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Introduction

   The problem to determine the optimum statistical procedure, in some specified 
sense, for choosing between two populations in the light of samples drawn from them, 

is very important in practical situation. 

   Let us now enunciate a formulation of this problem in a more concrete form. 

   In the first place, we shall treat the situation in which there are two treatments 

(denoted by A and B) to be performed on each of a large number of individuals (say 
N), and we shall assume that the effect of each treatment on each individual can be 
expressed in terms of one real number, and that it is distributed in accordance with 

a certain population distribution. 

   Let  xA be a treatment effect of A performed on an individual randomly drawn 

from the population associated with the treatment A, and let us assume that A-, is 

distributed with a distribution function FA(x; GA) under our circumstance, where OA 

is a parameter in the population distribution. While let xB be a treatment effect of 

B performed on an individual randomly drawn from the other population associated 

with the treatment B, and let us assume that x, is distributed with a distribution 
function FB(x; GB) under our circumstance, where 0, is a parameter in the population 

distribution. 

   Under this general circumstance we shall be concerned with two types of the 

problem. 
   In the problem of Type I, we set up the following assumptions concerning FA(x ; GA) 

and FB(x;t9B): 

 (a) The types of the two distribution functions are the same and known to us. 

 (b) The true values of OA and BB are both unknown to us. 

 (c) Let us denote by d(OA, GB) an assigned function of 0A and 0, expressing a dis-
     crepancy between OA and GB. There exists an a priori distribution for the 

     parameter o = d(0 A, GB) and it is a continuous type and known to us. 
   On the other hand, in the problem of Type II, we set up the following assump-

tions concerning F A(x ; GA) and FB(x ; GB): 

                                1
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 (a) The types of the two distribution functions are the same and known to us. 

 (b) The true value of 0, is known to us, while that of 0, unknown. 

 (c) Let us denote by d(0 A, 0B) an assigned function of 0A and 0, expressing a dis-
     crepany between 0A and Om There exists an a priori distribution for the 

     parameter 5 = d(0,, 0,) and it is a continuous type and known to us. 
   Now there is another different aspect of our approaches. Indeed there are two 

different sampling plans, as we shall show. 

 (i) In the fixed sample size plan, we shall consider a fixed number of individuals 
     randomly drawn from the population of individuals. 

 (ii) In the sequential plan, the number of individuals drawn will not be fixed but 
     a sequential statistical procedure will be performed. 

   Now the combination of two aspects just enunciated will give us at least formally 

possible four cases : 

 (1) The first case in which the problem of Type I will be carried out under the 
     fixed sample size plan. 

 (2) The second case in which the problem of Type II will be carried out under the 
     fixed sample size plan. 

 (3) The third case in which the problem of Type I will be carried out under the 
     sequential plan. 

 (4) The fourth case in which the problem of Type II will be carried out under the 
     sequential plan. 

   In this paper, we want to investigate our problem in each of the above-mentioned 

four cases according to the following common scheme. 

   (1°) Firstly, a trial will be performed according to the following method peculiar 
to each of the four cases : 

 (1) In the first case, a trial will be performed on 2n randomly drawn from N in-
     dividuals, n on each treatment. 

 (2) In the second case, a trial will be performed for n randomly drawn from N 
     individuals on the treatment A. 

 (3) In the third case, a trial will be performed successively on each pair randomly 
     drawn from N individuals, one member of the pair on the treatment A and the 

      other on the treatment B. 

  (4) In the fourth case, a trial will be performed successively for each randomly 
     drawn from N individuals on the treatment A. 

   (2°) Secondly, after the trial, if either of the two treatments A and B is decided 
to be superior to the other according to a certain statistical procedure in view of the 

observations supplied by the samples obtained in our trial, then the treatment will 
be performed on all of the remaining individuals. 

    It is noted that we shall use the word "superior " or " inferior " throughout this 

paper on the basis of the following definition and that the decision that one treatment 
is superior to the other will be performed according to a certain statistical procedure. 

    Definition 1: Let us assume that there exists an a priori defined interval denoted 

by I=(/1„ J2) of 3, which is not necessarily bounded. Let us also divide the interval 

I into two sub-intervals Q0 = (J„ 5*) and [21= (o*, J2) by a specified real value 5* of 5,
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 where  J,< 5* < J. Now, when the true value of the parameter is 5, the treatment A 
 is called to be inferior to the treatment B ( , that is, the treatment B is called to be 
 superior to the treatment A) if 6 E Q , and conversely the treatment A is called to be 
 superior to the treatment B (, that is , the treatment B is called to be inferior to the 

 treatment A) if 5 

    In considering such a scheme mentioned at (1°) and (2°) , we shall proceed to choose 
 the optimum statistical procedure according to a certain criterion of choice among 

 some specified class of procedures. 

    Under these specified formulations our main interests are now reduced essentially 
 to set up the criterion of choice . Indeed we shall give our criterion from the point 

of view of decision theory. For the purpose of this decision theoretic approach , let 
 us now define the loss associated with our statistical procedure as follows . 

    Definition 2: When the true value of the parameter is 5, the loss per one individual 
inccured from performing A is C(5*-6) if 5 m Q0 and it is zero if 5 Q„ while the 
loss per one individual inccured from performing B is C(5-5*) if 5 Q 1 and it is zero 
if 5 E Q0, where C is a specified proportionality factor . 

    On the basis of this loss for N individuals, we shall now consider the average 
risk over the a priori distribution of the parameter 5 which we have already assumed 

in this paper as to exist and known to the experimenter . 
    (We shall often call the over-all expected loss for the average risk in this paper.) 

    We can now express the formulation of our problem in a concrete form as follows . 
    A formulation of our statistical procedures in this paper is to determine the 

sample size in the trial and the choice of decision for the fixed sample size plan , 
while it is to determine the stopping rule and the choice of decision for the sequential 

plan. In either of these two plans, our criterion is based upon the criterion to mini-
mize the average risk over the a priori distribution of the parameter 5. 

    We have proposed the loss approach to our problem . On the other hand, let us 
now propose another approach which differs from the loss approach in location of a 

base line, that is, the net gain approach. For the purpose of this approach , we shall 
give a definition of the net gain associated with our statistical procedure as follows. 

   Definition 3: When the true value of the parameter is 5, the gain per one in-
dividual obtained from performing A is G(5-5*) and the gain per one individual obtained 

from performing B is G(5* —5), where G is a specified proportionality factor. (It should 
be noted that G(5 — O*) is positive if 6 m Q1 and negative if 5 E 20 and G(5* — 5) is 

negative if 5 m Q1 and positive if 5 m Q0. 

