For the sake of simplicity, we introduce the following ambiguity : for any function 

zf on Y, we shall use the same symbol u to denote the function v on XY such that
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, y) = u(y) for all y. Thus, for example, for any q Q(17 I X), u qu ilf(X); 
any Q(1il X) will also denote the element q' of Q(Y1ZX) defined by q/(• z, •) 
= q(• '•), etc. 

   A p E- P(X) is degenerate if it is concentrated at some one point xEX; a 

q Q(Y I X) is degenerate if each q(• x) is degenerate. The degenerate q are exactly 
those for which there is a Baire function f mapping X into Y for which q({ f(x)} x) =1 

for all x X. Any such f will also denote its associated degenerate q, so that, for 

any a fa(x)= u(x, f(x)) for all x E X. 

   We shall use the following. 

   LEMMA 2.1 (Blackwell [2]). For any q E Q(Y I X), u E- HUM, there is a degenerate 

f Q(Y IX) such that 

                       fu �qu for all x E X .

   § 3. Decision problem definitions. 

   Our dynamic programming problem is defined by S, A, q, r where S, A are any 
non-empty Borel sets, q= {q1, q2, q3, • -}, qi e Q(S SA) for i= 1, 2, 3, • ••, r Al(SAS), 
and 0 < 13 < 1. A strategy r is a sequence {71, r2, 73, •}, where 7.77, G Q(A HO and 

IL= SASA ••• S (2n-1 factors) is the set of possible histories of the system when the 
n-th act must be chosen. A strategy i-c• is Markov if each Ir„ is a degenerate element 
of Q(A S), i. e. 7,7 = {f„ f2, f3, •••}, where each fn is a Baire function from S into A, 
and is 1-stationary if it is Markov and 7: = {1,1, •••} with {f„ f2, •-• , A}. The 
/-stationary strategy decided by / is denoted by P-). 

    For any strategy let "7, = n+1, Zn ;-2, • • • } denote the strategy which 7r. defines 
from the (n-H-1)-th stage onward. In particular, °Tr = C. And let nq = {qn±„ qn±2, •••}. 

   Any strategy r, together with the law of motion q, defines a conditional prob-
ability distribution on the set X= ASAS ••• of future of the system given the initial 
states s ; i. e. it defines 

                             e,=7,q,72q2 •-• G Q(X1S). 

Any reward function r defines an expected reward function on S gixen by 

                        1(7, q)= en. E a1, s1+1) • 
                                                    J=1 

For any v E M(S), let 

                   1„(7, q, 2;)= e,[± 733-1r(s j, a1, 
                                                          J=1 

We shall denote In(7, q, 0) by .1-7,(7,-, q). Let Q* denote the class of all sequences {q1, q2, ••• } 

such that qnE Q(S SA) for 72 =1, 2, • ••. 

   It is clear that 

   LEMMA 3.1. In(7, q, 1(7, q) as n cc for any v E 1.1(S) and any q Q*. 

   For any p P(S), any s > 0, and any q E 77* is called (p, E, q)-optimal if 

P{I(7*, q) 1(7, q)-r} = 1 for every 7,-. 7,-* is called (s, q)-optimal if it is (p, s, q)-optimal 
for every p E P(S), or, equivalently if 1(7*, q)� .1(7, q)-E for all 7r and is called 

q-optimal if it is (s, q)-optimal for every E > 0, or, equivalently if 1(2-c*, q)� I(7, q) for 
all 7..
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   § 4. Optimality. 

   LEMMA 4.1. For any p P(S), s > 0, and q Q*, there is a (p, S, q)-optimal Markov 
strategy. 
   The proof of this lemma is straightforward by replacing q in Theorem 2 of [2] 
by q,. 

   With any measurable f„ from S to A and any qjs- Q(S I SA) we associate the 
operator To from M(S) to M(S) defined by 

               T ou(s) = Er (s , fn(s), i3u(t)]dq j(t I s, fn(s)) 

We shall call To the operator associated with (f„, (Li). With any Markov strategy 
 = { f1, f2, •••} and any q; Q(S1SA) we associate the operator U.; from M(S) to ill(S) 

defined by 
                          U ju(s)= sup T „ju(s) , 

where To is the operator associated with (f„, qj). We shall call Ui the operator as-
sociated with (7r, qj). Let (f„, qj),---,To mean that T7 is the operator associated with 
(f„, qj), and let (7, q;) U; mean that Uj associated with (7, qj). The following prop-
erties of T7,1 are immediate from the definition. 

