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§1. Introduction.

In most of works on Markov decision process ([17, [2], [3] etc.) Markov transition
laws of states are assumed to be stationary in the sense that the transition law at
any time depends on the state and the action at present time but not on the time.
This stationarity of motion law yields some elegant properties on optimal strategies
in the discounted case: In [2] Blackwell has proved that in the discounted case there
was a (p, ¢)-optimal stationary strategy for any initial distribution p and any e <90,
especially in the case of a countable action space there was an e-optimal stationary
strategy for any ¢ >0, and in the case of a finite action space an optimal stationary
strategy. In [3] Strauch has cleared the stationary property of a strong (p, ¢)-optimal
strategy in the discounted case.

In this paper we shall be concerned with a Markov decision process with non-
stationary Markov transition laws, and we shall study the existence and the properties
of an optimal strategy, the existence of a strong (p, ¢)-optimal strategy, and the
strategy improvements.

QOur decision problem is based on four objects S, A, ¢={q;, ¢, -~-} and ». S and
A are non-empty Borel sets, each ¢; is a conditional probability distribution on S given
Sx A, and 7 is a bounded Baire function on SXAXS. Here S is the set of states,
A the set of feasible actions, ¢ the sequence of Markov transition laws of states, and
r a reward function. When the system is at a time j and in a state s and an action
a is taken, the system moves to a new state according to the conditional probability
distribution ¢,(-|s, a), and if the system moves to a new state s/, then we shall receive
a reward (s, a, s’). In this situation we wish to maximize the total discounted expected
reward over the infinite future.

A strategy w is a sequence 7y, w,, -+, Where x; is a conditional probability dis-
tribution on A given (s, ay, -+, a;.;, s;) for each j, and = is denoted by {m,, 7, -+-}.
A Markov strategy is a sequence fy, f,, ---, where each f; is a measurable mapping

from S to A, and a [-stationary strategy is a Markov strategy such that =z = {7, £, 7, --}
where f={fy, fo -, f1}. ¢ is called [-stationary if q=1{g,q, g, ---} with §=1{q,, ¢5, -, q;}.

Our main results are the following: For any initial probability distribution p,
any ¢ >0 and any ¢ there is a (p, ¢, ¢)-optimal Markov strategy, i.e. there is a Markov
strategy =* for which p{I(z*, ¢) = I(z, ¢)—e} for every strategy =, where I(z, q¢) denotes
the total discounted expected reward from a strategy = (Section 4). If for each j=0
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there is a (g, /g)-optimal strategy, there is a (¢/(1—J3), ¢)-optimal Markov strategy,
where ¢ >0 and g = {q;+,, ¢z -} (Section 4). For each j =0 /z* is a /g-optimal if
and only if the total discounted expected reward from =m* satisfies the system of
optimality equations, where /7%= {r¥, ¥, ---} for z*={z¥ =¥, ---} (Section 4). If
there exists a 7g-optimal strategy for each j =0, then there exists a ¢g-optimal Markov
strategy. If A4 is essentially countable, there is a (¢, ¢)-optimal Markov strategy for
every ¢ >0 and every ¢, and if A is essentially finite, then there is a g-optimal Markov
strategy for every ¢ (Section 4). Eespecially in the case when ¢ is [-stationary, all
of the results in Section 4 stated above hold by putting a [-stationary strategy in
place of a Markov strategy (Section 5). Every sequence of Markov strategies is
strongly e-dominated by a Markov strategy for every >0 (Section 6). For any p,
¢>0 and any ¢, there is a strong (p, ¢, ¢)-optimal Markov strategy (Section 6). In
Section 7 there are given several theorems on the improvement of strategies.

In [3] Strauch has derived all of his results on the strong optimality, i.e. the
strong (p, ¢)-domination, the existence of the strong (p, ¢)-optimal Markov strategy and
of the strong (p, €)-optimal stationary strategy etc., with the help of a “conservation .
But our proofs of results on the strong optimality are more direct without appealing

to the “conservation” (Section 6).

§2. Probabilistic definitions.

By a Borel set we mean a Borel subset of some complete separable metric space.
The class of all probability distributions on X is denoted by P(X). For any nonempty
Borel sets X, Y a conditional probability distribution on Y given X is a function
g(-|-) such that for each x < X, ¢(-|x) is a probability distribution on ¥ and for each
Borel set BC Y, q(B|-) is a Baire function on X. The class of all conditional prob-
ability distributions on Y given X is denoted by Q(Y|X). The product space of X
and Y will be denoted by XY. The class of bounded Baire functions on X is denoted
by M(X). Forany ue M(XY) and any ¢ = Q(Y|X), qu denotes the element of M(X)

whose value at x, € X is qu(xo):fu(xo, )dg(y|x,). For any pe P(X) and any u € M(X),

pu denotes the integral of u with respect to p.