   Thus we can construct the expected net gain for all N individuals on the basis 

of this gain. In this gain approach, we shall adopt the criterion to maximize the 
over-all expected net gain for all N individuals , which is obtained by integrating the 
expected net gain over the a priori distribution for 5, instead of the criterion to 
minimize the average risk. However , on account of our stand point of considering 
the over-all expected net gain or the average risk over the a priori distribution for 

6, the maximization of the over-all expected net gain is equivalent to the minimi -
zation of the average risk. Therefore, we shall be concerned with one or both of 

two approaches in each section as occasion demands .
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   The above-mentioned attempts have been so far performed by Colton [21 for 

normal distributions in the first and the third cases, and by the author [41—[121 for 

normal distributions and binomial distributions in four cases. 

   The object of this paper is to generalize these results in the following direction. 

We shall be concerned with a more general class of population distribution, that is, 

one parameter exponential distribution. Explaining in detail, we formulate our problem 

in the frame of the independent sufficient statistics admitting additivity whose notion 

Was introduced by Kitagawa [3[. In chapter 1, we shall formulate our problem under 

the fixed sample size plan, and in chapter 2, we shall formulate our problem under 

the sequential plan. In the final section of each chapter, as its special examples, we 
shall formulate our problem in the cases of normal, binomial, Poisson, and Gamma 

distributions.

Assumption

   Let us consider a population 17 admitting the sufficient statistic u,,= E v, (in = 

1, 2, 3, •••) for a parameter 5, where {vi} indicates a sequence of independent random 

variables 'Lys drawn from the population 17 and each vi has the probability density 
function with respect to a common measure p over the real line R such that 

(0.1)f(vi ; (3)d p(v i) e xp {-5vi-÷b(5)-H a,(v i)} d p(v , 

where d is the parameter whose value is unknown to us, where b(b) and a1(vi) are real 
valued known functions of 5 and of respectively, and where b(6) has the first and 

second derivatives which are continuous in an a priori preassigned interval I = (,.11, J2) 

and W(d) is strictly monotone decreasing in I. 

   In the first case or the third case, in which the problem of Type I will be per-

formed under the fixed sample size plan or the sequential plan, we hereupon consider 
the statistic un, which indicates a discrepancy between the observations from per-

forming half and half the treatments A and B on 2n individuals drawn from N 

individuals. 

   In the second case or the fourth case, in which the problem of Type II will be 

performed under the fixed sample size plan or the sequential plan, we consider the 
statistic um which indicates a discrepancy between the observation from performing 

treatment A on 72 individuals drawn from N individuals and the known value of OB. 

   We assume that any pair {um, vm±,} of independent sufficient statistics composed 
from vi (i =1, 2, 3, •••) with the probability density function of (0.1) admits the addi-

tivity proposed by Kitagawa [3], where 7n =1, 2, 3, ••-. 

   The necessary and sufficient condition that the additivity be satisfied concerning 

independent sufficient statistics was given by Kitagawa [3] as follows. 

   The necessary and sufficient condition that ur„,,=u„,-Fvni+, be a statistic having the 

probability density function with respect to the measure p over the real line R such that 

(0.2) /..4-1(uni+1 ; 6)c 1te(u= e xP 1— 571„, +1+ On -1-1)b(0)-f- am+i(um+1)} c P(it„,4-1) 

for any positive integer 771 is that
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<0.3)exp { „,i(u)} exp {a„,(u—u)} • cap {(7(0}dr,t0i 

for any positite integer in. 
    Therefore, we may and will assume that each statistic u„, —1, 2, 3, ••.) has the 

probability density function with respect to the measure t,t over the real line R such 
that 

<0.4)f,„(u„,; O)dp(u,„),_- cap {—du „H in • 0(6)--H a „,.(ui„)} d f,t(u,„) 

where a„,(u,„) is a real valued known function of a„, for each in (in =1, 2, 3,

                 CHAPTER 1 

FIXED SAMPLE SIZE PLAN IN A POPULATION WITH ONE 

     PARAMETER EXPONENTIAL DISTRIBUTION

     1.1. Procedure. 

   The First Case: Perform a trial on 2n drawn from N individuals, each treatment 

on n. Compute the observed value of u„= E rt. 

Procedure : If u„> K2, use treatment B on the remaining N---2n ; 

           If un< K1, use treatment A on the remaining N-2n ; 

           If use each treatment on the half of the remaining, 

where 2n is the number of individuals for the trial and where K, and K, are assigned 
Teal values and K1 < K2. 

   The Second Case: Perform a trial for n. drawn from N individuals on the treat-
ment A, where the parameter OA associated with the treatment A is unknown to us 

and the value of the parameter 0, associated with the treatment B known. 

   Compute the observed value of u„ 

Procedure : If un> K2, use treatment B on the remaining N—n; 
           If u„ < K„ use treatment A on the remaining N—n; 

           If K,� u,, A K2, use each treatment on the half of the remaining, 

where 71 is the number of individuals for the trial and where K, and K. are assigned 

real values and K1 < K2. 

   The optimum values n* (or p*-7z*/N), Ki*, and K2* of n (or p= n/N), K1, and 

K, should be determined respectively so that the over-all expected loss (or the over-all 
expected net gain) constructed in section 1.2 is minimized (or maximized) under our 

procedure. 

   §1.2. Construction of Over-all Expected Loss Function. 

   The First Case : When the true value of the parameter is d, if d 9.„, then the 
,expected loss [E Loss] „ for N individuals is obtained as follows by Definition 2. 

                                                 V-2n (1.1) [E Loss],=C(6*—O)[n+ { 2n} Pr{ u„< K9}-4- 9 • Pr{K,� u„� K2}]. 
   For the same reason, if d Q„ then the expected loss [E Loss], for N individuals
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is obtained as follows. 

(1.2) [E Loss],=CCO—Pin-i- { N— 2n } • pi.{11„>K2}± '1\' 2 211 • Pr{K,�-11n� K2}1• 
   By integrating (1.1) and (1.2) over the a priori distribution for the parameter 6, 

the over-all expected loss denoted by E Loss is then obtained as follows. 

                                                        42 (1.3)E Loss/ NC = 42 CO — O*)g (0)d + pf (O* — 6)g (d)(16 
                    -i-(1-2p)f (5*-6)- Pr{u„<K,}g(d)clO 

                      1
2-—P)f4142(d* — 6) • Pr{ K, K2} g(ö)da 

where p= n/N and g(d) denotes the probability density function of the a priori dis-
tribution for d. 

   The Second Case: In the same manner, we have [E Loss]A, [E Loss], and E Loss_ 

(1.1') [E Loss],=C(6*—2\T—n51n±(N—n)-< K11+2Pr{ Ki11,,<=1C2}], 

(1.2') [E Loss]B=C(6-61(N—n)- Prfn„> K2}+ N2 n Pr{Ki lin K2}] , 
                          d2 

(1.3') L Loss1NC= (O—O*)g(0)da 
                             6* 

                                                        42                +pf 42CO* — 5)g (a)dö +(l—p)sf(5* — 6)PrIu„< Kil g(0)dO      4,41 

                      1-
21)-$42(0".—5) •Lin___1(21g-(5)dö ,                                    ji 

where p= n/N. 