   THEOREM 4.1. (a) To is monotone; i. e. u v implies Tou U Toy. 
   (b) To(u+c)= Trott- H.3c for any constant c. 

    (c) If r=f1,f2, • } is a Markov strategy and (f„, then T„T„ •-• T,„v 
= I„(7, q, v) for each n. 

   (d) If 7 = { f,,f2,•••1 is a Markov strategyand (f,„q„),T„„,then T„„1(m7,nq) 
= I(n-17,n--1q) for each n. 

   For any Markov r = f„ f2, ••-} we shall say that measurable f mapping S into A 
is 7-generated if there is a -;artition of S into Borel sets S„ S2, ••• such that f=f„ on 
S„ and we shall say that a Markov = {g1, g2, •-• } is 7-generated if each measurable 
g„ is 7c-generated. Let F(7) denote the class of all 2-.--generated measurable functions, 
and let G(7) the class of all 2-generated Markov strategies. 

   THEOREM 4.2. (a) Let 7. be any Markov strategy. Then for every Q(SISA), 
T ju U ju for any f E F(7) where (f, 

   (b) For any harbor 7, any s> 0 and any q1 E- Q(S1SA), there exists I; F(7) such 
that l'iju�Uju—s where (f.,, 

   PROOF. (a) Let 77 be any Markov strategy. For any f F(7), let (f, 
By the definition of F(7), there exists a partition of S into Borel sets Si, S2, ••• such 
that f=f7, on S. Then for s S „, ju(s) T „i u(s) U; u(s). This holds for each n, 
which implies that T. u(s) U ju(s) for all s. 

    (b) Let 7 = f1, be any Markov strategy, and let (fm, q1) ,--'T„1. We let 
So= {siTniju < U ju—s for m n-1, T„ju U ju—s}, and define fi by _.1-1;-=f„ on S. 
Then for s m So, ju Tou�;it -E.', where (jj, jj. So 1" jju jU - E. every-
where. Obviously fiF(7). Hence the theorem is proved. 

    For any Markov 7 and any q Q(SISA), let (x, q1) U1. We shall call ul`_, 
      U jU ••• Unu the limit point associated with (7, 1-1q), where TIE. M(S). Let
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  j-10'' -'11411 mean that up„ is the limit point associated with (7,7, j-,q). In particular 
let u* Wow. 

   THEOREM 4.3. (a) For any Markov 7 and any q j E Q(SISA), let (7., q),u*. Then 

   q)� u* for every E G(7). 
   (b) For any Marko?: r, any e> 0 and any qj-E Q(S ISA), there is a G(7) such 

that IV:, q) �u*-E, where (7, q), u*. 

   (c) If for each j 0 there is a (s, jq)-optimal strategy, there is a (E/(1- q)-optimal 
Markov strategy, where s � 0. 

   (d) Let (f =- a, q1)--, T co. Then if for avery E> 0 and for every 0 there is a 
(s, jq)-optimal strategy, there is a Markov strategy ;',7 such that the limit point rip 
associated with (2-, jq) is a Baire function for each j and it satisfies the equations ref„ 
=_ sup Taft/ for j =1 , 2, 
   aEA 

   (e) For each j 0 jr* is a jq-optimal if and only if the reward of 7* satisfies the 
optimality equations ; I(j-17*, j-'q)= sup TajI(j7c*, jq) for j =1, 2, • ••. 

                                            aEA 

   PROOF. (a) Let r be any Markov strategy. Let = {g„ g2, •-• E G(7), and let 

(g1, qj), Pi. By Theorem 4.1 (d) we have l'7,„I(n,n.(1)= 1(n--1. ,72-'q) for each n, and 
backward inductively                    T11- 22 • •• nq) q), i. e. 1'111'22 • •• q), where 
tin= I(71-.,nq). 

   Since for any u M(S)      

11'111'22 i3n(11r11/(1-i3)+11u11) 

we have 

               

11/(7•, q)-t1T22 l'nnu II 5_ i3n(l!r11/(1 -13)± Full) 
Therefore           - 11- 22 • • • 1"„„u q) as n CO. In virtue of Theorem 4.2 (a) Tjju <_ LT ;it 
for each j, so that backward inductively                                              11 22 • • • pj,j71 Ul 1-72 • • • Uju for each j, which 
implies that I(7 q) u* letting cc. 