For any pe P(X), g Q(Y|X), pg is the probability distribution on XY such that,
for every ue M(XY), pqu)=p(qu). Every probability distribution m on XY has a
factorization m = pq; p is unique and is just the marginal distribution of the first
coordinate variable with respect to m; ¢ is not quite unique; it is a version of the
conditional distributiontion of the second coordinate variable given the first. These
facts are given in [4].

We extend the above notation in an obvious way to a finite or countable
sequence of non-empty Borel sets X, X,, ---. If ¢,€Q(X,4| X, -+ X,) for n=1 and
b= P(X), pq:Gs -+ qn is a probability distribution on X, X, .-+ X4y, pq1q, -+ is a prob-
ability distribution on the infinite product space X, X, .-, ¢,q, € Q(X,X,| X, X,), for any
we M(X, X, X, n==1, and any m, 1=<m=n, g, - g.u s MX, --- Xp,), etc.

For the sake of simplicity, we introduce the following ambiguity : for any function
1 on Y, we shall use the same symbol u to denote the function v on XY such that
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v(x, v)y=u(y) for all . Thus, for example, for any ¢= QY| X), u<= M(Y), qu = M(X);
any ¢ = Q{Y|X) will also denote the element ¢’ of Q(Y|ZX) defined by ¢'(-lz, -)
=q(-}-), etc

A p=P(X) is degenerate if it is concentrated at some one point x<= X; a
g =Q(Y|X) is depenerate if each ¢(-|x) is degenerate. The degenerate ¢ are exactly
those for which there is a Baire function f mapping X into Y for which q({f(x)} |x)=1
for all x= X. Any such f will also denote its associated degenerate ¢, so that, for
any u = MXY), fu(x)=ulx, j(x)) for all x= X.

We shall use the following.

LEMMA 2.1 (Blackwell [27). For any q= Q(Y | X), u = M(XY), there is a degenerate
= QY| X) such that

fuz=qu for all x= X.

§ 3. Decision problem definitions.

Our dynamic programming problem is defined by S, A, ¢, » where S, 4 are any
non-empty Borel sets, ¢={q,, ¢ ¢4 -}, ¢; = Q(SISA) for 1=1,2,3, -+, r = M(SAS),
and 0 < 8<1. A strategy = is a sequence {m, @, 7, ---}, where 7w,<= Q(A|H,) and
H,=SASA--S (2n—1 factors) is the set of possible histories of the system when the
n-th act must be chosen. A strategy = is Markov if each r, is a degenerate element
of Q(A|S), i.e. =={f,, fo, s -}, where each f, is a Baire function from S into A,
and is [-stationary if it is Markov and z={f, f, -} with f={f, /s - ,f}. The
[-stationary strategy decided by f is denoted by .

For any strategy =, let " = {m 11, Tpue, ---} denote the strategy which = defines
from the (n-+1)-th stage onward. In particular, z==. And let "¢ = {¢n+1, qns2 = }-

Any strategy =, together with the law of motion ¢, defines a conditional prob-
ability distribution on the set X = ASAS ... of future of the system given the initial
states s; i.e. it defines

On = T,q1 75, - € QX|S).

Any reward function r defines an expected reward function on S gixen by

1(”: q} - eﬂJzzl ﬁjﬂr(s.ﬁ aj’ SJ'—H) .
For any ve M(S), let

K . A
LGz g, 1) = oo 3 871(sp a5 s+ ]

We shall denote /,(z, g, 0) by I(x, q). Let Q* denote the class of all sequences {gq, g,, ---}
such that ¢, = Q(S|SA) for n=1, 2, ---.

It is clear that

LEMMA 31. [(zm, q, v)—I(z, q) as n—co for any ve M(S) and any g < Q*.

For any p= P(S), any ¢>0, and any ¢g< Q% =* is called (p, ¢, ¢)-optimal if
P, @) = I(x, g)—e} =1 for every n. =*is called (e, q)-optimal if itis (p, ¢, ¢g)-optimal
for every pe P(S), or, equivalently if I(z*, ¢)=I(z, ¢)—e¢ for all =, and is called
g-optimal if it is (e, g)-optimal for every ¢ >0, or, equivalently if I(z*, ¢)= I(z, ¢) for
all =.
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§4. Optimality.

