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   § 1. Introduction. 

   The multiple inverse sampling is, in this peper, understood as follows. 
Suppose we have a multinomial population with m exclusive events, E1, E2, 
••-, E,„ with the respective probabilities P1, P2, ••-, P,„. We have m prefixed 
non-negative integers R1, R2, •••, R,„ and we continue sampling until R,<r, 
(i = 1, m) is satisfied, where r, is the number of occurrences of E, 
respectively. 
   Let k, denote ra — R, for i = 1, 2, •-•, m. At the termination of the 
sampling, therefore, at least one of k's (i = 1, 2, •••, m) is zero, and the 
remains are all non-negative. 

   When m = 2 and R2 = 0, the distribution of k2 is called the negative 
binomial distribution, Feller [ 6 ] pp. 155-157, and when m is more than 2 
and all Ri's are zero except f or R1, it may be legitimate to call the joint 
distribution of k2,—, k„, the negative multinomial distribution. 

   This type of sampling seems to have some importance but does not seem 
to have been systematically treated so f ar. 

   The authors may mention the works of D. G. Chapman [2], M. H. De-
Groot [3], C. E. Deiulefait [4], B Epstein and M. Sobel [5], D. J. Finney [7], 
M. A. Girshick, F. Mosteller, and L. J. Savage [8], J. B. S. Haldane [9], J. 
Nadler [12], M. C. K. Tweedie [15], which are all of the works pertinent to 
this type of sampling so f ar as the authors are aware of. 

   The most of the works seem to be concerned with the simple rather 
than multiple inverse sampling and the results are on the estimation of the 
parameters rather than the test of significance, or more generally the multiple 
decision problems. This paper is motivated by a sampling problem in a 
large scale survey now proceeding, and we have forcused our attention to 
the problems to meet our immediate needs. We have so far obtained the 
result mostly in the case m = 2. 

   In § 2 the distribution of K = k1 + k2, etc. and their means and variances 
will be obtained, which, of course, depend on the underlying probabilities

   This paper is supported by a grant given to the Kyushu University from U. S. Public Health 
Service (Gm 09470-02) (Chief investigator Prof. Dr. K. Yamaoka). 
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P1 and p2, and prefixed numbers R1 and R2. The behaviours of the mean 
and the variance is not very easy to analyse but some numerical considera-
tions have been made and some interesting findings will be presented. 

   In § 3, we shall derive a uniformly most powerful test of the hypothesis 
that the underlying probability is a specified value. In § 4, a symmetric 

multiple decision problem will be discussed. § 5 is devoted to the derivation 
of the limit distribution when R1 and R2 are large. In § 6, there will be 

presented the outline of the survey by which this paper is motivated and 
the application of the uniformly most powerful test obtained in § 3. 

   The authors are grateful for the encouragements and criticism given by 
Professor T. Kitagawa while this paper is being worked out. The authors 
express their gratitude to Mr. N. Furukawa for his advices in surveying 

previous works of this line, and also assistance in the manuscript. 

    § 2. Distribution, expectation and variance. 

   Let E1 and E2 be two exclusive events with the probabilities p and 

q = 1 — p respectively. The probability that the sampling stated in the in-
troduction terminates at the (R1 + R2 + k) -th. trial is equal to the probability 
that at the (R1 + R2 + k) -th. trial either (a) : E1 occurs and this is the R1-th 
occurence of E1 or (b) : E2 occurs and this is the R2-th occurence of E2. 
By considering that E2 and E1 occured exactly R2 + k and R1 + k times in 
each case respectively, the probability is found to be 

(2.1) Pr (k)=—1(R1 + R2 +k—l)pRiqR2-Ek+(1?4-R2k—1),,,Ri+k,,R2        R1R2 1 11 
                                                k = 0,1, 2, 

where the first term represents the event (a) and the second the event (b). 
By making use of the recurrence relation concerning the incomplete beta 
f unctions 