   (b) Let E' = r(1-p). Then, from Theorem 4.2 (b), there exists an /I; m F(7) cor-
responding to (q1, u) for which Tiju Uju-E' where (L, Similary there is 
an f,_, E F(7) corresponding to (q1_1, Uju-e) for which Ti_1,i-Kiu-s1)� Uj,(U;71-0. 
Thus we verify inductively that 

          T11l'22 • • • j -�U1U2•'• j11-6/(1+13+ ••• +43-') for all 1 . 

We conclude that I(, q) u* E1(1- = u*-s, letting j cc. 
   (c) Assume that ej {7j„ 7ri2, -} is a (E, jq)-optimal strategy for each 1�, 0. 

From Lemma 2.1, for each j there exists a degenerate f such that 

       1(e1-',1-1q)-1g)] <iqi[r-H3{/(7*-1, jq)-FE}] 

                   fjqj[r+13{I(7*-1,1q)+5}1=TijI(7r*j, 5q)- - Fi.SE , 

where (f1, qj),--,Tjj. We have inductively degenerate f„ f2, ••• , fj, for which 

       T,IT„ ••• TijI(7r*j, jq)� I(7*°, q)-e(9+ p2+ ••• H-Y) for all j 1 . 

Letting j co yields IV:, q)� I(7*0, q)-136/(1-13), where 7s: = {fp f2, • • • }- 
   Since 7:-*° is a (E, q)-optimal strategy, I(7*0, q)� I(Ir, , q)- E for all 7r. Therefore 

  , q) 1(7 , q)- E / (1- - (3) for all r, which implies that is a (E / (1- - (3), q)-optimal Markov
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strategy. 

   (d) From (c), the hypothesis implies that there is a (1/n, 'q)-optimal Markov 
strategy rrjn, say, for each n, j. Let ft be a Markov strategy for which 77'n G(;=:) 
for all j, n and let (ft, 

   From (a), we have I(7, WI for all r E G(;=:). Since 7.11 G(;=-2) for all n, j, 
    jq) for all n , j. But from the definition of 7:1", I(7ln, jq)� jq)-1 /a for 

all 7C. Therefore _� I(;7 , j q)-1 / n for all r. Letting as co yields _� I(7c , j q) for all 
r and all j. Since from (b) there exists a ;=-::72j G(7T) such that , jq)� 14 —1/n for 
each n, j, we conclude that 

                       j q)+ 1/n1 = I((a, Fri'), j-lq)+ /n 13/a , 

which implies sup Tajil �11_, On the other hand it holds that sup Tajil Ujit7 
  a-1Aa _A 

= Ü71. Thus we have sup T „jai = feiLi for each j. 

   (e) Assume that '7r* is a iq-optimal strategy for each j. Then from (c) we may 
assume 7r* = fP, f:, •••} is Markov without loss of generality. Hence I(j-le, 3-1q)80 
=T*(so), jjq)Sofor each j, so that I(j-17*, j-1q)80sup TajI(j7r*, fq)so for each j. 

Since this holds for any so E S, it follows that I(j-17r*, j-1-q)_. sup TajI(j7r*, jq) every-
                                                                                       aZA 

where for each j. But I(j-17r*, j-1q)� I((a, jr*), T „J('T*, jq) for every j and for 

all a E A, which yields that I('-1 7r*, j-'q) sup TajI(j7r*, jq) for every j. Finally we 
                                                           aEA 

obtain optimality equations for 77* ; I(j--1 7r*, j-lq)= sup TaiI(je, jq) for every j. 
                                                                                                                  a--=A 

   Conversely assume that Tr.* satisfies the optimality equations. In virtue of Lemma 
4.1, for any p E P(S), s > 0, q E Q*, there is a (p, s, q)-optimal Markov strategy ft 
= f2,••), say, i. e. PII(7i.-, q) Arc, q)—s} =1 for all 77. So in particular it holds that 

   q),,,� I(7r, q)so—s for all 77. Let (fj, jj, then from the assumption I'd(l7r*, jq) 
  I(j-17r*, i-'q) for every j, and backward inductively I: „1"..„ ••• TijI(j7r*, jq)� I(7r*, q) 

for every j. Letting j co yields Aft, q) I(7r*, q). 
   Therefore we have 

                I(7r, q)30 q)8 0-Fs I(7r*, q)so+s for all 77 , 

and we have I(7r, q)so_I(7c*, q)so for all 77 by letting E.—>0. This hold for any s, S, 
hence I(7 q) I(7r*, q) for all r, which implies 77* is a q-optimal strategy. Similary 
we get jr* is a 'q-optimal strategy for each j. This completes the proof. 