LEMMA 4.1. For any p= P(S), ¢ >0, and q = Q*, there is a (p, &, g)-optimal Markov
strategy.

The proof of this lemma is straightforward by replacing ¢ in Theorem 2 of [2]
by ¢..

With any measurable f, from S to A4 and any g¢;= @Q(S|SA) we associate the
operator T,; from M(S) to M(S) defined by

Tu(s) = [ [r(s, £(8), D+ Bu(da tls, F(s))-

We shall call T,; the operator associated with (f,, q;). With any Markov strategy
a={fy, fa -} and any ¢; = Q(S|SA) we associate the operator U; from M(S) to M(S)
defined by

Uju(s)y=sup T,u(s),

where T,; is the operator associated with (f,, ¢). We shall call U; the operator as-
sociated with (z, q;). Let (f, q¢)~T,; mean that T,; is the operator associated with
(fa 97, and let (x, ¢;)~U; mean that U; associated with (=, ¢;). The following prop-
erties of T,; are immediate from the definition.

THEOREM 4.1. (a) T,; is monotone; i.e. u=<v implies T,;u <T,;v.

(b) T, u+c)y=T,u+Bc for any constant c.

(©) If ={fy fo -} 15 @ Markov strategy and (f,, q,)~*Tap then Ty Ty oo Typt
=1,(x, q,v) for each n.

(dy If #={f., fo -} is a Markov strategy and (f,, q,)~ Tyn then T.,I("z, "q)
= I(*"'z, *7q) for each n.

For any Markov 7 ={f,, f,, ---} we shall say that measurable f mapping S into -
is 7-generated if there is a oartition of S into Borel sets S,, S,, --- such that /=, on
S, and we shall say that a Markov n’={g,, g, ---} is z-generated if each measurable
g, is =-generated. Let F(z) denote the class of all z-generated measurable functions,
and let G(z) the class of all z-generated Markov strategies.

THEOREM 4.2. (a) Let = be any Markov strategy. Then for every q;= Q(S|SA),
Tou< Usu for any f e F(z) where (f, ) ~T}.

(b) For any Markov m, any ¢ >0 and any q; = Q(S|SA4), there exists f, = F(x) such
that Tju= Uyu—e where (f5, 4)~T ;.

PROOF. (a) Let = be any Markov strategy. For any f=F(z), let (f,q) T,
By the definition of F(x), there exists a partition of S into Borel sets S, S,, --- such
that f:fn on S,. Then for s=S,, T,u(s)="T,;u(s) < U;u(s). This holds for each n,
which implies that T;u(s) < Uju(s) for all s.

(b) Let w={f, fu -} be any Markov strategy, and let (fn g)~>T,;. We let
Sy ={s|Tpju < Upi—e for m=n—1, T,u= Uju-—ej, and define f; by f;=7f, on S,
Then for s&S,;, Tiu=Tau=Un—e where (f;,q)~=T;. So TjuzUu—e every-
where. Obviously fje F(z). Hence the theorem is proved.

For any Markov = and any g¢;= Q(S|SA), let (z,gp)~U; We shall call u¥,
=lim U,U;y, -~ Uu the limit point associated with (x, i-g), where ue M(S). Let

n-ox
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(= "'g)~u¥, mean that u*, is the limit point associated with (z, ~1¢). In particular
let w*=u¥.

THEOREM 4.3. (@) For any Markov = and any q; = Q(S|SA), let (x, ¢)~u*. Then
Iz, ) = w* for every # = G(=).

(b) For any Markov z, any ¢ >0 and any q;= Q(S|SA), there is a # <= G(z) such
that I(#, ) = u*—e, where (z, q) ~u*.

(¢) If for each j=0 thereis a (¢, ig)-optimal strategy, there is a (¢/(1—B), q)-optimal
Markov strategy, where ¢ =0.

(@) Let (f=a,qp~Tq;. Then if for avery ¢ >0 and for every j=0 there is a
(¢, 'g)-optimal strategy, there is a Markov strategy 2 such that the limit point af
associated with (#,7q) is a Baire function for each j and it satisfies the equations @,
:SlépA T,if for j=1,2, -

(&) For each j=0 z* is a Ig-optimal if and only if the reward of ©* satisfies the
optimalily equations; I(F-1z*, j‘lq):sup Tyl Fx*, 9q) for =1, 2, ---.