                   + 1) — p(r ,N) =(N+r—1)I (2. 2)a                                (r —1)IN!Pr 

                                         (r, N positive integers) 
the cummulative distribution function is given by 

                                 ko 

(2.3)          F(ko)Pr(k) = 4(Ri, R2,+ko+ 1) —4(Ri+ ko+ 1, R;), 
                                 k=0 

                                                                     ko-= 0, 1, 2,•••, 

and also the probability that the sampling terminates with the occurence of E1 is 

(2. 4)"Rk-
                                  1)pq=1—         i(R,+1?,+k—l)pRiqR2+k(__, 

                               R,11-„(Ri, R2),      k=0\Ri1k=-R2k 

from which follows that with E2 is I, (R1, R2). 
   The probability that the sampling terminates at the (R1 + R2 + k) -th. 

trial with E1 is the first term of (2.1), and that with E2 is the second.



Some considerations on the multiple inverse sampling method65

   The corresponding sums are given by 

 (2.  5) F 2(ko) =  ,(R1+11??2 +1k1) Pm1'q"2+=1-,(R„R2 + ko + 1) —I„ (R1,R2), 
and 

                            k°  

 (2. 6) F1(k0)=l?,+iR 22+—11plli+kq1?2—- -1-                                   Ig(R2,Ri+ko+ 1),(R2, R1),                   —1k) 
and the distribution funcRtion (2.3) is indeed the sum of (2.5) and (2. 6). 

   About the mean and the variance we have the following 

   Theorem 2.1 The mean E(K) and the variance V (K) of the variable 
defined as above are given by 

(2. 7)E(K)=(Ri R2)r,„ R2)1+ (RI ±R2 —1)11,1?1-1 qR2-1             P qjj(R
1-1)! (R2— 1)! 

(2.8)v (K) = (q— p) (R1 -R9E(K)++ Pq (R1--R2)2 
        P qp.p q 

             +                  (R+ R2 1) !hRi-laR2-1(  q)  qR1)I(Ri,R2)                 1)!(R2— 1)1'pqq2p2P 
           —[E (K)] 2 

    Proof. 

   By definition we have 

(2.9) E(K) =k                   F(R1+R2+-1)pRiqR2-Fkk(Ri+.:2+1k—1) pRi+k qR2               k=o\—1 
The first term is 

(2. 10) (R, + R2+ k —1)1 pR1q,,2+1'.[(R2+ k) —R2]           k---0(R1-1)! (R2+ k)! 

             ,Riq(Ri+R2+k-1)! hRi+IqR2+k-i(Ri+k1)! 
             pR,!(R2+k-1)!k-R2(R1—)!k! 

            --Rig- [1 — Ip(R14 1, R2-1)]-1?2[1-4(R1, R2)]. 

On the other hand as we have 

(2.11)Ip(Ri+ 1, R2 1) = (RR
,!(,+R1)!R2—1)1/3111e-1+1-p(Ri, R2),                         2— 

                                                (R1>0, R2>1) . 

The first term is equal to 

(2. 12)Ri q 14_(R1+ R2-1)! hrZinR2-1R2)]_It7,2                                                   [1—(R,,R2)].           pLR
,! (R2— 1)! 

Similarily the second term is 

(2. 13)R2 p [1+(R1-FR2 1)! —I,(R2,R,)]—R1[1—.TAR2, R1)1. 
           q R2! (R1-1)! 

Combining these two
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(2. 14) E (K) = (R, Q + R2P+ (R1+ R2-1)!PRI— (R1 + R2) 
               pq 1)! (R2 -1)! 

           +1",,(R,, R2) (R2- R, pq )+ I, (R2, R1) (R1-R2P4). 
And after some simple calculations we have that (2.7) holds true. 

   In order to prove (2.8), we calculate the expectation of K2. 