   The following Corollary is an immediate consequence of Theorem 4.3 (c). 
   COROLLARY. If there is a jq-optimal strategy for each j _� 0, then there is a 

,q-optimal Markov strategy. 
   We shall say that actions a and b are equivalent at (s, q1) if r(s, a, •):= r(s, b, -) 

and q j(• is, a) = q j(• Is, a), i. e. if Taju(s)=Tbju(s) for all u E M(S). We shall say that 
actions a and b are equivalent at (s, q) if r(s, a, •) = r(s, b, •) and qj(• !s, a)= q;(• Is, a) 
for all q in q, i. e. if Taju(s)=Tou(s) for all it E Al(S) and for all q1 in q. For any 
Markov 7r= f„ f2, ••• } A will be called essentially countable by r if for every (s, a) 
there is an n for which fm(s) is equivalent to a at (s, q). A will be called essentially 

finite by r if there is a partition of S into Borel sets S1, S2, ••• such that for every 
(s, a) with s Sn, at least one of the actions f i(s), f 2(s), • • • , f (s) is equivalent to a at
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 (s,  q)• 
   LEMMA 4.2. If A is essentially _finite by 27 = If1, f2, then for any qi E Q(S SA) 

and any u M(S) there exists F(;r) for which I'L,u= Lift( where (if, and 
(7, U7. 

    PROOF. We let Sio IsIT,Ju < U fit for in n-1, Tn./it = U ju 1. Then {s7,1, n= 1, 
2, •••} comes to be a partition of S, since in this case Uiti = max T„ju. We set 11= f„ 

on S„;. Then for s w So, 1' iju Tniu Uiu, which completes the proof. 
   THEOREM 4.4. (a) If A is essentially countable by ;r= { f„ f2, ••• }, there is a (s, q)-

optimal Markov strategy for every s > 0 and every q m Q*. 
   (b) If A is essentially finite by 7, there is a q-optimal Markov strategy for every 

    Q*. 
   PROOF. (a) From the assumption, for any u E M(S) sup Tniu = U iu = sup Toll 

                                                                                                      a EA 

for all 1, where (f„, q;),Tni and (77, qj)--, Ui. Thus Tou U ju for any u M(S), all 
   A and all j. 

   On the other hand, from Lemma 4.1, for any p E P(S), s> 0 and q Q* there is 
a (p, s, q)-optimal Markov strategy, say = {f„ f2, •••}, which yields that 

                       I(7‘;, q),„� I(7r, q),0-s for all 7I . 

We let (fi, then we have 1'111'22 ••• U1U2-•• Uju for all j. Letting j -* cc 
yields I(', q)�0, where (7r, u* 

   Thus we have 

                 /(rr, q)S0 q)10+E U*(S 0+6for all 7 

Letting yields that I(7r, q),„ a*(so) for all 7. This holds for all s0 S, so that 
I(7c, q) u* for all 7r. 

   In virtue of Theorem 4.3 (b), there is a Ft m G(rr) for which I(.7 q)� u* - s. There-
fore we have I(, q) I(7r, q)- s for all 7. Thisis (6, q)-optimal. 

   (b) From Lemma 4.2, there is a Markov strategy {f„ f2, ••• with L E F(2r) 
for j =1, 2, • •-, such that 

                             T11T22• •• tiu= U, U2 ' • • Uju 

Letting j 00 yields I(ft , q) = u*, where (7r, u* 
   But in the proof of (a) we see that u* I(7r) for all 7 r. Thus we have IV:., q) 

  I(7r) for all r, which completes the proof.

    § 5. 1-stationary strategy. 

   In this section we shall be concerned with the case when it is known to us that 
.q; varies in a cyclic manner. 

   We shall say that q is 1-stationary if there exist qjs E Q(SISA), = 1, 2, , I), 
such that q {q, q, -} where q = {q1, q2, ••• , q1}. An 1-stationary q is denoted by q("). 
We shall say that a Markov strategy :r is 1-stationary if there exist degenerate /is, 
( • -1•-•1)such that rz• = ,•••where 7-= If2i, f,•••• -„2,,,f}An 1-stationary 
_strategy is denoted by 1(). 