Proor. (a) Let = be any Markm strategy. Let 2={g, g, -~} € G(x), and let
(g5 g)~T; By Theorem 4.1 (d) we have T,,1("#, "q)= ("2, ""1q) for each n, and
backward inductively 7,7, - T, ("2, ") = I(2, @), i.e. Ty, Toy -+ Toptin, = I(%, g), where
u, = I("%, "q).

Since for any u < M(S)

]E’i‘llTZQ Tnnun_TnTzz Tnnu“ = B"u,—uj =grll/d— A+luly,
we have

1 =TTy -+ Tonttll  87CUril /A —B)+liul) -
Therefore 7,T, -+ Tu — I(%, ) as n—oco. In virtue of Theorem 4.2 (a) Tju < Uu
for each j, so that backward inductively 7,75, - Tju < U,U, --- U,u for each j, which
implies that I(z, ) < u* letting j — co.

(b) Let ¢’=¢(1—pB). Then, from Theorem 4.2 (b), there exists an /;= F(z) cor-
responding to (g, u) for which 7,u>= Uu—e¢ where (f;, q;)~T;; Similary there is
an f]_1 & F(x) corresponding to (g;-,, Uu—e¢’) for which 7;_, ;_ (Uu—e)= U;.,(Uju—e¢’).
Thus we verify inductively that

TuTs - Tiu=UU, - Up—e/(1+4B+ - 45D for all j=>1.
We conclude that (%, ¢) = u¥—¢’/(1— ) =u*—e¢, letting j— co.

(c) Assume that 7%= {7, 75, --} is a (¢ ‘g)-optimal strategy for each ;=0.

From Lemma 2.1, for each j there exists a degenerate f; such that

I, 479q) = 7y g, L+ BICTH 2, Jg) 7 s L+ SUGE, ) +e)]
=S+ BUGE, i) +e} ] =TI+, i)+ Se
where (f;, ¢)~T;;. We have inductively degenerate f,, f,, ---, f;., for which
ToToy o Tyl )= I, )—e(8+ G4 -+ for all j=1.

Letting j —co yields I(#, q) = I(z*°, )—Be/(1—fB), where 2= {f,, f», -}.
Since #n*° is a (g, g)-optimal strategy, I(z*°, q)=I(x, g)—e for all z. Therefore
I(#, 9) = I(z, 9)—¢/(1—p) for all =, which implies that # is a (¢/(1—f), g)-optimal Markov
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strategy.

(d) From (c), the hypothesis implies that there is a (1/n,7g)-optimal Markov
strategy =%, say, for each n, j. Let # be a Markov strategy for which #/" = G()
for all j, n and let (2, 7¢)~af.

From (a), we have I(z, /g)<a* for all =< G(2). Since =/"=G(2) for all n,
I(zi", i@y < a* for all n, j. But from the definition of z/*, I(z7", 9) = I(z, ‘9)—1/n for
all 7. Therefore a* = I(z, 7g)—1/n for all z. Letting n— <o yields @} = I(x, Jg) for all
z and all j. Since from (b) there exists a #% « G(x) such that (7", i¢)= af—1/n for
each n, j, we conclude that

T, 0% < T [IGEY, ig)+1/n] = I((a, 7)), 1)+ 3/n < 4k, 53/n,
I J i J s

which implies sup T,;#%* < @%,. On the other hand it holds that sup T = Uji¥
a-A a-A

=#%,. Thus we have 32,14) T, a¥% =a%, for each j.

() Assume that iz* is a ‘g-optimal strategy for each j. Then from (c) we may
assume 7% ={f¥, f¥ -} is Markov without loss of generality. Hence I(/'z*, /"1g),,
:Tﬁ;(so), J@z*, ig),, for each j, so that [(-'z*, i-q),, < sup To;I(/n*, Iq),, for each j.

a4

Since this holds for any s, S, it follows that I(7'z*, 7-1g) < sup T,,;I(’z*, /q) every-
azAd

where for each j. But [¢-1z*, i-1q) = I((a, ’x*), I71q) = T4 ,;I(’z*, g) for every j and for
all ae A, which yields that I(7-'z*, i-1q) =sup T,;[(’z*, iq) for every j. Finally we
a=A

obtain optimality equations for n*; I(-iz*, /-1q)=sup Ty I(’=*, Iq) for every j.
a=A

Conversely assume that z* satisfies the optimality equations. In virtue of Lemma
4.1, for any pe P(S), ¢>0, g= Q% there is a (p, ¢, ¢)-optimal Markov strategy #
=(f1, o ), S0y, i.e. p{I(%, @)= I(x, ¢)—e} =1 for all =. So in particular it holds that
I(%, @)sy = I(z, q)sy—¢ for all z. Let (f;, g;)~+T;; then from the assumption T ;/(’z*, ’q)
< I(-'z*,71¢) for every j, and backward inductively T3 Ty - TiICn*, i) < I(z*, q)
for every j. Letting j—oo yields I(z, ¢) < I(z*, ¢).

