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    § 0. Introduction. 

   In the regression analysis the problem of finding optimum design that minimizes 
a variance error due to an inadequacy of fitted polynomial has been investigated by 

many authors under the assumption that the expectation of fitted polynomial is always 

unbiased on a given interval of the independent variable . And these optimum 
designs have been established by Smith  [17], Chernoff [3], Ehrenfeld [6] , Guest [8], 
Hoel [9], Kiefer and Wolfowitz [11] and others. 

   Kitagawa [14] has proposed a formulation related to a common problem between 
the numerical analysis and mathematical statistics . Namely, he discussed the poly-
nomial approximation by Lagrange's interpolation formula from the standpoints of 

stochastically approximative analysis. The similar problem in some simple cases 

was studied by David and Arrens [4] : they treated only the case of fitting a straight 
line when the true function is roughly linear and may contain a quadratic component . 
Furthermore, Box and Draper [1], [2] have investigated the particular cases where 

the fitted polynomial in the continuous variables is of the first or the second degree 

and where true regression function is a polynomial of the second or the third degree . 
And those optimum designs were selected so as to minimize the expected mean square 

error. 

   The purpose of this paper is to explain the relationship among some optimum 

designs which satisfy the same criteria of optimality with those described by Kita-

gawa [14] and Hoel [9] and others. The optimum designs for the polynomial inter-

polation which are well known in the numerical analysis are introduced in section 2. 
An optimum design derived by Guest [8] and Hoel [9] is introduced in section 3. 
And the extension of Hoel's result is completely given there. Furthermore , it is 
shown that Guest and Hoel's optimum design satisfies another criterion of optimality . 
In section 4, the problem which was given by David and Arrens [4] is extended ac-

cording to our formulation defined in section 1. Finally, the minimum efficiency of the 

designs obtained in section 2 and 3 will be investigated in section 5.

   § 1. Preliminaries and definitions. 

   Let f(x) be a true regression function on the given closed interval [-1, 1] of the 

independent (continuous) variable x. And it is assumed that f(x) is p times differen-

                                 25



26Masao  TASANIA

tiable and has the continuous derivative f(P)(x). Let yo (i =1, 2, ••• , p j = 1, 2, •-• , ni) 

be the n (= n1) dependent variables observed on the p distinct points x, (i = 1, 2, 
                    =1 

••• , p), which we shall call the supporting points, and it is assumed that yils are 
independently distributed with mean f(x,) and common variance O. The design of 

experiment in the regression problem is determined by an assignment of (x1, ••• , xp; 

77i, ••• , np), which we shall call a design d. And let 4 denote the class of all possible 
such designs for fixed ii and p. 

   Usually, the polynomial approximation is used for estimating an unknown function 

f(x) from the experimental results which are obtained by the given design. Throughout 
this paper we restrict to the problem of fitting regression curve by using Lagrange's 

interpolation formula, and then under the design d the estimated equation, 1,,(x; d), 
of true regression function f(x) is given by 

             ip-1(X d) = EL„(x)Y,(1.1) 
                                                                       ,=1 

where 
                       Li(x)= F(x)1(x—x,)F1(x,), 

                                                            (1.2) 
                         F(x)=1-1(x_x1), 

and 

                          = E 
                                                J=1 

In this case the expectation of the bias 

                   p(x ; d)= f(x)—f,_,(x; d)(1.3) 
is given by 

                    E[p(x; d)] = F(x)  f(P)(p!)(1.4) 

where —1 < < 1. 
   It is easily shown that 

                 E[p2(x; d)] = E2[p(x; d)]±0.2E LZ(x).(1.5) 
                                                         ,=, ni 

We wish to determine the optimum design in d so as to minimize E[p2(x; d)] in 

some sense. In considering such situation, the case, where a2 = 0 is assumed, has been 

mainly investigated in the field of numerical analysis. On the other hand, the case, 

where E[p(x ; d)]= 0 is assumed, belongs to the category of mathematical statistics. 
When these assumptions are satisfied, we say that the former is the deterministic 

case and the latter is the unbiased stochastic case respectively. In general the case 

which remains unexplained on both f(x) and a2 is said to be the stochastic case. 

    Now, E[p2(x; d)] depends upon the independent variable x, so that we have to 

define the criterion of optimality on such design so as to minimize some functional 
of E[p2(x; d)]. 