   We should like to determine the optimum values p*, Klk and IC::t of p, K1 and K2, 
respectively so that (1.3) is minimized in the first case and (1.3') is minimized in the 

second case.

§ 1.3. Construction of Over-all Expected Net Gain Function.

   The First Case: Let d be the true value of the parameter. If d E- 21, then the. 
expected net gain is obtained as follows by Definition 3. 

(1.4)E Net Gain = G(5*-6)(N-2n){Pr(Select B)—Pr(Select A)) • 

   If d G Q1, then the expected net gain is obtained. 

(1.5)E Net Gain =G(5-5*)(N-2)1)1P,(Select A)—Pr(Select B)) • 

   Therefore, the over-all expected net gain is obtained. 

(1.6)ENet Gain/NG= (1— 2p)[d2(65-5)g(ö)dO 

                         —2j z12 (6* —6) P r{u71 < K,} g(6)(15 

                                     r 

                           CO* —5) • Pr{ K1 K2 }g(5)a]
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where  p  =  n/N, and where g(5) is the probability density function in the a priori 

distribution for 5. 

   From (1.3) and (1.6), we then get the relation between E Loss/NC and E Net Gain/NG. 

(1.7)E Net GainING-= [Constant]-2[E LossINC]. 

   The Second Case: Let 5 be the true value of the parameter. If d 120, then the 
expected net gain becomes 

(1.4') E Net Gain = O(W*-5)E — 11 ±(N—n)- {P,.(Select B)—Pr(Select 

   If 6 E Q„ then the expected net gain becomes 

(1.5') E Net Gain = G(5-6*)[n±(N—n) • {13,(Select A)-13,(Select B)}1. 

   Therefore, the over-all expected net gain is obtained. 

(1.6') E Net Gain/ NG = (1----2p)f J2(5* —5)g(5)d5 
                                             4' 

                       —2(1—p)fd2(5* — 5) • Pr{it „ < K,} g (5)d5 
                                             dl 

              (5*—(5)• , 

where g(5) is the probability density function in the a priori distribution for 5. 

   From (1.3') and (1.6'), we then get the relation between E Loss/NC and 

E Net Gain/NG. 

(1.7')E Net Gain/NG= [Constant]-2[E Loss1NC]. 

   We should like to determine the optimum values p*, IQ' and K,t of p, K, and K2 
respectively so that (1.6) is maximized in the first case and (1.6') is maximized in the 

second case.

   § 1.4. Examples. 

   Example (1): Normal Distribution. 

   (1 °) The First Case: In the first place, let us consider the case when both 

population means 12,, and it, of two normal distributions are unknown to us and both 

population variances are common (denoted by a') and known to us. 
   When yt's (i = 1, 2, 3, •• • , n) are drawn independently from the normal distribution 

with an unknown mean 5= (p,— teB)/(A/ 2 a) and unite variance, Lc= — E y, is the 
                                                                                                                           1=1 

sufficient statistic of the parameter 5 for this class of distributions with the proba-

bility density function 

             6u21 (1.8)fn(u7z; 5)dil(un)-=exp{-51,17,—n•222ri+log (27rn) 2dp(un) 

                        — 

    1, 2, 3, • ••), where b(5) = —52 / 2 and 6* 0. 

   We assume that an a priori distribution for the parameter 5 has a normal dis-
tribution with zero mean and known variance old(26-2), where I = (—no, co). Let us 

suppose that K, = —K and K2 = K, where K is a positive real number.



8Masahiko  SUGINICRA

   We then have 

(1.9)PrIii„< —K1=1-0( K-21°-/Z 
                                         A/n 

(1.10) __K�un K} 0( K---11(11Z 0(—K—no-lz),              ti/n/ 

where 0(t) tt;'(u)du andc-,(u)=(27r) 2 exp {—u2/2}, and where a' = a0/(-A/2 a). 

   Therefore, substituting (1.9) and (1.10) into (1.6), we have 

(1.11)E Net Gain1NG =--0.1(1-2p1z0(-/K—naJz)c.(z)dz 

                                                         n 

                   +f zo()co(z)clz]. 
                                       A/n 

   The optimum values K* and p* of K and p which maximize E Net Gain/NG of 

(1.11) have been shown in the previous papers [1] and [4], that is, K* = 0 and 

p* = 1/(3+A/9+4R), where R = a'2N __=(Gq,N)/(2o-2). Moreover, the maximum values of 
E Net Gain/NG have been computed at various values of R. 

   (2°) The Second Case: In the next place, let us consider the case when one 
population mean p„ is unknown to us and another population mean PB is known. 

   When y,'s (i= 1, 2, 3, •-• , ) are drawn independently from the normal distribution 

with an unknown mean 6 =(!4,— ice,)/a and unite variance, it,,=— y, is the sufficient 
                                                                                                            =i 

statistic of the parameter 6 for this class of distributions with the probability density 

function such that b(6).= —52/2, an(u„)= —4/(2a)H-log (27ra) -2, and 6* = 0. 

   We assume that the a priori distribution for the parameter 5 has a normal dis-
tribution with zero mean and known variance 0110, where I=(--co, CO). Let us 

suppose that K,_=—K and K2= K, where K is a positive real number. 

   In the previous paper [9], we have discussed in detail on this case. The optimum 

values K* and p* of K and p which maximize (1.6') have been given there, that is, 

K* =0 and p* = 2/(3+A/ 9+16R), where R = (Na))/(2a2). Moreover, the maximum 

values of the over-all expected net gain have been computed at various values of R. 

   Example (2): Binomial Distribution. 

   (1°) The First Case: Let us firstly consider the case when both population 

proportions (i. e., effective proportions) 13, and p, of two binomial distributions are 
unknown to us. 

   Let us drawn 2a from N individuals in the form of pair and perform treatment 

A on one member of the pair and treatment B on the other. 

   Let a„••• , an be the results based on performing treatment A, and b1, ••• , b„ the 
results based on performing treatment B, where a1 and b1 are value 1 or 0, and where 

value 1 denotes that the performed treatment j is effective and value 0 denotes that 
the performed treatment j is ineffective (i = 1, 2, -•. , a; j= A, B). These results are 

arranged in the order observed. Thus we can consider the sequence of n pairs : 

                                   (a1, b1), ••• , (an, bit) •
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   Let t1 be the number of pairs (1, 0) and t, the number of pairs (0, 1) in this 

sequence and let t _t1+t,. We consider only the pairs (0, 1) and (1, 0). 