(2. 15) E (K2)=ir(R,2+1k -1pR14R2-Ek k2 (R1+1R?2 —11  pRi+Ic qR2 k21. 
The first term in the summation expressed as the sum of four terms 

(2. 16) i(Rt +lip+1k —1)p/V2+ k2(R(Ri+)!R24-k-1)!ic,llinR2-Fk 
                                   ,-(k2 k- 2)! 

                (Ri+R2+ k-+R2+ k-1)!RRo+  +(Rip 
            k=0(R,-1)1(R21)!+k-1)1'At--0(R-1)!2+1 

           — 2R2E                   -(Rid-R2+ k-1)!pR1qR2-rk 
              1-0(R1-1)1(R2+ k)! 

The summations of each of four terms in (2.16) are as follows 

                               2 (2.17)      R1(R1+1)R2-2n 
                           Y2 

(2. 18) R14[1- Ip(R, + 1, R2-1)], 

(2. 19) -1? [1-4 (R1, R2)], 

(2. 20) -2R2Ri-Q[1-4(Ri+ 1, R2 1)] + 2Rn- Ip(Ri, R2)]. 

In view of the symmetricity between the first and the second terms with 
respect to p, q and R1, R2, we have 

(2. 21)E (K2)Ri(Ri+1)-21- Ip(R, + 2, R2 - 2)] + 1, R2 1)] 

           - Ip(Ri , R2)] - 2R1R2 q[1- Ip(Ri+ 1, R2-1)] -1- 2Rff1 Ip(Ri,R2)] 

      + R2(R2+1) 2[1- Ig(R2 +2, Ri -2)]+R2A[1- I,(R2 + 1, R, 1)] 

               q 

      -R2,[1-4(R2 ,R1)]-2R,R2P---q[1- I,(R2+ 1, R,-1)1+2Rql - RD] 

     =R1(R1+1)9T1+ (R1+ R2  1)!(R1+ R2— 1) !hRinR2-1 
             P2(R, + 1)1(R2- 2)1 R1!(R2-1)! 

                                            - Ip(R1, R2)] 
     + (1- 2 R 2) R14[1 +                         (R1+ R2 1)!pieigR2-1—1.,(Ri,R2)1 

                                                           - 

               p R,!(R2-1)! 

                                      + 4(R1, R2)]
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       +R2 (R2+1)P:1+(R1+R2-1)!(Ri+ R21) ! AR1-1qR2 
               q"_ (R2+1)! (R1-2)!R2!(R,-1)! 

                                                     --1-,(R2, R1)] 
        + (1- 2R1) R2P-(R1+ R2 -1)-!                                         g(R2,R i`)j                                                       -I ,(R2,R1)]                 qLR 2!(R1-1)! 

         (R, _R2)2 +qR,, _(R,± R2 1) !qR2-1[(q___p)(R1R2/      p q / p2-1)!R2-1)!kppq 

          P_,7Rp,_R92)2qRp2,,_Pq2R2]                                     .1„(Ri, R2) 

 ) 

            (R, _R2E(k) Riv, (RiR2)2 
        P qip21 

          (RI+ R2 - 1)!1n/12-1 (  12)(pR2qR,)T p,                                                    (KR2). Q. E. D.       +(R
1-1!(R2-1)112pqq2p2 

   It is of some interest to observe how the mean and the variance vary 
with p and R1 when R1 -I- R2 is fixed. In order to investigate their behaviours 

we have tabulated these values for all possible combinations of p = 0.01, 

(0.01), 0.99 and R1, when R1 is not less than R2 and the sum of them is 
10 and 20. Because of the symmetricity in R„ p and R2, q this covers all 

possible combinations of p, R1 and R when the sum is 10 and 20. 
   In tables 1 and 2, there are shown (I) the value of the mean when p= 