    In order to do this we first take up two quantities which should be minimized 

among the class d of all possible designs as follows : the expected mean square 
 error is represented by
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                  VEd, fcl", a, a] =$ ; d)]da(x) ,(1.6) 
                                                                      -1 

where a(x) is nondecreasing function in [-1, 1] and not constant , and the maximum 
expected squared error is represented by 

                V[d, a]= max E[p2(x; d)] .(1.7)                                                                         —1<a1 

Thus we define two optimum designs as follows. 

   DEFINITION 1. A design d*(f(-1)), a, a) in 4 is said to be I(f(2), a , a)-optimum if 

                 VEd*(fc"), a, a), f(P), a, a] = min 1.7rd,f(2", a, a] .(1.8) 
                                                    d04 

And for any d 4, 

            e[d f(P), a, a] = VEcl*(f(P), a, a), PP), a, al/ I/[d, f(P), a, a](1 .9) 

is said the efficiency of d. 

   DEFINITION 2. A design d*(f(P), a) in 4 is said to be G(f(P) , a)-optimum if 

                   171(/*(f("), a), PP), al= min V[d, f(P), a] .(1.10) 

And for any d 4, 

                e[d f(P), a]= V[d*(fP), a), f(P), al/ V[d, f(P), a](1.11) 

is said the efficiency of d.

   § 2. Deterministic optimum designs. 

   The parameter in (1.4) depends, in general, not only upon the p supporting points 

x1, x2, ••• , xi, but also upon the variable x and the nature of true function f(x) . In the 
deterministic case, therefore, it is difficult to seek the designs which satisfy /(f(P) , 0, a) 
and G(f(P), 0)-optimality. Accordingly the approximative optimal spacing which mini-

mizes 

                  xjF(; d)da(x)                               or max I F(x ; d)I 

has been studied in the numerical analysis. This solution is exactly optimum if 

                   f (P)(x)= c p (= constant)(2.1) 

are true. For these cases, we will rewrite two well-known results in the numerical 

analysis according to our notation as follows : 
   "I(c

p, 0, a)-optimum design d*(cp, 0, a) is the design in which the p supporting points 
consist of the zeros of orthogonal polynomial Op(x) of degree p associated with the 

distribution da(x) on [-1, 1] and in which n1, n2, ••• , np are a set of p positive integers 

such thatini=n." 
               i=i 

   " G(c
p, 0)-optimum design, that is d*(cp, 0), coincides with d*(cp, 0, (1—x2) 2)."

§ 3. Unbiased stochastic optimum designs. 

Let n1, 122, ••• , np, a and be the positive integers, and let the relation
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                E ni= ap+:, (0 < < P) •(3.1) 
                                            i=1 

hold true. 

   The following result was given by Guest [8] : " When (: = 0, G(0, a)-optimum 

design d*(0, a) is the design in which p supporting points consist of the zeros of 

S1 PP-,(x)dx and n1= ••• = np= a, where132,_,(x) is Legendre's polynomial of degree 
p—l." 
   Hoel [9] investigated the D-optimum design which minimizes the generalized 

variance of the best linear estimators of the coefficients of polynomial regression f(x) 
    p-1 

  E cixt, and noted the fact which is equivalent to the following : 
    i=0 

   " When C= 0, D-optimum design in the polynomial regression coincides with Guest's 
G(0, a)-optimum design, that is, d*(0, a)." 

   In such design it is required that n/p is an integer a, i. e. = 0. For the sake of 

generalization, we shall first provide the following lemma. 

   LEMMA. A set of p positive integers (n1, n2, ••• , ni,) which maximize Hni under 
                                                                                                            i=1 

the restriction E ni = n (= constant) satisfies the condition                 

I 777—n, for all tt, v (= 1, 2, , p).(3.2) 

   PROOF. When p= 2, this lemma is trivial. Now suppose that 11 ni, attaines 

to the maximum value by n?, 722, • • , n°73. For any pair n°, and n,9 we have 

                                      p 

                  max H n 1 = n? = n°. 
                       i=1i#12,v 

Here K= II n2 is a certain constant, so that, from the result of p= 2, n,°,2 and n,; 
               i#ft,v 

must satisfy that 

                                      ni°, I 1 . 

This inequality should be constantly satisfied for all of pairs (npii, 74) in n?, 71,2, • • • , 

This completes the proof. 