   Since each pair (ai, bi) is equal to one of the pairs (0, 1) and (1, 0), the conditional 

probability that it is equal to (0, 1) is given by 

                                              (1--)).-1)13B                                = 
PA(1---PB)+(l—)A)PB 

and the conditional probability that it is to equal to (1, 0) is given by 1—p. 

   When yi's (i =1, 2, 3, , t) are drawn independently from the binomial population 

with an unknown population proportion t), ut-= yi is the sufficient statistic of the 
                                                                          i=1 

parameter 6 =log p- '(1 H)) = —log u for this class of distributions with the probability 
density function 

                     fi(ut; 6) = exp {-5u,--Htb(5)+a1(ut)} 

(t =1, 2, • • •), where b(6) = —log (1+ e-a) and a1(ut)= — log at +1) • B(t — ut+ 1, 1)1 and 
where u denotes an odds ratio (pB(1-pA))/(1)4(1--PB)). 

   Let us define 6* = 0. We have then that the acceptance of 6 E Qo is equivalent 

to the acceptance of the event " 1 < u " and the acceptance of 5 Q, is equivalent 

to the acceptance of the event " 1 > u ". 

   Let us assume that the a priori distribution for the parameter 6 has a uniform 

distribution 1/(42—d1), where Zli= —log di (i =1, 2) < < 0 < J,< Do), and the 
interval <d,, d1> denotes an a priori defined interval for odds ratio u (0 < d2 < 1 < d1 

< cc). 

   We can now compute the over-all expected loss E Loss/NC of (1.3) as follows. 

(1.12)11             E Loss/NC= {(1—p)1+Ni} 

                        —(1-2p)f 25•Pr{ut<K1}d5 

                          —(0.5—p)f42 • P9.{K1�_ut K,} d5} 
                                                  41 

   We have discussed on this case in the previous paper [11] and computed the 

optimum values p* and the minimum values of E Loss/NC with respect to various 

types of a priori distribution for 5, where we define K,_=—K and K2 K and K is a 

positive real value. 

   (2') The Second Case : In the next place, let us consider the case when one 
population proportion (i. e., effective proportion) pA is unknown to us and the other pB 
known. 

   When yi's (i =1, 2, •• • , ) are drawn independently from the binomial population 
                                                                                                                                        n. 

with an unknown population proportion PA, un-= Eyi is the sufficient statistic of the 
                                                                           i=1 

parameter 5 = /ogp-,-,1(1—N) for this class of distributions with the probability density 
function such that b(5) = —log (1±e-6), an(un)_= —log [(n+1) • B(n—u„-H-1, un+1)1 and 

6* = log pi,'(1—ipB)• 

   In the previous paper [6], we have been in detail concerned with the case such
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that K1= K2= n,, where no indicates the maximum nonnegative integer [n • p.8] such 
that is not larger than n • pB• 

   Example (3): Gamma Distribution ['(a, 6). 

   Let us consider the case when vi's (i =1, 2, ••• , m) are drawn independently from 
the [-distribution [(a, 5) with unknown mean a/5, where 0 < v, < 00, 0 < o < oo, and 

0 < a < 00. Then um= E vi is the sufficient statistic for the parameter 5 with the 
                                         %=1 

probability density function 

(1.13) fm(unt; 5)dp(uni) = exp { —Ou„,±ma log 5 + log (F(ma)-' • unl„,c'-1)}dp(un,) , 

where 

(1.14)b(0)= a log 5 , ani(un,)= log (F(ma)-1 • um"-') , 

and where m is any positive integer. 

   When an a priori distribution for the parameter 3 is given, the over-all expected 
loss can be computed from (1.3) or (1.3'). 

   Example (4): Poisson Distribution P(2). 

   Let us consider the case when vi's (i = 1, 2, •-• , m) are drawn independently from 
the Poisson distribution P(2), where vi = 0, 1, 2 ••• , (nonnegative integer) and 0 < 2 < 

                           m. 

Then um= E vi is the sufficient statistic for this class of distributions and its proba-
               i=1 

bility density function is 

(1.15) fm(uni; 5)d,c,t(uni)= exp { --Oun„—me-5 ± log (mum • r(un,±1)-1)}dp(uni) 

defined over 0 < cc, where 

(1.16) o = log (1/2) , b(c3)= —e-5, and am(um) = log (mum • F(um+1)--i) , 

and where lc is a step-function having jumps of height 1 at every nonnegative integer 

un,• 

   When an a priori distribution for the parameter 5 is given, the over-all expected 

loss can be computed from (1.3) or (1.3').

               CHAPTER 2 

SEQUENTIAL PLAN IN A POPULATION WITH ONE 

  PARAMETER EXPONENTIAL DISTRIBUTION

   § 2.1. Some Preparations from a Sequential Probability Ratio Test by A. 
       Wald [13]. 

   It is necessary to compute OC function L(5) and ASN function E o(n) for the pur-

pose of constructing the expected loss function in section 2.3. Therefore, we shall 

give some preparations concerning a sequential probability ratio test for a population 
with one parameter exponential distribution. 

   We hereupon assume particularly with respect to the common measure a in (0.1) 
and (0.2) that there exists at least one pair (a„ 51) of 3 such that 

                  11((b(51)—b(5,)  (2.1), +co)) > 0 ,                                       51-60
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where LIi3          –1-0<1 � -2. 

   Let us consider only the pair  (o0, 51) of o throughout this section such that satisfies 

assumption (2.1). 

   Let us consider the probability ratio 

(2.2)Avi;51)            P1m/P0,„=II= exp —(d1-60)u,n+in{b(60—b(60)} 1 , 
                   i=i f(vi; 00) 

where we consider the sequential probability ratio test of strength (a, ,3) for testing 

the hypothesis H, that o = 6,) against the alternative H1 that 5, (60< 50- 

   Whence, letting 

                   ; (2.3)zi= logf= —(61-50)1;,--Hb(5,)—b(Ou) and Z„,=Ez7 , ,         f(v.51)(vi; 50)1=1 
we obtain 

(2.4)Z.= log (Piml Porn) = 50)um+mlb(60—b(50)1 • 

   According to the general approach in the sequential probability ratio test, there 

are two constants A and B to decide one of the following three alternatives : 

   (1°) When we have 

                      Z,„� log A , 

(2.5)that is, 

                    1
Sum<6olog A-Fin' 

    0i 

then we stop the experimentation and accept the hypothesis H1. 

   (2°) When we have 

         log B < Zn.„ < log A , 

(2.6) that is, 
      1b(6,)—b(50)1b(5)— b(O) 

                          1 _              log B+772 •22> 1 >log Ad-m ••     5
0-51ulU0"0-5151-50    6 

                                                                                                                m - 1 

then we make another independent statistic v„,+, which gives us um, = E vi. 
                                                                                                                i=i 

   (3°) When we have 

                         log B , 

(2.7)that is, 
                              1l

og um
0>6SStog ici+m•oi_oo 

then we stop the experimentation and accept H0. 