Therefore we have

Iz, @)y = I(2, @)sp+e S I(@*, q)5te forall =,
and we have I(z, q),, < I(7*, ¢);, for all = by letting ¢ —0. This hold for any s,<S,

hence I(z, ¢)< I(z*, q) for all z, which implies z* is a g-optimal strategy. Similary
we get ‘z* is a Jg-optimal strategy for each j. This completes the proof.

The following Corollary is an immediate consequence of Theorem 4.3 ().

COROLLARY. If there is a Jg-optimal strategy for each j=0, then there is a
qg-optimal Markov strategy.

We shall say that actions a and b are equivalent at (s,q;) if r(s,a, y=r(s,h, -)
and q,(-|s, @) =q,(-|s, @), i.e. if T,u(s)=Tyu(s) for all u < M(S). We shall say that
actions a and b are equivalent at (s, q) if »(s, a, -)=7(s, b, -) and ¢;(-|s, a)=q,(-|s, @)
for all ¢; in ¢, i.e. if T, u(s)=T,u(s) for all u< M(S) and for all ¢, in ¢. For any
Markov ==/{f,, fo --} A will be called essentially countable by = if for every (s, @)
there is an n for which £,(s) is equivalent to a at (s, ¢). A will be called essentially
finite by = if there is a partition of S into Borel sets S, S,,--- such that for every
(s, @) with s&S,, at least one of the actions f,(s), f>(s), -+, f.(s) is equivalent to a at



A Markov Decision Process with Non-Stationary Transition Laws 17

(s, q).

LEMMA 4.2. If A is essentially finite by = =1{f, fs -}, then for any q; < Q(S|SA)
and any w= M(S) there exists [, F(z) for which T;u=Uu where (f;, ¢)~T;; and
(z,qp~Uj

Proor. We let S, = {s|T,u<Uu for m=<n—1, T, u="Uu}. Then {s,;, n=1,
2, .-} comes to be a partition of S, since in this case Uu=max T,u. We set /,=7,

on S,;. Then for s S, ’f‘j,-u:Tnju: Uju, which completes the proof.

THEOREM 4.4. (a) If Ais essentially countable by m = {f,, fs, ==}, there is a (e, g)-
optimal Markov strategy for every ¢ >0 and every q = Q*.

(b) If A is essentially finite by =, there is a g-optimal Markov strategy for every
q<sQ*.

PROOF. (a) From the assumption, for any u< M(S) sup Tnju:Uju:sagB T,
for all j, where (f,, ¢)~T,; and (w, q;)~U;. Thus T,u =< U,u for any u < M(S), all
a< A and all j.

On the other hand, from Lemma 4.1, for any p<= P(S), ¢ >0 and ¢ = Q* there is
a (p, ¢, ¢)-optimal Markov strategy, say #= {f,,fz, ...}, which yields that

17, @Q)so = (7, q)sy—¢ for all =.

We let (f;, g)~T};, then we have T, Ty, - Tju < U, U, --- Uju for all j. Letting j—oo
yields I(#, q) < u*, where («, g) ~u*.
Thus we have

I(7, 9)se < I(Z, @5y < u*(So)+e for all =.

Letting ¢ —0 yields that I(m, q);, < u*(s,) for all z. This holds for all s, S, so that
Iz, ) < w* for all =.

In virtue of Theorem 4.3 (b), there is a # € G(x) for which I(Z, q) = u*—e. There-
fore we have I(#, ¢) = I(z, q)—e¢ for all z. This 7 is (e, ¢)-optimal.

(b) From Lemma 4.2, there is a Markov strategy z={f,, fs, -} with f; & F(x)
for j=1, 2, ---, such that

T Ty o Ty = UU, - Uyt

Letting j— oo yields I(#, g) = u*, where (x, q) ~u*.