   By using the result of De La Garza [5], Hoel [9] has derivated the result that 

the inverse of the generalized variance of the best linear estimators of coefficients 

c0, c1, , cp_1 is given by 

              1 1P                           II Cr.—x.)21[111i.(3.3)                               G
.V.=o-213i<j" i=i 

The minimization of G.V. is equivalent to the maximization of 11 (xi —x1)2 and that 

of fl ni under the restriction ni = constant. In this case, Schur [16] has proved 
 i=1i=1 

that if p�. 2 and —1 xi 1 (i = 1, 2, ••• , p), then the zeros of integral of Legendre's 

polynomial maximize H (xi—xj)2. We obtain then the following Theorem 1 by using 

these results and the prescribed lemma. 

    THEOREM 1. D-optimum design consists of such p supporting points as the zeros 

of1P,,(x)dx, where " ad--1" observation is assigned in each of supporting points
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and " a" observation is assigned in each of the p—c remainders respectively . 
   Hoel's result [9] is the special case of Theorem 1 for = 0. Equation (3.3) for 

D-optimum design is given by 
                                                               p-2 

                                         (p___1)p_,- 7n2m             1 1 m=2 (n+P —CATI—:)13 •(3.4)                   mcLazix G. v. = 0.2p p -1                                fl (2in —1)2"1-1 
                                              m=2 

From Theorem 1, it follows that there are ( D-optimum designs which the p sup-
porting points are symmetric with respect to the original point for any c. 

   In the proof of the theorem for G(0, a)-optimum design, Guest [8] has shown that 

              F"(x; d) = 0(3.5) 

is the minimax condition. However , it is obvious that the condition (3.5) is not satis-
fied when 0 < < p. Therefore , in this case, the supporting points differ from the 
zeros of the integral of the Legendre's polynomial . By summarizing these results, 
we have : 

        d*(0, a) is equivalent to D-optimum design if and only if c= 0 . 

Moreover the relationship between G(0, a), D and /(0, a, x)-optimum designs is given 

by the following theorem. 

   THEOREM 2. When ni =a (i = 1, 2, , p), 1(0, a, x)-optimum design, that is d*(0, a, x), 
coincides with d*(0, a) and D-optimum design. 

   PROOF. On the basis of the definition of /(0, 6, x)-optimality, it is required that 

                   f 1 aL,(x)                   n" L (x)dx = 0 , (k =1, 2,• , p).(3.6) 
                         -1UXk 

According to (1.2), we have 

                        1 1  ) x'L()for k i , 
       a xi—xk x—xk 

              x, Li(x)= 
                       Ef  1  )Li(x),for k =i                                             Xk— Xi 

Putting 

                         f i(x) = F(x)/(x— xi) , 
we have the relations 

                           Fi(xi)_=fi(xi) 
and 

                          F"(xi) = 2n(xi) 

Now we have 
               P 11 f,Xx)  

                         iEz„, x—xi x—x, fk(x) ' 
and then obtain 

                           fk(xk) i#k .                            xk— xi —fk(xk) 

From these results, the requirement (3.6) is reduced to
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                   -1-1(x1c) Li)(x)dx —(x)LKx)dx= 0 .                                                            (3.7)                  1,--1k\''k) —1k=1 —1 J,, 

In the second term of the left hand side in this equation, we can obtain that 

       fgx) ,1r, 
             –1f k(X)x)axf-RX1c)1—lf k(X) fk(-1)d X 2.fi-(4)1-R(-Y)11-1. 

Hence the p supporting points satisfied (3.6) are 4-1 and p-2 roots of 

                            f(xk) -= -1-Fqx,)= 0 .                           2 

Schur [16] has shown that these p points are the zeros of 

                            1                     1P
p_1(x)dx=  p (p_ 1) (1 x 2)P p_i(x) .(3.8) 

This completes the proof. 
   When 0 < < p, the supporting points in d*(0, a, x) are not always symmetric with 

respect to the original point. For example, when p= 2, we obtain 

              V[d, 0, a, x] =( x,—0-2  F (x0._1_( _i_x1                          x2)2 L3 '-/ '3' 

Therefore the necessary condition for which a desigh d J is AO, a, x)-optimum is 
given by 

                           rq 1+34, 
                             74 — 1+3x? ' 

so that if # 0 or n1 t n2, then .4# x3, and thus d*(0, a, x) is not symmetric and not 
coincides with D-optimum design. 