   Therefore, the two parallel straight lines L1 and L, giving the boundaries for a 

continuation of experimentations are given by 

                         b(51)— b(50)1               L
1: r,„=6in 6

°1                                           6log B , 
   0 (2.8) 

                         b(51)—b(50)1                      a
m=AA in+log A .                                                           50-61



12Masahiko  St GINILRA

   Thus the common slope of the lines L, and L, is given by 

(2.8')s =b(6,)—b(6„)                                           01 o, 

   The intercept of L1 is equal to 

(2.8")h=1log B                                1o o_oi 

and the intercept of L, is given by 

(2.8"') h =1loo - A where 1;1a                             '3 and3 -.               °
60-6, 

   The essential instrument for constructing the fundamental aspects as well as the 

practical calculations concerning sequential analysis is to find out a function h(5) such 
that for each value 5 

                        E-Ff(u61-)V(a)]=1,                           LA; Oo) 

that is, 

(2.9)Ea[exp {zh(5)}1=_ 1 , 

where 

                  z = log  f(v ; = —(61-60)v÷b(5,)—b(50),                     f(v ; O
o) 

and that h(6) 0 for each o. 

   Theorem 1. (Wald [13], p. 158) Let z be a random variable such that the following 

three conditions are fulfilled : 

    (I) The expected value E(z) exists and is not equal to 0. 

    (II) There exists a positive s such that 

                  Pr{ez < 1—s} > 0 and Me' > 1H-s} > 0 . 

   (III) For any real value Ii the expected value E(e4')= g(h) exists. 
   Then there exists one and only one real value Ii*0 such that 

                                E(e"z)= 1 . 

   Let us denote by 5' a specific value of 6 satisfying 

                                b(6,)—b(50) (2
.10)b/(6)_=                                                  0

1-00 

for assigned values 60 and 5, of 6. 

   It should be noted that there exists one and only one 5' satisfying (2.10) and moreover 

6, < 5' < 5, since b(6) has the first derivative 5'(0) and 1)/(o) is continuous and strictly 
monotone decreasing in I from our conditions. 

    Let us denote by I' the difference set I-151. 

   Theorem 2. Let {z1} be a set of independent random variables defined by (2.3). 

   Then each random variable z, in a set of Izij satisfies the three conditions (I), (II), 

and (III) enunciated in Theorem 1 for each 6 belonging to I'. 

   Proof. Ad (I). Due to our condition with respect to b(0), we have for each z1
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 E(z,)=  —(5,-5,)1/(5)-Hb(51)---b(6,)  . 

   Moreover, we have E(zi)# 0 for any d belonging to F. 

   Ad (II). Let be any assigned value in 0 < < 1. 
   Let us assume ad absurdity that 

                                      b(O,)—b(5,)— log (1--s)              P,-{exp {zi} < 1—e} = Prfui >                                                  130 
be equal to 0. 

   But, since we consider only the pair (50, 51) satisfying (2.1), as we mentioned 
earlier, we have 

      f al; Z)                6)(111(1'f(vi ; 5)41.(v i) = a)dit(vi) > 0     J .;-'60, al):(60, al: o),;(ao, 

where 

                 51) b(51)—b(50)1/(d1-60) , 

              C(50,51; s)={b(5,)—b(50)1/(51-5,)— {log (1—s)}/(5,---50), 

          and lini C(5,, 51; s) = C(5,, 61). 
                                E—)+0 

   Therefore, 

           

•fA vi; O)dp(vi) = $ f(v; 5)dp(v) > 0 
               +:COO,al; e)C(do,al) 

and whence the assumption of our absurdity contradicts to this. 

   Similarly, we can verify the second part of (II). 

   Ad (III). For any real value h, we have 

            g(h)=E(e"z)= exp {{b(51)—b(5,)}122,-b(5)} • exp {—b(O(*))1 , 

where 5(*) =(51-50)h+5. 
   Therefore, g(h) exists for any real value h. 

   The immediate consequence of Theorem 1 and Theorem 2 is the following. 

   There exists exactly a function h(5) satisfying (2.9) for each value of 5 belonging 
to I'. 

   Therefore, on the basis of the theorem 7.1 by Kitagawa [3[, the function h(5). 

defined over I' can be computed by solving the following equation 

(2.11)b(h(d) • (d1-50)+5) = h(5) • (b(51)—b(60)) +b(5) 

where it should be noted that the form of b(0) is actually given to us. 

   When the excess of p,m/po„, over the boundaries A and B at the termination of 

the sequential process is neglected, we get the approximation formula : 

(2.12)exp {h(5) log A} —1                       exp {h(0) log Al —exp { h(5) log BI ' 

where L(5) is defined as the probability that the sequential process will terminate 

with the acceptance of H0 when 5 is the true value of the parameter. 

   From (2.8'), we also obtain 

                          exp {h(5)- (5,-5,)17,1-1  (2
.12')L(5),—expNO) • (50-50hol—exp {h(d) • (60-60)hi} •
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   Since E,;(z),--- —(51-5,) • W(5);-b(5,)—b(50)-7---0 for any o belonging to I', we obtain 
similarly 

(2.13)Eo(n)--, L(5) logB+{1 — L(5)} log A                                    E ,;(z) 

where n denotes the number of observed pairs required by the test and E3(z) denotes 

the expected value of z when 5 is the true value of the parameter. 

   Therefore, in like (2.11'), 

(2.13')E,3(77), (h,—/2.0) L(5)+170                                   6'(0) —s 

where L(5) is given by (2.12'). 

   When 5 is equal to 5' satisfying a relation (2.10), let us make use of the following 

limiting values lim L(5) and lim E(3(n) instead of L(o') and E6,(n) respectively. 
                       a-s' 

(2.12")logA           lim L(5)0                                    log A — log B— h0—h1 ' 

                                 —log A•log Bhoh, (2
.13")limE,-;(zi)                                     E

o(z2)b"(51) • 

   § 2.2. Procedure. 

   We now suppose that the trial no longer calls for a fixed number of participants, 
but the trial is performed sequentially on a pair of individuals at a time, treatment 

A on one member of the pair and treatment B on the other. After the results from 

each pair are available, a decision based on the cumulative evidence at hand is made 

to select one of the two treatments as the superior and use it on the all remaining 

individuals or to continue the trial by having an additional pair participate. 

   Procedure. After the m-th pair, compute the value of a cumulative sum 71,,, of 

statistics v1, V2, ••• , 

         If it„,� K+ s • m, then select treatment B and perform B on the 

                        remaining individuals ; 

(2.14) If um —K+s m, then select treatment A and perform A on the 
                        remaining individuals ; 

         If —K±s • m < um< K+s m, then continue with another pair, 

where K is a positive real number and s is a real number, and where K and —K are 

the intercepts of the two parallel straight lines indicating the location of boundaries 

at the termination of our sequential process and s is a common slope of these two 

straight lines. 