   For any Markov rr = {f1, f2, -} we let U1 the operator associated with (7., q1) for
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j =1, 2, ••• , 1. We shall call U1E--- U1U2••• Ui the operator associated with (7, q) where 
q=_ {q1, q2, ••• , q1}. (7c, or, 01 means that U1 is the operator associated with (7, 4-). 

   The following Lemma is immediate from the definition of Ui. 
   LEMMA 5.1. (a) Uj is monotone for each j. 

   (b) For any constant c, U1(u+c)=Uju-H3c. 
   THEOREM 5.1. 01, the operator associated with (rc, q), is a contraction with a con-

traction coefficient pi, i.e. 11.7,u-CII-H1-� i311u-v11, where ;;u11 = sup ju(s){. 

   PROOF. From the difinition of a norm we have v u - v11. In virtue of 
Lemma 5.1 it follows that 

           U U u , 
and so 

                               utt,_ Ulu < 1301-1)11 
   Similarly we have 

                                            182 71-1)11 
and inductively we have 

                      U, U, • • Uiv- U1U2 U1u �- P'111,1 , 

which shows that Cliv-ritu p'11u-v1;. Interchange u and v to obtain Ciu-r/tv. 
  Yllu-v11. Thus we have It CI tu - ,v11 -v11, completing the proof. 

   The general properties of optimal plans for /-stationary q are contained in the 
following theorem. 

   THEOREM 5.2. (a) For any Markov 7r and any 1-stationary let (7r, 0, 01. 
And let Ceix- be a fixed point of U1. Then 1-(2=L-, q(-))� fir for every e G(7r). 

   (b) For any Markov 7r and any 1-stationary q =q(-), let (7r, q), U1. And let at be. 
a fixed point of U1. Then for every E > 0 there is a 1-stationary strategy Pc') EG(7r.), 
for which I(Pc), --e. 

   (c) For any p E P(S), s> 0 and 1-stationary q---q(-0), there is a (p, E, q(-))-optimal 
I-stationary strategy. 

   (d) For any s 0, if there is a (r, (q1, qj,,, ••• , q1, q('')))-optimal strategy for 
j 2, ••• , 1, then there is a (s1(1--i3), q("))-optimal 1-stationary strategy, where {q1, 
q2, q1}. 

   (e) Let q be 1-stationary. Then iir* is 1q-optimal for j =1, 2, ••• , 1 if and only if 
the expected reward of n-* statisfies the optimallity equations ; I(j--17r*, j-lq)= sup Taj10-C*, 
iq) for j =1 , 2, ••• , 1. 

   PROOF. (e) is immediate from (e) of Theorem 4.3. We shall prove (a)--•(d) only. 
   (a) Let 7 = {q1, q2, •••} be any 7-generated strategy. Let (g1, q1),-,1"11. Then, as 

stated in the proof of Theorem 4.3 (a), if holds that "7"                                                        -11- 22 • • • rip I(7u, q(-)) as CC 
for all u E M(S). 

   Since g1 G F(r) for i = 1, 2, ••• , from Theorem 4.2 (a), it follows that 

                       I'm/ +1,1n/ 4-2, 2 tn2,4-1)/, /it � Uj. U2 • • • U1u = 017,1 
for each m and for any u E M(S). Thus in particular 

                           Tm1+1, llm/ +2, 2 • • • l'On+1)/, jui �- U1ui =
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for each  In. Inductively we have 

                                   (Im14 1, 11'ml-1-2,2 • • • l'(m+i),, b)ir 
                               m=0 

Letting n cc yields that I(=, 4,'-))-�iir. This hold for all f: E G(7). 

   (b) Let s' r(1 —45). In accordance with Theorem 4.2 (b) there is an F(7) 
corresponding to (q1, fit) for which 

                                     U —s' , 

where (ft, q1) and (7r, q1)--- U1. Similarly there is an fi_i E F(7r) corresponding to 
01_1, Uifir —el for which 

                  Tt i(uifit 

where (A_ a              ,/-3) - /-1,/-1 and (7r, q1_1), U1_1. Thus we have 
                                    —0+,8) 

by Lemma 5.1 (b). 
   By backward induction we obtain 

     T11T22 ••• Tunt �U,U2— u,fir—s'(1+(3+ ••• +,61-9=7;11 —s'(1+,8+ •-• 

Again inductively we have 

           (P111'22 l'Urfit � fit —Si(l+(3+ • • * +Pn1-1) for all n, 
from which it follows that i(j(-), q(-))�.fit —s1(1---13) = at—E. This Pc') is obviously 
1-stationary and 7r-generated. 