R1/(R1+R2), (II) the minimum of the values of the mean tabulated at p=

                         TABLE 1. R1 + R2 = 10 

      MeanVariance 
R1 

  IIIIIIIVVVI 

52.46092.46090.5006.40476.4047 0.500 
62.50822.43720.5707.32356.28240.560 
72.66832.35620.65010.68315.90590.620 
83.01992.20150.73019.55275.25140.680 
93.87421.90110.81051.96314.19660.760 

                        TABLE 2. R1 + R2 = 20 

      MeanVariance 
R1 -  - 

   III {IIIIVVVI 

103.52393.52390.50011.105811.10580.500 
113.54113.51510.54011.500211.06390.530 
123.59413.48830.580 1 12.7384                                                  10.86260.570 
133.68803.44190.62015.004810.53110.600 
143.83283.37330.66018.686110.09930.640 
154.04663.27860.70024.55639.46910.670 
164.36403.15190.74034.27028.72430.710 
174.85662.98120.79051.92297.80150.740 
185.70362.72690.83090.66756.65550.790 
197.54712.32540.880223.33605.16820.830
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0.01, (0.01), 0.99 and (III) the value of p where the minimum in the sense 
above is attained. In columns (IV), (V) and (VI) there are shown the same 
for the variance. An interesting fact is when R1 is fixed the minumum 
values are attained at the value of p between 1/2 and R1/(R1±1?2), and the 
difference between the values at P=Ri/(Ri+R2) and that of the minimum 
is not a small amount as the authors anticipated at first, and moreover as 
R1 increases from R1 = R2 the value of the former increases whereas the 
latter decreases for which the authors have not so f ar f ound analytic proof. 

   § 3. The uniformly most powerful test 

   In this section we shall consider a test of the null hypothesis Ho: p-----P0 
against the alternative hypothesis H,: p=p0 + A where 0<4<q0 = 1 — p with 
the significance level a. 

   The density function of K is given in the f ollowing slightly modified 
f orm, 

             fl (k, p)— (R1+R2 + k-1)!hRi+k(IR%                                           if the sampling termi-                     (R2—1)!(R1+k)!'nates with E 2, 
(3.1) f (k, p)---) 

            f2(k, p),(R1+14+ k-1)!plbe2+k,if the sampling termi-                     (R 1-1)! (R2+ k)1nates with E1. 

   For significance level a there may or may not exists a non-negative 
integer ko such that 

   -- 

(3. 2)E f1 (k1, Po) a> E /1 (k, Po). 
          k=kok=ko+1 

Our case 1 assumes the existence of such ko. When such ko does not exists, 

there exists ko such that 

 -- 

                      (3. 3)ko        E fi (k,Po) + Ef2(k, Po) < a <Efi(k, Po) +ko-1-1 EL (k, Po). 
   k=0k=01,--0k=0 

Our case 2 assumes the existence of ko satisfying (3. 3) but not (3. 2). 
   In this paper we propose the test procedure expressed in terms of the 

following test function. 
In case 1 

         1if the sampling terminates with 

                               E, and k> ko + 1 
            a— E Mk, p0) 

(3. 4) g), (k) _,k=k0-1-1 if the sampling terminates with               f
i (ko, Po) 

                                       E2 and k=k, 

     0otherwise. 
In case 2
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          1if the sampling terminates with 

 ko E2 or with E1 and k <k, 
             a —Efi(k,Po) —Ef2(ki, Po) 

 (3. 5)co(k) =  k=0k =0 if the sampling terminates with                     (k
o ± 1, Po) 

                                   E1 and k=k0+ 1 

     0otherwise 

where co (k) represents the probability of rejecting the null hypothesis when 
k is observed. It is clear that the significance level of the test procedure 
expressed by this test function is a. 

   Theorem 3.1 The test procedure expressed in terms of (3.4) and 
(3. 5) is the uniformly m3st powerful test with the significance level a 
of Ho; p p0 against the alternative hypothesis H1: P=P0 + (0<4<q0). 