   The problem is to determine the optimum values K* and s* of K and s respec-

tively so that the expected loss constructed in the following section 2.4 is minimized. 

   § 2.3. Construction of Over-all Expected Loss Function. 

   Let us denote by Pr{Select treatment B I 5} the probability that we select treat-

ment B as the superior at the terminal decision of our sequential process when 5 is
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the true value of the parameter. We have then 

(2.15) Pr  {  Select treatment BO} K—s • in151 

                  =Pr{tim�h,+s • 711 } = Pr{Z„,.__ log BIO}=L(d). 

   Therefore, we have similarly 

(2.15')PrISelect treatment A151 = 1— L(o), 

where L(a) is given by (2.11') or (2.11"). 

   Assuming N to be large so that the formula for unrestricted (i. e., open) sequential 

sampling are reasonable approximations, we obtain the following expected loss function. 

   If treatment A is truly inferior to B (i. e., o E S20), then the expected loss [E Loss", 

for N individuals is obtained as follows, by Definition 2 and the abovementioned 

procedure. 

(2.16)[E Loss]A= C(o* —5)[Ed(n)H- {N-2E5(n)} • {1—L(5)}]. 

   On the other hand, if treatment B is truly inferior to A (i. e., 5 E DO, then the 

expected loss [E Loss]B for N individuals is obtained as follows. 

(2.17)[E Loss1B=C(5-5*)[E,;(n)+{N-2E0-(n)} • LA]. 

   Consequently, by integrating over the a priori distribution for '6 based on the 

asumption, the over-all expected loss E Loss is obtained as follows. 

(2.18) E Loss/ NC = (6* .5)g (ö)d N1(5* — 5)E a(n)g (0)dö 
                                                     ji 

                              d2 
                — (a* —6)L(0)g(0)da 42 

NJai(5*— -5)L(5)E5(n)g(0)da , 

where g(5) denotes the probability density function of the a priori distribution for 6. 

   L(5) in (2.12') and Eo(n) in (2.13') are transformed by our procedure respectively 
as follows. 

(2.19) „1                                                       e(uoaim,(3)K 

and 

                              L(5)—11 (2.20)Ed(n)KI2 

                                                                                       , 

                                    b/(5)—s' 

where h(5) can be obtained by (2.10). 

   Giving actually the forms of b(5), h(5) and g(5), we can now compute E Loss/ NC 

of (2.18). 

   In conclusion, we should ask for the optimum values K* and s* of K and s 

respectively so that is (2.18) is minimized. 

   The logical relation between the sequential probability ratio test by Wald [13] 
and our sequential scheme can be enunciated as follows. 

   First of all, we have assigned a positive intercept K and a common slope s of the 

two parallel straight lines indicating the location of boundaries at the termination of 

our sequential process. 

   Let us suppose that values of 5, and 5, ( , where 5, and a, satisfy (2.1), ) were
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assigned. We then could determine approximately values of a and i3 on the basis 

of (2.8'). For these assigned quantities a, j9, d,, and 51, we could perform the sequential 

probability ratio test of strength (a, ,S) for testing the hypothesis H, that 5=5, 
against the alternative H, that d = 5,. Therefore, we could compute OC function L(d) 

and consequently construct E Loss due to our assumption. 

   It has been our problem to determine specific values K* and s* of K and s. 

respectively so that E Loss is minimized. 

   Thus we should actually compute specific values a* and ,3* of a and i3 correspond-

ing to K* and s* once more on the basis of (2.8'), for firstly assigned value of d0 and 

d1, and then obtain a specific OC function L(d) corresponding to these values of a*,, 

,3*, 5,, and 5,. 
   We have been so far concerned with the third case in which the two parameters 

OA and OB respectively associated with the two treatments A and B are both unknown 

to us. However, the fourth case in which the parameter OB is known to us but the 

other OA is unknown to us can be discussed in the same manner. By performing 

successively the only one treatment (i. e., treatment A) with unknown parameter on 

each individual randomly drawn from N individuals, we con then carry out our se-

quential process. 
   In this case, the considered statistic um indicates a discrepancy between the cumula-

tive observations from performing the treatment with unknown parameter and the 

known value of the parameter of the other treatment. 

   We can now construct the over-all expected loss as follows on the basis of Defini-

tion 2 on the loss. 

   Let d be the true value of the parameter. First of all, if 5E Q0, then the expected 

loss [E Loss]A for N individuals becomes as follows. 

(2.21)[E Loss]A = C(5* — 5)[E 5(n) ± { N— E o(n)} • {1 — LA}] . 

   In the second place, if d E Q„ then the expected loss [E Loss], over the whole 

trials becomes as follows. 

(2.22)[E Loss]B=C(5-5*){N—E5(n)} • L(5). 

   The over-all expected loss denoted by E Loss is finally as follows. 

(2.23)E Loss/ NC= f (5*-5)g(5)cla—f (6*-5)L(5)g(0)dO 
        di41 

                     + f ji(5*-5)L(5)E„-(n)g(5)d5 ,                   IV 

where L(d) and E5(n) can be obtained from (2.19) and (2.20) respectively, and where 

g(d) denotes the probability density function of the a priori distribution for d. 
   In conclusion, we should ask for the optimum values K* and s* of K and s 

respectively so that (2.23) is minimized.

§ 2.4. Examples. 

Example 1: Normal Distribution with Known Variance. 

(1°) The Third Case: We are firstly concerned with the case when population
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means  [IA and [LB of two normal populations with known and common variance a' are 

both unknown to us. 

   When y,'s =1, 2, ••• , m) are drawn independently from the normal population 

with unknown population mean d = ([LA— p,)/(A / 2 a) and unite variance, um= E vi 
                                                                                                                       i=i 

( , where v = —yi, ) is the sufficient statistic of the parameter d for this class of dis-
tributions with the probability density function 

(2.24)fm(un, ; 5)d p(u„,) exp {-5uni—m • 2 2' + log (27:nz)- }c1 pen „,) 

                                                  (in = 1, 2, • ••) , 
where 

    5221 (2.25)b(5) = —ani(um)=                             2
m"'                2 ';10a(27m)- 2 , and 5* = 0 . 

   We assume that the parameter 5 has an a priori normal distribution with zero 
mean and known variance a2 fa0/(202). Letting z = d/ a1, we have 

(2.26)g(5)dö co(z)dz , where so (z) = (27)- 2 • exp { —z2/2} . 