   In this section, it is assumed that any design d, E d always satisfies the condition 
E[p(x; d)]= 0. Therefore if 

                      f (P)(x)0 for p<po, 

            0 forp�p(3.9) 

                                                                    o are assumed, then E[p(x; d)] = 0 is always satisfied by taking the p supporting points 
more than po. When the value po satisfying (3.9) exists exactly, we will study how 
far the change of value p will affect V[d*(0, a, x), 0, a, x] and V[d*(0, a), 0, a]. 

   In the seeking of A(x; d), De La Garza [5] has shown that just as much infor-
mation is obtained from observations made at certain q+1 supporting points in the 
interior of an interval as from n q+1 p) distinct points in that interval. There-

fore it is sufficient to consider only q+1 supporting points for the seeking of an 

optimum design. Hence we will use Lagrange's interpolation formula for obtaining 

of fq(x ; d). And if we put q+1--p, and = 0, then, by using Guest's results [8], we 
have 

                   P           0-2EniLi(x; d*(0, a))P2 [1+  p(p_i) (x2-1){P,'_,(x)}21. (3.10)               i=1 

Consequently the maximum expected squared error is given by 

                     V[d*(0, a), 0, a] = po-21n.(3.11)
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When  n and p were given, this value increases linearly as p increases. 

   Now write 

                          1 dP-1              F
„= 1Pp_,(x)dx=  (x2—1)P-1 ,                                 2P(p-1)! d x P-1 

so that we obtain 

           (x2-1){ p_i(x)}2dx=  cdP(x2 —1)P-1                                                     Fpdx                           2p(p -2)!JdxP 

                                          r 1dP P-  = (-1)P2,4_2)1 (x'2-1)P-1Fdx .                                            dxP 

But we have 

     dP1  d2P-2(2p-2) !                                {XP2 (p 1)                                                      2-1C219-4• • } =      dxP FP--2P-1(p-1) ! dx2P--2P-1(p-1) ! • 

and 

                                     2P(p-1)!                            1(
x2-1)P-iclx =- (-1)P-            -1(2p-1)!! • 

Hence, from (3.10) and the above results, we obtain 

                                      1 
                                              1 )•                V[d*(0,x), 0, a, xl =  21)62 (1  (3.12)                     n2p— 

Consequently, when 71 and a2 were given, the expected mean square error (3.12) in-

creases as p increases. We summarized our results in 

   THEOREM 3. If C=0 and (3.9) hold, then the optimum number of the supporting 

points on d*(0, a) and d*(0, a, x) is exactly p0. 
   Hoel [9] showed that the similar result is satisfied for D-optimum design by using 

the result of De La Garza [5].

   § 4. Stochastic optimum design. 

   In the unbiased stochastic case, it is easily shown that /(0, a, x) and G(0, a)-optimum 

designs are optimum for all values of O. Similarly I(cp, 0, x) and G(cp, 0)-optimum 
designs are optimum for all values of cp in the deterministic case. However the 

optimum designs in the stochastic case depend upon the value of 011f(P)(:)1 and then 

we will examine the change of such situation in some examples. 
   EXAMPLE 1. When 

                        p= 2 , 711 = n, =n/2 , x, 
and 

                      f(x)= c+03,(x)-Fc,,J),(x), 

David and Arens [4] investigated cl*(3c, a, x) and d*(3c;, a) in the specified values of 

a/ . In this case, according to (1.5), we obtain 

         E[p2(x, d, f)] 3  c,;(x— x,)(x—x2)}2 +2°-22(x  x,)+(x x2)2              2-71(Xi— X2)2(4.1) 

Box and Draper [1] showed that the same result with David and Arens' d*(3c,;_, a, x) 
is directly obtained by making use of our formula (4.1). Similarly, we can easily 

obtain d*(3c, a) from (4.1).
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   EXAMPLE 2. When 

                       p= 3 , 77,, = n/3 (i =1, 2, 3) 
and 

                    f(x)= -c'  

we will examine the behaviours of d*(c3, a) and d*(c3, a, x) as functions of a2 and c3. 