But in the proof of (a) we see that w*=[(z) for all z. Thus we have I(%,q)
> J(x) for all =, which completes the proof.

§5. [-stationary strategy.

In this section we shall be concerned with the case when it is known to us that
.g; varies in a cyclic manner.

We shall say that ¢ is [-stationary if there exist ¢js e Q(S|SA), (=12, - ,1D),
such that ¢=1{g, g, ---} where §=1{g,, ¢., -~ , ¢;}. An [-stationary ¢ is denoted by 7.
We shall say that a Markov strategy x is [-stationary if there exist degenerate fJs,
(j=1,2 --,0), such that #=/{f f,---} where Ff=/{f, fo - ,fi}. An [-stationary
strategy is denoted by F.

For any Markov = ={f}, f,, ---} we let U, the operator associated with (x, ¢;) for
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j=1,2,-, 1 We shall call [,=U,U, - U, the operator associated with (7, §) where
§=1{4q1, s -, q}. (z, @~ U, means that U, is the operator associated with (r, Q).

The following Lemma is immediate from the definition of U;.

LEMMA 5.1. (a) U, is monotone for each j.

(b) For any constant ¢, U u-+c)= Uu+ fc.

THEOREM 5.1. L_Q, the operator associated with (z, §), is a contraction with a con-
traction coeficient 8, i.e. |Uu— U] < Su—uv|, where |u| :Slep IOIR

Proor. From the difinition of a norm we have v <ud|u—v|. In virtue of
Lemma 5.1 it follows that
U < U+ Bilu—vl]
and so
Uvr—Uu =< Blu—vl .
Similarly we have
U, Up—=U,_,Uu ;/:182““'1’” s
and inductively we have
v, - Up—U,U, - U < fHlu—vlf,

which shows that Ulvfﬁthgﬁ’j\u—l,"‘,y. Interchange u and v to obtain Uu— Uy
< pu—v|. Thus we have |Uu—Up| < 8 |u—v|, completing the proof.

The general properties of optimal plans for [-stationary g are contained in the
following theorem.

THEOREM 5.2. (a) For any Markov = and any l-stationary q =g, let (xz, )~ U,.
And let @} be a fixed point of U, Then I(#, )<} for every # G(r).

(b) For any Markov = and any I-stationary q=g®, let (z, §)~ U, And let &F be
a fixed point of [,_/'L. Then for every ¢ >0 there is a [-stationary strategy f < G(x)
for which I(fe), §°) = g —e.

() For any pe P(S), ¢ >0 and [-stationary q=g®, there is a (p, &, §)-optimal’
[-stationary strategy.

(d) For any ez=0, if there is a (& (g Gjen -+ 5 qp GEO))-0ptimal  strategy for
J=1,2, .-, 1 then thereis a (¢/(1—pf), gN-optimal I-stationary strategy, where §={q,,
Qo 5 @i

(e) Let q be l-stationary. Then z* is ig-optimal for j=1, 2, ---,1 if and only if
the expecled reward of x* statisfies the optimallity equations; I¢'z*, 7-1q) = sup T, I(’n*,
i) for j=1,2, -, L. =

PROOF. (e) is immediate from (e) of Theorem 4.3. We shall prove (a)~(d) only.

(@) Let #=1{qg, ¢, -} be any r-generated strategy. Let (g; q)~T;. Then, as
stated in the proof of Theorem 4.3 (a), if holds that T, T, --- Tju— I(x, ) as j—oc .
for all u e M(S).

Since g; € F(x) for i=1, 2, ---, from Theorem 4.2 (a), it follows that

Tml—l-l,lel-l-Z,Z T(m+1>z,zu§ U, U, - Uu= l-jzu
for each m and for any u < M(S). Thus in particular

Tml+1,lel+2,2 T(m+nz,zﬁ2k§ Uzﬁzk - ﬂ,*
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for each m. Inductively we have

n A, -

- =
H(Tnll+1,1T7nl+2,2 T<m+1>z,z)74zk = .
m=0

Letting n—co vields that I(#, §*)<4fF. This hold for all # = G(xn).

(b) Let ¢ =e(l—p). In accordance with Theorem 4.2 (b) there is an 7= Fx)
corresponding to (¢, #F) for which

T”ﬂ?‘ = Ujgif—¢’,
where (ﬁ, g)~T, and (x, ¢)~+ U, Similarly there is an .., € F(x) corresponding to
(q;-1, Ugjif—e¢’) for which
Tl—x,t—x(Uﬂzr's/) = U, (Ui —e)—¢,
where (fi_1, ¢, )~T. 11, and (x, ¢,.,)~ U,_,. Thus we have
Tz~1,z-1Tzz7/7?< = Uz»leﬁiF’“Gl(l"l‘.B)

by Lemma 5.1 (b).