   From (2.10), we have 

(2.27)h(5) =                                      515±1-5050-25 • 

   Therefore, we get immediately from (2.8'), (2.19) and (2.20) 

                            61+60                 S—                       2 ' 

(2.28)L(5) 1                                    1+e2(s+avf 

                                 K  (e2c8+8)K _1)                           E
o(n),-•-, (s+5) • (e2(8-1 .) • 

   Thus, substituting (2.26) and (2.28) into (2.18), we obtain 

                            0K0') 1 (e2(61Z-1-S)K_ 1) 
(2.29) E Loss' NC =zso(z)dz--  zco(z)dz                                     N(o-

,z+s) (e2(0.1z+s)K1) 

             -5-zco(z) 2K j• 1 e2(a12+S) 
                    (e2(cf12-i-s)K+ 1) dz+(K.1) 

                                                    zco(z)dz} .                                      N(a izs)(e2(aiz+s)A-+1)2 

   Computing (2.29), we could determine the optimum K* and s*. But, in the paper 

[1], T. Colton has discussed the case when s = 0, and computed the maximized values 
of the considered over-all expected net gain at the various given values of R Na ,q 
and finally evaluated the advantage of the sequential optimum plan over the fixed 

sample size optimum plan. 

   (2°) The Fourth Case : We are secondly concerned with the case when population 
mean pA of a normal population with known variance cr2 is unknown to us and a 

mean effect ,te, of treatment B is a known value. 

   When yi's (i = 1, 2, ••• , m) are drawn independently from the normal population 

with unknown population mean 5 = (pA-- li,)/ a and unite variance, um= vi ( , where 
                                                                                                              i=1
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   —y, ,) is the sufficient statistic of the parameter 6 for this class of distributions, 

                                                           1 where b(6)= —6212, am(um) = —u,2,/(2m)+ log (2irm2                                             )- , and 6* = 0. 

   We assume that the parameter 6 has an a priori normal distribution with zero 

mean and known variance u /a2. Letting z = o/o- ,, we have 

             g(0)d6 =co(z)dz , whereo(z)= (27)—21 • exp {—z2/2} . 

   From (2.19) and (2.20), we have then 

                         1                           L(6) ,,,  
e2(a1z+s)K+1 

(2.30) 
                                  K (e2(aizT"--1)                                E

o(n),-,-,                                   (a
,z+s) (e2(cfizrsif C +1) • 

   Substituting (2.30) into (2.23), we obtain 

                  — (2.31)E Loss/NC 

                                           0 

                      =iszco(z)dz—( e2(criz+s)K +1)                      f:  zco(z)dz 
                       K r -  K (e2(a1z+vic                              '} 

                         N J(o riz+ s) (e2(alz,^)K+1)2zco(z)dz 

   Computing (2.31), we could determine the optimum values K* and s*. But, in the 

previous paper [10], we have been concerned with the case when s = 0, and computed 
the maximized values of the over-all expected net gain, and finally evaluated the 

advantage of the sequential plan over the fixed sample size plan. 

   Example 2: Binomial Distribution. 

   (1°) The Third Case: In the first place, let us consider the case when population 

proportions (i. e., effective proportions) P, and pi, of the two binomial populations are 
both unknown to us. 

   Let us draw 2n from N individuals in the form of pair and perform treatment 

A on one member of the pair and treatment B on the other. 

   Let a be the outcome of an observation from performing treatment A on one 

individual and b the outcome of an observation from performing treatment B on the 
other individual. 

   Let a1, , an be the results based on performing treatment A and b1, ••• , b„ the 

results based on performing treatment B, where a1 and b1 are values 1 or 0, and 

where value 1 denotes that the performed treatment is effective and value 0 denotes 

that the performed treatment is ineffective (i = 1, 2, ••• , n). 

   These results are arranged in the order observed. Thus we can consider the 

sequence of n pairs : 

                                 (a1, b1), ••• , (a71, b„) • 

   Let t1 be the number of pairs (1, 0) and t2 the number of pairs (0, 1) in this se-

quence and let t=--t,+-1-2. We consider only the pairs (0, 1) and (1, 0). 
   Since each pair (a1, b1) is equal to one of the pairs (0, 1) and (1, 0), the conditional 

probability that it is equal to (0, 1) is givenby 

                               (1 —PA)PB                                 =
PAO---P73)+(1----PA)PB
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and the conditional probability that it is equal to (1, 0) is given  1—p. 

    When yi's (i =1, 2, ••• , t) are drawn independently from the binomial population 

with an unknown population proportion p, ut= yi is the sufficient statistic of the 

parameter 5 = log 1.)--(1—) _= —log ic for this class of distributions with the probability 
.density function 

    ft(ut; exp { — 5u1—t log (1 -17 e-")—log at +1) • B(t — ut+1, ut+1)11 d p(ut) 

,(t = 1, 2, •••), where b (6) = —log (1+e-5), and where u denotes an odds ratio (),(1 —p,)) 

/(1),(1 --pB)), and where a is a step-function having jumps of height 1 at every non-
negative integer ut. 

    Let us define 5* = 0. We have then that the acceptance of 5 E Q0 is equivalent 

to the acceptance of the event " 1 < u" and the acceptance of 5 S?1 is equivalent to 

the acceptance of the event " 1 > u". 

   Let us assume that the a priori distribution for the parameter 6 has a uniform 
.distribution with the probability density function g(5)=1/(42-41) , where —00 < 
<0<42<cc. 
    Letting e—di = di (i= 1, 2), we have the a priori defined interval <cl,, d1> for the 

odds ratio u (0 < d2 < 1 < el, < co). 

   We can now compute the over-all expected loss E Loss/ NC of (2.18). 

   In the previous paper [11], we have been in detail concerned with this case, and 
then determined the optimum values K* with respect to various numerical examples 

for each of fixed several values of s, and consequently computed the minimum values 
.of the considered over-all expected loss function. 

   (2°) The Fourth Case: In the second place, let us consider the case when one 

population proportion (i. e., effective proportion) pA of the two binomial populations is 
unknown to us and the other I), known. 

    When y,'s (i = 1, 2, ••• , m) are drawn independently from the binomial population 

with an unknown population proportion pA, um= yi is the sufficient statistic of the 
                                                                                              1=-1 

parameter 5 = log 114-1(1-13,0 for this class of distributions with the probability density 
function such that b(5)= —log (1±e-6), a,„(uni)= —log ((m+1) • B(m—uni+1, um+-1)), and 

5* = log pi,'(1—pB). 

   Thus we can compute the over-all expected loss from (2.23), and determine the 
optimum values K* and s*. 

   In the previous paper [S], we have been in detail concerned with the case when 
.(1) the a priori distribution is a uniform distribution with the probability density 

function g(5)=1/ (42— 41) and (2) s =1),. We have then determined the optimum 

values K* concerning various given types of a priori distribution and consequently 

computed the minimum values of the considered over-all expected loss and finally 
evaluated the advantage of the sequential plan over the fixed sample size plan. 