   If J is restricted to the symmetric class of designs, i. e. x1= 0, x2 = 0, 
72, = n/3 -s-_-- n', then we have 

           E[p2(x, d, f)1 =  3c 6' x 2(x 2 xi)2+ 20-n2/ x'13 xxi „r_2)                                                          (4.2) 

We put A1= CE/36, A2 = a2/2711, y x2 and r=x; . in (4.2). Hence it is required to 
maximize 

                            A               P= [Aiy2+(-2A1T+322 ) y+3A 

with respect to y E [0, 1] and subsequently to minimize this maximum with respect 

                                                               2 to r E [0, 11The roots of P are 0, r and r—A
i3Ar,. Therefore when 0< r.3A,the 

maximum of P occurs at y = 1. Now 

                  P(y=1)==A1(1-1)2+ 3A2 (1 r)> o 
                                          r2 

and this value decreases in r from +co to 0. Thus if 3A2/ A1 � 1, then 7,-1 is the 

solution. Otherwise if 03A2 < 73, then the maximum of P occurs at y=1 or the                         A
i 
         p  smallest root ofa= 0 ;            a

r 

                         3A2Ai
r2- 3AA9A2              yr= 3A,(2A,r  A,r 12 +2 )                                                       r4 

  a3A2  )1/3 HoweverP(y= yr)> 0, so that P(y= yr) increases in 7(0) from 0 to                                          >A
i        ax 

P(y = y1). Therefore the solution in this case is the root of the equation P(y = yr) 
                                        3A  )213 = P(y1). Hence we must calculate this solution ro(> (  A,0) for the given 

values of Al and A2. Specially, when A2 = 0, according to Guest's result for G(cp, 0)-

optimum design in section 3, we obtain To = 3/4. We summarized our results : for 

p= 3, the symmetric G(c3, a)-optimum design is obtained as follows. 

    (i) If'—3 A/a.\/116/-then the supporting points are the zeros of Legendre's 

        integral .1 1P2(x)dx, i. e., x1= —1, x2 = 0, x3 = 1. 
          II'a     (ii) If  >then we must calculate the solution by the numerical method          3A/61C31 

        as is stated above. 

   (iii) If a = 0, then the supporting points are the zeros of Chebyshev's polynomial 
        T,(x), i. e., x1= —012, x2 = 0, x3 = A/3/2. 

   On the other hand, from (4.2) we have
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 V[d, c(         ,xi1 2.2,1, o-2(3,2, 2,4)-v (say) .                    =, 

                  1875Xi-r3X1) 72/Xil5 

The value of V[d, c3, a, x] is convex in xi (0, 1] and then d*(c3, a, x) is unique for 

given a/ c3 I . When 0 < 3/5, B and V decrease as xi increases respectively. 
Otherwise when 3/5 1, B increases and V decreases as x increases. Hence 

                                        1V[d, c3,x] is uniquely minimized at xi3r.,and its minimized value xf depends 

upon u/ I c, I . 

    Specially, if c,= 0, then the solution is x =1 and if a = 0, then the solution is 
X12 = 3/5. Hence, for p= 3, the symmetric I(c3, a, x)-optimum design is obtained as 

follows. 
                      -01 

    (i) If  -2then the supporting points are the zeros of Legendre's                 272 

         integral 1P2(x)dx, i, e., -1, x,= 0, x3 = 1. 

               n'  

              

I c1     (ii) If227> > 0, then the solution is 

                              , 

                 x1=10, x2=0 , x,= , 

        where ro is the root of the equation 

     0-23                5r4-3r3+27n,c2 (5r 6) = 0 and To E5, 1) . 
   (iii) If a = 0, then the supporting points are the zeros of Legendre polynomial 

         P3(x), i. e., x,== - A/3/5, x2 = 0, x3 = -V3/5. 

   So far for our two examples. In general, it is, however, difficult to determine 
exactly the optimum designs in stochastic case for p� _4. 

   Moreover even if they are determined, the functional form of f(x) and a' are often 

unknown or only approximately known at the beginning of the experiment . We also 
pointed out in this section that an optimum design in stochastic case depends upon the 
value of a/ 1./cP)()I . Hence, we consider the effect of this value to the efficiencies 
defined in section 1 for the designs d*(cp, 0), d*(0 , a), d*(cp, 0, x) and d*(0, a, x) which 
are optimum under the assumption a = 0 or If (P)()1 = 0 in section 2 and 3 respectively . 
We shall call these designs as extreme designs. These are equivalent to examine the 

change of efficiencies of the extreme designs according to the change of a/ lif(P)()I. 
Namely, if we use the extreme designs, in the case when the information related to 

  Iif(P)(e)I is not known at all, then the question which would naturally arise would 
be " At what value of a/ If (P)()I would each of these extreme (optimum) designs 

attain its minimum efficiencies? ". 