By backward induction we obtain

TiTo - Tottf 2 UiU, - Ugif—&' W48+ -+ +8 )= —e/(L+B+ - +57D.
Again inductively we have

(TuTss Tl,)"ﬁz‘gﬂf—ef(l+ﬁ+ ) for all n=1,

from which it follows that I(f), §)) =} —¢ /(1—pB)=aFf—e. This f& is obviously
[-stationary and z-generated.

(¢) In virtue of Lemma 4.1 there is a (p, ¢/2, ¢*)-optimal Markov z={f,, f5, '}
for any pe P(S), ¢ >0 and any [-stationary §©. Let (r, 3)~ U, and let ¥ be a fixed
point of I, Then from (b) there is a r-generated [-stationary 7 for which

17, 3= = af —e/2 .
From (a) it follows that
Iz, =)= @} .
Thus we have
I(fe), gy z af—e/2 = Iz, ) —¢/2.
On the other hand, since = is (p, ¢/2, §©)-optimal, we have
P{(z, g = r’, §*)—¢e/2} =1 for all =’.
Hence it follows that
PLI(fe), g = Iz’ §e)—e} =1 for all =’.
This £ is (p, e, g©)-optimal [-stationary.
(&) Let ¢;=0g; g4 -+ » q)- Assume that there is a (g, §;, §))-optimal strategy,
say n*/ = {xm;, 7, ---}, for each j=1,2, ..., L
In accordance with Lemma 2.1, for each j=1,2, ..., , there exists a degenerate
f; for which
17, (G G0 = mpg L+ BICTH, (G0 §N)]
= 2L+ BUEHTY, (a0 §N+e} ]
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< fiq 0+ BUIEH, (G0 350 +e}]
=Ty (@4, (G0 N+ Be
where (f;, ¢;)~+T;;. Since (G4, §©7) =g and so x*+!=rz*, inductively we have
TuT,y -+ Tulm*, ) = I(z*, cj<<‘7‘)~s(,3+,52+ _Hgl)_
Again inductively we have

(T Toy - TM(m*, o) = [z, §)—e(B+ 52+ -+ +5)  for all n.
Letting n-—co yiels that
I(f=, g =2 I(x*, g —e8/(1—4)
where Jf: {fu for e rfl}'
But, since z*! is (e, §¢)-optimal, it holds that
Iz, g < I(ze*t, g +e for all =.
Thus we obtain
Iz, §©) < I(f&), geN+e/1—B) for all =«,
which implies that 7 is a (¢/(1—p), §*)-optimal [-stationary strategy.

§6. Strong optimality.

In this section we shall define another optimality more strengthened than that of
preceding sections, and we shall investigate an existence and some properties of an
optimal strategy in this sence.

We let v¥=supI(n, g), =* will be called a strong (p, e, q)-optimal strategy if

n
PI(*, @ =zvi—et =1

The following two theorems are immediate respectively from Theorem 4.3 and
from the proof of Theorem 8.1 in [3] by replacing (g, ¢, ---) by (g, ¢zs -**)-

THEOREM 6.1. For any p = P(S), any g < Q* and any strategy =, there is a Markov
strategy % for which pI(%, q@) = pI(x, q).

THEOREM 6.2. For any ps P(S), e >0 and any q< Q* there is a strong (p, e, q)-
optimal strategy.

The following theorem is an alalogy of Theorem 6.2 in Strauch [3]. We shall
prove it directly from (a) and (b) of our Theorem 4.3, whereas Strauch did by using
the property of the ““conservation ”.

THEOREM 6.3. For any sequence of Markov strategies {z?, j=1,2, ---}, ¢>0 and
any g < Q*, there is a Markov % for which I(#, q) Zsup I(z’/, g)—e.

Proor. We can find a Markov strategy = suchJ that z7 e G(x) for j=1,2, -...
Let (z, g¢)~u* for this z.