   Example 3: Gamma-Distribution T(m, 5). 
    Let us consider the case when vi's (i = 1, 2, ••• , m) are drawn independently from 

the Gamma-distribution T(1, 6) with unknown mean 1/S, where 0 < v1 < co and 0 <a <00.
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Then um = v, is the sufficient statistic for the parameter 6 with the probability 
                    ,=1 

density function 

(2.31) f „,(14,; 5)d p.(it„,) exp 1— Ou 77,--H in log 5 + log irony- •  

where 

(2.32)b(5)=-- log 5 and ani(u,,,)= log ET (m)-' , 

and where m is any positive integer. 
   From (2.11) based on Kitagawa's Theorem, the function h(5) = 0 may be computed 

by solving the following equation. 

              log [h(5) • (51-60)+5] h(5) • {log (61(36-1)}-Flog o , 
that is, 

(2.33)(61-50) • h(5)1 = (61601)'" 

since 6 # O. 
   Letting 

(2.34) e ( , where e' # 1 and > 0) , 

we obtain the following (5.11') instead of (5.11). 

(2.33'){5 log (5,5V)}1(5,-50)=- log /(e-1) . 

   Since the slope s= {b(61)—b(60)1/(61-60)= {log (5 ,5c-r1)} /(51— 60), the relation between 
5 and is obtained as follows. 

(2.35)6 = (log e)/ {s(-1)} , 

where let s be a non-zero real number. 
   We also obtain from (2.33), (2.34), and (2.35) 

(2.36)(50-60h(5)=log  

   In the case of our exponential type, L(5) and Ea(n) may be obtained as function 

L(e) and Egn) of s respectively from (2.19), (2.20), (2.35), and (2.36), that is, 

                                                     AK/8 

(2.37)L(5) -=                                             rcis +1 2 

                    K .K/8log e  (2.38) E 5(n) -= E gn)                                 sl"+1• —1—lo g 

   It should be noted that both L(5), E o(n) are independent with respect to 51, 50. 
   Thus, the over-all expected loss of the present case results as follows, from (2.18), 

(2.35), (2.37), (2.38), and our assumption, 

                           1 (2
.39) E Loss/ NC =O*(5* —5)g(0)d5N (5* — 5)Ea(n)g(5)da 

   d1

f                    (5* — 5)L(5)g (5)d+ 
NJa(5* — 5)E o(n) L(5)g (0)c 

where g(5) denotes the probability density function of the a priori distribution for 5. 
   From (2.35), we have
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(2.39')E Loss/NC = cbi(K, C-52(K1 s 

                             —0 3(K, s $1, 50 2 04(K, s 1, c;2) 

where 

                   ge.1°g$)   C-51(K• sisf::(6*—  )s(:;7-1)2 
                        log$($—1—$log$)log$'-1a   C-52(K, sI$„$2),sjr!2(5*_                         s(,;-1))$)$($—1)2$K.sH-1 

              1 r,:2( log $($ —1 — $ log,e)K      s I2)= ss(',!"-1))$11 s+1 bl`c) 

                  Kr=;"2*   0
,(K,$2)s2log$ (:,=-1—$ log $) log$$ic's(eK/s —1)                            s($ —1) )•( ,;-1—logF),,;-(c;—1)2.•(VcisH-1)2gic) 

and where 

         1, = (log $i)/ {s($,-1)} (i= 1, 2), =(log *)/{s(*-1)} , 
and 

                           g(d) = g1($) . 

   Thus we must determine the optimum values K* and s* of K and s respectively 

so that (2.39') is minimized. 

   Example 4: Poisson-Distribution P(2). 
    Let us consider the case when v,'s (i= 1, 2, ••• , in) are drawn independently from 
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the Poisson distribution with an unknown mean 2, 0 < 2 < Do. Then um, = vi is a                                                                              =7i 
sufficient statistic for the parameter d = —log 2 with the probability density function 

(2.40) fm(u,„, ; O)dp(u„)_= exp { — u,„5--ine-°+ log [Mum • r(11,,, 1)-1]} d itt(u „,) 

where 

{2.41)b(5)_= —e-5 and am(um) = log [Mum • r(um+ 1)-11 , 

and where it is a step-function having jumps of height 1 at every nonnegative integer 

u„. Moreover, we assume that an a priori defined interval for the parameter d is 

<Ji, J2> (—co < Ji-�6�-Z12<c9)- 
   From (2.10) based on Kitagawa's Theorem, the function h(0) # 0 may be computed 

by solving the following equation. 

{2.42) exp {—(51-50h(5)} —1 = h(5) • exp {6}• (exp { —Oi} —exP {-60}) • 

   Letting 

(2.43)exp {—(31-50)h(6)} = ( , where e- 1 and e > 0) , 

we obtain the following (2.42') instead of (2.42). 

(2A2')0,-50)e-5log                                   e-°1—e-°, $-1 

   Since the slope s {b(51)—boo}/(d1-50)== { — e -51+ e-59 AO,— 50, the relation be-
tween 3 and e is obtained.
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(2.44)e-r,- = s log $ 

where let s be a nonzero real number. 
   Also, from (2.43), we obtain 

(2.45)(60-61) • h(0)= log $ . 

   Thus, in the case of our Poisson type, L(3) and E o(n) may be obtained as func-

tions L($) and E (n) of s respectively from (2.19), (2.20), and (2.45), that is, 

(2.46)L(o) = L($) , 

(2.47)Eo(i)_=Ec-(n)                                             $-1                                   s• (log)H -1--1±' 

where let us note b'(6)= =- (s log $)/ ($ —1) from (2.44). It should be noted that both 
L(0) and Eo(n) are independent with respect to 60, 5,. 

   Thus, the over-all expected loss of the present case results as follows, from (2.18), 

(2.44), (2.46), (2.47), and our assumption. 

(2.48)E Loss/ NC= NK, e*)—xl02(K, s 15 r, e2) 

                           —03(IC s i 'el,NC -4(K, 

where 

  01(K, si—CO*—lo g(s-1)•(e —1— $log e) g($)cl$                        s log $$($-1) log $ 

 02(K, s 2)= s(o*log            K(e_1)—1—log$)(1--Ec)  
                          s log $ ) • (1($H-log $)$ log $ • (1-i--g) )ds 

  03(K, sl$,, $2)— —S'2(6* log (-1)•($-1—$ log e)1-,                       s log $$($-1) log $ (1+$19 

  04(K, sie„ -2)=(a*—log             K r($-1)($-1— log $) (1—VO 
                  sEis log $ (1---e+log $)$ log $ (1+ ero261^.,..-1- 4. 

and where 

            = (s log $i)/($,-1) (i= 1, 2) , = (s log $*)1($* —1) , 

and 

                           g(6)= g,($) . 

   Thus we must determine the optimum values K* and s* of K and s respectively 

so that E Loss/ NC of (2.48) is minimized.
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