   To begin with, we will examine in detail the change of the efficiencies of extreme 

designs for p = 2 and 3 in this section. The efficiencies of the extreme designs 
d*(c2, 0, x), d*(0, a, x), d*(c2, 0) and d*(0, a) are given in Table I on the basis of I(c2, a, x) 
and G(c2, a)-optimum designs against the given values of 0/ I 6.21 which have been 
studied by David and Arens [4] . And I(c3, a, x) and G(c3, a)-optimum designs and the 
efficiencies of the extreme designs d*(c3, 0, x), d*(0, a, x), d*(c3, 0) and d*(0, a) are given 
in Table II. Here c2 =
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                             TABLE I 

   Symmetric  i(c2, a, x) and G(c2, a)-optimum designs and efficiencies of extreme designs. 

V2 o-  — xi= x2e[d* (0, a, x) e[d*(c2, 0, x) eld*(c2, 0) e[d*(0, a)- n lc,/ 1 1 d*(c„ a, x) d*(c2, a)I C2/ 0", .1C_I C2, a, X_I C2, 0 •1 C2, a] 
  00. 5770. 7070. 1671. 0001. 0000. 250 

  0. 20. 6420. 7550. 3750. 9630. 8270. 374 

  0. 40. 7250. 8500. 6760. 8900. 6950. 636 

  0. 60. 7960. 9490. 8560. 8350. 6350. 889 

  0. 80. 8551. 0000. 9420. 7960. 6261. 000 

 1.00.9080.9810.7670.640   -

 1.20.955—0.9660.745— 

 1. 40. 997— ' 1. 0000. 726— 

 1.61.000 10.713   -

  00 )1.000 1 1.000 1.00010.6670.667 1.000 

                1

   In this example = 2), we obtain the minimum efficiencies of each extreme 
designs as follows. 

           min e[d*(c2, 0, x) I c2, cy, xi 2/3 for c2 = 0 
               a/ Ic21 

           min e[d*(0, a, x)lc,, a, x] =1/6 for a = 0 
               a/ Ic21 

                                                          0.3) 
           min e[d*(c2, 0) 1 c2, a] = 7/13for 2(o-= 1 

    a/ Ic21iti C2)2 

           min e[d*(0, o)1 c2, a] = 1/4for a = 0 . 
                 0./ le21 

Then we know that the lowest efficiency of d*(c2, 0) (and d*(c2, 0, x)) is better than 

that of d*(0, a) (and d*(0, a, x)). 

                             TABLE II 

    Symmetric I(c3, a, x) and G(c, a)-optimum designs and efficiencies of extreme designs. 

               —=X2 
   ae[d*(c3, 0, x) eld* (0, a, x) eld*(c3, 0) e[d* (0, a)   
'61 I C31 d*(

c3,x) d*(c3, a)c3,X1I C3, a, xjc3, a]c3,ai 

 00.77460.8660 ' 1.0000.3001.000 0.482 

 0. 0504 0. 8367 0. 9480. 725 

 0. 09740. 89440. 8900. 928 

 0. 13611. 00000. 5681. 000 

 0.18630. 9487—0. 8420.9750. 583 

 0. 2722 1. 000—0. 8221. 0000. 592 

  Co1.00001.0000 0.8001.0000.600 1.000
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   § 5. Efficiencies of extreme designs. 

    When the nature of f(x) and a2 are unknown, d*(c,„ 0, x), d*(0, a, x), d*(cp, 0) and 
d*(0, a) will be called the extreme designs as was mentioned in section 4. For an 

arbitrary p we examine such lowest efficiencies of the extreme designs as we have 

given in (4.3) for p= 2. In order to do this, we will first give the expected mean 
square error and the maximum expected square error for these designs respectively. 