Then, from (b) of Theorem 4.3, there is a Markov strategy # < G(x) such that

Iz, @) =z u*—e.
Since 77/ e G(x) for j=1, 2, -, from (a) of Theorem 4.3, it holds that

w=1I(nl,q) for j=1,2 -,
which yield that
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w* zsup (=, q).
Thus we have
I(2, @)z u*—e = sup I(7/, 9)—=,
j

‘which completes the proof.
Now let us show that a strong (p, ¢, ¢)-optimal strategy exists, in fact, among the
Markov strategies, by making use of the above theorems.
THEOREM 6.4. For any p= P(S), ¢ >0 and any q< Q*, there is a strong (p, &, q)-
optimal Markov strategy.
Proor. We let v¥=sup I(=, ¢). Then, in virtue of Theorem 6.2, there exists a
n

strategy # (not necessarily Markov) for which p{I(%, ¢) =1¥—<} =1. Hence we have
PIG, ) = prf—c.
From Theorem 6.1 there is a Markov strategy =* for this # such that
pl(z*, @) = pl(%, @) .
“Therefore it follows that there exists a Markov strategy =z* for every ¢ >0 such that
pIz*, q) = pri—e .
Thus for each integer m >1 we can find a Markov strategy =™ such that
pIGa™, gy = prg—1/m.
Let v,;:sglp I(z™, ¢), then it folows that pv]>pv¥—1/m. Letting m—oco yields that

pvg = pv¥. But puf = pr,, since v¥ = v, from the definitions of ¥ and v,. Consequently
vy =pv;. Again from that v =/ we have

plrd=uvyst=1.
In virtue of Theorem 6.3, for {z#™} there is a Markov % such that
IZ @=v,—e.

‘Finally we have
PUE, @ zvi—e} =1,

which say that this 7 is a strong (p, ¢, ¢)-optimal Markov strategy.

§7. Improvements ef strategies.

In this section we shall be concerned with several methods of strategy improve-
‘ments.
THEOREM 7.1. If for a Markov strategy #={f, fo -}

I(fy /=), ) 2 1077, 17g) for j=1,2, -,
then I(%, q) = I(x, q).
PROOF. We let (f}, ¢;)~~T; then from the assumption we get
T, 10z, 7q) = I( 'z, 71q) for j=1,2, .
«Consequently

Ty Tyl i) = Ty, IO 7, ) = I(027, i2g) for j=1,2, .,
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and inductively
ToTo - TylC= ') 2 107, ') =I(=, q)  for j=1,2 .
Letting j—cc yvields I(%, ¢) = I(x, q).
THEOREM 7.2. [f [("7'z*, "'q) = I((f, "=*), ""'q) for all degenerate f and for every
n, then m* is g-optumal.
PrOOF. Let 7 ={f}, f,, ---} be any Markov strategy. By the assumption we have
10775, Y 2 (S w9, ) for m=12,
Let (s g~ Ty, then plainly
T11T22 Tn-l,n—ll(n—lﬂ'*’ n_IQ) = TuTzz T7rl,n‘1[((fm nx*)’ "_IQ) for n=1,2 .-,
which implies that
(S for oo faon 7%, Q2 LUy for s o "2%) ) for m=1,2, .
And inductively
[(‘T*! q) gl«fl’ le ;fnr nﬂ:*)’ CD for n= 1; 2; Tt

Hence we have I(z*, ¢) = I(x, g) by letting n—oo. This holds for any Markov strategy
7. which completes the proof.
Now we shall define G(s, z). Let (f=a, g)~T,; then G/s, n) is defined by
Gis, my={a|Tg;I(’z, iq) > I(F "'z, I-1q)} for j=1,2,--, and for s S.

We shall conclude with the following theorem.

THEOREM 7.3. (@) If for every s&S and for every j Gfs, =) is an emply set,
then = is a g-optimal strategy.

(b) Let w={f,, f, -} be any Markov strategy. If for each j g{s¢) S G{S, =)
Jor some s, and gis)=f[s) for s such that gis) & Gs, @), then I(#, ¢) = I(x, q) where
2 ={qu g -}

Proor. (a) From the assumption it follows that

I0-1z, 1) = I g;, ’x), " 1q¢)  for all g; and every ;.

Hence in virtue of Theorem 7.2 z is g-optimal.
(b) By the assumption, for each ; we have

1((gj' jn)r jﬂq)so > [(j_lﬁ! ]._I[I)so
and

I((gj Im), I71q)s = 10 'm, I1g);
for s such that g;(s) € G(s, =), which implies that
(g, 'm), ")z 10w, 77'q)  for j=1,2 .
Thus from Theorem 7.1 I(%, q) = (=, q)-
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