   (c) In virtue of Lemma 4.1 there is a (p, r/2, q(-))-optimal Markov 7r = f2, •••} 
for any p E P(S), e> 0 and any /-stationary q(-). Let (7, 0, U1 and let ui be a fixed 

point of U1. Then from (b) there is a 7r-generated /-stationary f() for which 

                            q(-)) � fit —6/2 
From (a) it follows that 

                              I(7r , q(",) . 
Thus we have 

                        q(")) � at —E12 _� I(7r, q(-))—s/2 . 

   On the other hand, since 7r is (p, r/2, q(-))-optimal, we have 

               P{I(7r, :1(.0)) I(7r', q("))— s /2} =1 for all 7r' . 

Hence it follows that 

               P{I(P"), to)) I(7r', q(-))—s} =1 for all 7r' . 

This 1(-) is (p, s, q(-))-optimal 1-stationary. 

   (d) Let qi,,, •-• , q1). Assume that there is a (e, q,, q(-)))-optimal strategy, 
say 7r*j = {7r 7r52, • ••}, for each j= 1, 2, , 1. 

   In accordance with Lemma 2.1, for each j 1, 2, ••• , there exists a degenerate- 

f; for which 

               I(7r*J, q(")))= 7z-f1g./Er+ fiI(17r*i, j,,, 4(")))] 

                             r .71q1Ird-13{/(7r*j+1, q(")))-hell
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 <=„fiqiir+  i{A7*3+1, (4J+i, q")))+Eli 

                             =T ./J.1(7*j', (4J4-1, q(")))+13s 
where Cf j,Ti;. Since (qt,,, q(-))= -4() and so 7,7*1÷177*1, inductively we have 

           T„T„•-•>q(c,,),(t3+i32+ +i31) 

Again inductively we have 

      (T„T„••• T„)"gei, q(-)) q(-))-s(r3+,32+ ••• ±1.3"1) for all n . 

Letting 00 yiels that 

                         q(")) Re', q(-))-- EIS/(1-13) 
where 1= {fp f2, ••• , ft}. 

   But, since 7z-*1 is (s, q(-))-optimal, it holds that 

                   I(7r, V)) I(7r*1 , q(-))+E for all 7r . 
Thus we obtain 

               I(7r, q()) q("))+E/(1- p) for all 7r , 

which implies that ime) is a (e/(1-43), q("))-optimal /-stationary strategy.

   § 6. Strong optimality. 

   In this section we shall define another optimality more strengthened than that of 

preceding sections, and we shall investigate an existence and some properties of an 
optimal strategy in this sence. 

   We let v:= sup I(7r, q), 7* will be called a strong (p, s, q)-optimal strategy if 

Awe, q)�._v:— sl = 1. 
   The following two theorems are immediate respectively from Theorem 4.3 and 

from the proof of Theorem 8.1 in [3] by replacing (q, q, •••) by (q1, q2, •••). 
   THEOREM 6.1. For any p E P(S), any q E Q* and any strategy 7, there is a Markov 

strategy for which pi(71-, q)� pI(7r, q). 
   THEOREM 6.2. For any p E P(S), s> 0 and any q Q* there is a strong (p, E, q)-

,optimal strategy. 

   The following theorem is an alalogy of Theorem 6.2 in Strauch DI We shall 

prove it directly from (a) and (b) of our Theorem 4.3, whereas Strauch did by using 
the property of the " conservation ". 

   THEOREM 6.3. For any sequence of Markov strategies {7r1, j =1, 2, •••}, s> 0 and 
any q E Q*, there is a Markov fc for which I(ft , q)_� sup I(7ri, q)—s. 

   PROOF. We can find a Markov strategy 7r such that 7 ri E G (7r) for j 1, 2, •••. 
Let (7r, q) u* for this 7. 

   Then, from (b) of Theorem 4.3, there is a Markov strategy ;=2- E G(7r) such that 

                             I(, q) u* — s 

Since 7r.i E G(7) for j = 1, 2, •••, from (a) of Theorem 4.3, it holds that 

                         u* _� q) for j =1, 2, • • • , 

which yield that
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                               u* sup /(7:1, q). 