   (i) From Theorem 2 for I(cp, 0, a)-optimum design, we have 

                        s1,P2.            VEd*(cp,0,a), Pf.1))(P),a,a] =) 12o(x)da(x)+0,2E ,(5.1)                       P!13p_1' Pn, 

where ,3„ is a coefficient in xP of p(x) and A's are Christoffel numbers 

            1{   

                                x 

               A,( x_(x)p(xo12 da(x), (i =1, 2, ••• , p). 
The first term of the right hand side of (5.1) is obtained from the second law of the 

mean [10] and 

                      F(x; d*(cp, 0, a))= cbp(x)/ f3p • 

Since the property of d*(c,„ 0, a) satisfies the condition of Theorem 14.2.1 by SzegO [18], 

        1 
Li(x ; d*(cp, 0, a))Li(x ; d*(c,„ 0, a))da(x) = AA; , (i, j =1, 2, ••• , 

holds. Hence we obtain the second term of the right hand side of (5.1). When 

ni n/p, we have 

                         f I      V[d*(cp, 0, a),PP), a, aJ={-pl(P)(,)2 rOp(x)da(x)±  {a(1)-a(-1)} , (5.2) 
                                                                    -1 

by using Theorem 3.4.2 by Szegii [18]. And from Op(x)= Pp(x) for d*(cp, 0, x), it follows 
that 

                  22P+10 D2P           VEd*(c
p, 0, x), PP), a, x]f cp)(,)} 2+,72E (5.3) 

                                                                                           x=1 ni                       (2P+1){(2P)! 

Here if n5 = n/p (1=1, 2, ••• , p), then we have 

                E 22/ni = 2p/n •(5.4) 

   Similarly, p(x) = T p(x) holds for d*(cp, 0, (1 .X2) 2 ), (where T p(x) is Chebyshev's 

polynomial of degree p), so that it follows that 

. 

      Vrd*(cp, 0, (1,C2)2 ),PP),a, (1-x2)- 2i=22-2,-17(p{f(P)()}2+ci2E2z• (5.5) 
                                                                             ni 

Here if n1=-nlp (i=1, 2, ••• , p), then we have 

              E 21/ni=7P/n.(5.6) 

   For d*(cp, 0) we obtain 

    VId*(cp, 0), f (1)), a] = max [{ -TP(x)pP)(e)}2 +a' 1T,(x)(5.7)                           2P-lp!ni1(x- x?)23"1,(4) 

where x2= cos [(2i-1)/2p] (i =1, 2, •-• , p) are the zeros of Tp(x). Specially, when
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    0, 

                 VId*(cp, 0), cp, =(2p~)(5.8) 
holds. 

   (ii) From Theorem 2 for /(0,a,x)-optimum design, we find 

      F(x, d*(0, a, x))= K(x2-1)P1,_1(x) 

                                    1 750)--2/2 (--1)-1{2(p—i-1)} ! ,p-2j--4                     _=K(x2 —1) 2p_-1 j=(p_j_1)(p_2j-2)! 
Here the coefficient of x' must be equal to one, so that we have 

                    K= 2P-1(p-1) ! (p-2) ! /(2p-2)! 
We obtain therefore 

            E2rp(Xd*(0,a,x))] = {-2pP(-21(:1-22))11 (x2-1)Ppi_i(x)f(P)(e)2.(5.9) 
   By making use of the similar method to give (3.12), we can show that 

                 (x2-1)2{1);_i(x)}2dx=  {2p(p-1)}2               J _1(2p+1)(2p-1)(2p-3) 

From these results and (3.12) we obtain 

          V[d*(0, a, x), f(P), a, x] 

               2P(p-2)!
c)r2p 0-21                                                               (5.10)\             — (2p-3)2(2p-2)!(2p+1)!!'n 2p-1' 

And from (3.10) and (5.9) we obtain 

                                    2P-i(p-2)!           V[d*(0
, a),PP)"Th--amax                            [{ p(4-2)! (x2 —1) P ;3-1(x) f (19)()19 

                            P n2 {1+ p (pl 1) (X2 '1)(P11)--1(X))21] •(5.11): 
   (iii) Using the results in (5.3), (5.4) and (5.10), when ili=n/p (i =1, 2, ••• , p), the 

relation 

                        22p-1-1(p D22 2p62(i____ 1_)(say)(5 .12),        V[d,c,x]�(2p+1){(2p) 1}2cp+                   n 2p-1°- 

holds for any design d E 4. 

   (iv) Likewise from (1.5), (1.4) and (1.7) we have 

                 V[d, f(P), a] max {F(x) f(2p7) , 
and 

                   V[cl,PP), a]0-2 max [i-A--LKx)] . 
                                                        ni 

Moreover from (3.11) and (5.8) we obtain 

c 

                         V[d, cp, a]2p),j'p)2 , 
and 

                         V[d, cp, a] �pa2/n .
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Therefore the relation 

 V[d, cp, max EYC-Pa              L\n-Vo(say)(5.13) 

holds for any design d J. 
   Now let us turn to the calculations of efficiency of extreme designs in view of 

the results obtained in (i), (ii) and (iii). Indeed, the lower bounds of the efficiencies 
of d*(cp, 0, x) and d*(0, a, x) specified n1= n/p (i =1, 2, ••• , p) are given by 

        e[d*(cp, 0, x) I cp, a, x] V0/[(5.3) specified (5.4) and pli)()=cp], (5.14) 
and 

         e[d*(0, a, x)1 cp, a, x] V0/[(5.10) specified f(.1))()= cp](5.15) 

with strict inequality unless cp or a is zero. Hence the minimum efficiencies of these 
designs are given by 

           min e[d*(c, 0, x)!cp,x] = e[d*(c,„ 0, x)',0, a, x]= 1—1(5.16)     „
lepl2p-1, 

and 

                                           — 

          min e[d*(0,x)!2„a, x]e[d*(0,a, x)! c0,(2p—3).(5.17) 
    (77 ic„i2(2p—1) 

We therefore obtain the following theorem. 
   THEOREM 4. When ni = n/p (i= 1, 2, ••• , p), the minimum Oiciency on d*(cp, 0, x) 

is better than that of d*(0, a, x), that is 

    12p— 
   min e[d*(c, 0, x)1cp,x] =1—>min [d*(0, a, x)! c,„x]=.(5.18) 

              p 

 a/1,p!2p-1vpi2(2p — 1) 

holds. 
   This theorem shows that if cp and a are unknown and if we consider the lowest 

efficiency of design, then I(cp, 0, x)-optimum design in the numerical analysis is better 

than /(0, a, x)-optimum design in the mathematical statistics. 

   Now let us turn to the application of the results obtained in (i), (ii) and (iv). 

When ni= n/p (i= 1, 2, •-• , p), from (5.7) and (5.8) we have the relation 

      e[d*(cp, 0)1 cp, a] VV [(5.7) specified f (.2))()_— cp and ni= 

        VVL(cpPT)                            2P-'p!nm i<axx-i(r(x—4p(x)Tpi(x7)}2] • 
When (cp/2P-ip!),�p0-2/n,((cp/2P-'p!)2 �_pa2/71), the last term in this inequality decreases 

(increases) as a/ I cid increases. Hence we have 

                                                     )2-1           min eEd*(cp, 0)1 c,„-1--> [1max {Tp(x)  )-}] • (5.19)       a/ lei)! (.17--vDTgx?) 

Similarly, from (5.11) and (3.11) we have the relation 

      e[d*(0, a)!cp, a] V(,/[(5.11) specified f,P)(;).= cp] 

             /r2P-1(p--2)!2a2                >/cmax {(x2 1)P; _i(x)}24-  .                         p(2p —2) !P 

Therefore we obtain
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            92 -1 

  min e[d*(0, 0-)c,„ > [1 2'1) P1)1!2)1y max {(x2-1)P;_,(x)} 
                         (2p-2) 

                = [1-7{ 

                       

, 2P-2(p—i) ! p! 2 c 
                        (2p-2) !1JmPP-1(X)dX}2                                                          (5.20) 

where min xi; j P„_,(xj).= 0}. Then we know that the equalities corresponding 
to (5.16) and (5.17) cannot are obtained in this case, but when ni=n1p (i= 1, 2, , 

we have 

            e[d*(c,„ 0) 0, a] = max ( E T„(x)g                                                          (5.21)                                   {(X—XDTXr ) 
and 

                         f 

                               —2)!               e[d*(0,c„, 0] =-t22p_2(2ppp1) ! f ISIP,_,(x)dx}2                                                          (5.22) 

    EXAMPLE 3. When p 2, n1 = 7/2= n/2 and x1 --- —x2, 

            min e[d*(c2, 0)1 c2, a)] = 7/13 , for2 ( a)21 

                                                                                                                                  ' 

    u/ le21n c, 
and 

                        e[d*(c2, 0)10, a]= 2/3 

hold, so that the equality corresponding to (5.16) is not satisfied. However the equality 
corresponding to (5.17) 

                 min e[d*(0, a) c2, a]= e[d*(0, a) c2, 0] = 1/4 
                             a/Ic2. 

holds.
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