   Thus we have 

                            q)� u* —s sup I(7j , q)- , 

which completes the proof. 
   Now let us show that a strong (p, 5, q)-optimal strategy exists, in fact, among the 

Markov strategies, by making use of the above theorems. 
   THEOREM 6.4. For any p P(S), E> 0 and any q Q*, there is a strong (p, s, q)-

.optimal Markov strategy. 

    PROOF. We let 1.1= sup I(7., q). Then, in virtue of Theorem 6.2, there exists a 

.strategy (not necessarily Markov) for which q) >_ = 1. Hence we have 

                                 q) pv4:—E . 

   From Theorem 6.1 there is a Markov strategy 7.* for thissuch that 

                         pI(7* , q) pI(f. , q) 
'Therefore it follows that there exists a Markov strategy 7,-* for every s > 0 such that 

                      pl(7*, q) . 

   Thus for each integer in 1 we can find a Markov strategy 774 such that 

                      q) —iim 

Let vq = sup I(7m, q), then it folows that pvii_� pv-:--1/m. Letting m 00 yields that 

pvQ �pv4:. But prx,-�prgi, since 0: from the definitions of tZ and vq. Consequently 
pv'qf = pv,i. Again from that 2vq_�. vq, we have 

                           pol=vo =1. 

   In virtue of Theorem 6.3, for {e} there is a Markov Ft such that 

                       I(ir, — . 
Finally we have 

                        p{I(E, q) >4. 4.—s} = 1, 

which say that this Fr-is a strong (p, s, q)-optimal Markov strategy.

    § 7. Improvements of strategies. 

   In this section we shall be concerned with several methods of strategy improve-

ments. 

   THEOREM 7.1. If for a Markov strategy :=2 = {f„ 

                 1((f1, j7c), i-'q) IC-'7, i-Jq) for 1=1, 2, , 

Men q) I(7 , q). 
   PROOF. We let q1)—_,Tij, then from the assumption we get 

                   i";;IC7,1q) IC-'7, -1-1q) for j= 1, 2, . 
Consequently 

          1, J-it 2-c, jq)> j-iq)� IC-27, j-2q) for j = 1, 2, ,
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and inductively 

             ill' 2, • • • l J fie 'q) 1(°77, °q) = I(7., q) for j =1, 2, •-• . 

Letting j cc yields I(;=r, q) I(7r, q). 
   THEOREM 7.2. If 1("-17*, "--1q)� 1((f,n7*),"---'q) for all degenerate f and for every- 

n, then 7* is q-optimal. 

   PROOF. Let 77, = {f1, f2, ••• } be any Markov strategy. By the assumption we have- 

                   /0-177*,n-lq)1-((fm,72-1q,                                             )for n= 1, 2, •• • . 

   Let (f1,then plainly 

  T „T, 2 •-• �T„T„ • • • T„,,,,,I((f„, f7r*), n--1q) for n =1, 2, •• • , 

which implies that 

       g(fi, ••• 'VD .12, • • • , fn, n7:*), for n =1, 2, •-• . 
And inductively 

                I(7*, q) f2, •-• , f,,,717*), q) for n =1, 2, • • • . 

Hence we have I(7r* , q) I(7r, q) by letting n cc. This holds for any Markov strategy 
r, which completes the proof. 

   Now we shall define GIs, 27). Let (f m a, qj)--,T„-, then G 7C) is defined by 

      G 7r) = {a Taj/(j77, q) > /(i-17c, j-lq)} for 1, 2, ••• , and for s E S . 

   We shall conclude with the following theorem. 
   THEOREM 7.3. (a) If for every s m S and for every j Gi(s, r) is an emply set, 

then 7 is a q-optimal strategy. 

   (b) Let r = {./1, f2, -} be any Markov strategy. If for each j gi(so) G Gj(s„ 7) 
for some so and gi(s)= fj(s) for s such that gj(s) Gi(s, 7), then I(fr, q) where. 

 = fqi, q2, 1. 

   PROOF. (a) From the assumption it follows that 

                  i-lq)�1((gi,j7r), J-1q) for all gi and every j . 

Hence in virtue of Theorem 7.2 r is q-optimal. 

   (b) By the assumption, for each j we have 

                        I((gj, 1-1q), > j-lq)so 
and 

                           I((g1, 1-10s= IC-17c, 

for s such that g;(s) E G i(s , r), which implies that 

                  I((gi, -17), .1-1q) for j = 1, 2, ••• . 

Thus from Theorem 7.1 I(7'r, q) I(7r, q).
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