   Proof. Under the condtion that the sampling terminates with E2, the 
region 

(3. 6)Sk;f(k, Po+ 4)  >2, (2>0)1. 
                   f(k, Po) 

can be proved, of ter some simple calculations, equal to 

                             log2(po ggoA)R2                            O±o—I } (3. 7)k ; k>A (4, A) P)  
                          log(1+  po) 

Similarly under the condition that the sampling terminates with E1 the regi-
on (3.6) is proved to be equal to 

                         log2(  pfot_ 2)121 (got2)172 (3.8); k<B (4, 2) 
                            log (1—  

                                               q0 

It is to be noted that A (4, 2) and B (4, 2) are monotone increasing and 
decreasing functions of A for any fixed d both ranging in the real line, and 
moreover we have 

(3. 9)A (4, 2) B (4, 2) < 0. 

In case 1, for any d there exists 2 such that k0 < A (4, 2) <k0 + 1 and for 
this A, B(4, 2) <0 and hence the region (3.8) is null . In this case the 
region where co (k) in (3. 4) is equal to 1 is equal to the region (3. 7). In 
case 2, for any d there exists 2 such that k0 <B(4, 2) <ko + 1 and A (4, 
2) < 0 hence the region (3. 7) is the whole non-negative integers , and the 
region where co (k) in (3. 5) is equal to 1 is equal to the sum of the regions 

(3.7) and (3. 8). Therefore we can apply the Neyman-Pearson's Funda-
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mental Lemma (c. f. for instance Lehman [11] p. 65) and arrive at the 
conclusion. Q. E. D. 

   The similar procedure can be derived for the case of the other type of 
a one sided alternative 111; p = po — 4 (0 < 4<p0), and this can also be 
proved to be the uniformly most powerful. 

   § 4. The optimum symmetric three decision procedure. 

   In the previous section we derived the uniformly most powerfull one 
sided test. We can device two sided test in many different ways and it is 
impossible to find the uniformly most powerful one. However if we impose 
a kind of symmetricity requirement on the power function, it would be 
possible to find one. In this paper we approach the problem in a different 
way. 

   In this section we assume R1 = R2, and we consider the following three 
hypothesis 

               Ho; p = 1/2, 

(4.1)H„. p = 1/2 + d, (0 <4 < 1/2) 
                H,; p = 1/2 — 4. 

Let D, (i = 0, 1, 2) denote the decisions that H, is true, and let P (D1; .11,) 
(i, j = 0, 1, 2) denote the probapbilty of accepting the decision D, when Hi 
is true. 

   These probabilities, of course, depends on the decision procedure em-
ployed and also on 4 when j = 1, 2. On the decision procedure we impose 
the requirements similar to those in the slippage problems (c. f. E. Paulson 
[13]) or more generally in the symmetric multiple decision problems, (c. f. 
A. KudO [10]). We require 

(4. 2)P (Do; Ho) = 1— a 

where a is a suitably chosen small positive number such as 0.05 or 0.01, 
and for other two probabilities of correct decisions we require 

(4. 3) P(D1; H1) = P(D2; H2), for all 4 . 

   In this sampling procedure the observation consists in whether the sampl-
ing terminates with E1 or E2 and also the number K when the sampling 
terminates at the (R1 R2 + K) -th trial. For the sake of brevity we say 
that K1 is observed when the sampling terminates with E2 and K2 is ob-
served when E1. In order to express the decisian procedure we intorduce 
a vector valued function p(k) = (coo(k), coi(k), co, (k)) satisfying the condi-

                                                     2 tions 0 < o (k) < 1 (i = 0, 1, 2) and E (k) = 1. This vector valued function 
                                                          ,=0 

expresses the decision procedure of the following. When the observation 
is k, we decide D, with the probability co, (k) by making use of some chance
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mechanism. 
   At first we prove the  following 

   Lemma 4.1 For any a (0<a<l) there exists a decision procedure 
40.(k)= (400(k), 401(k), co 2(k)) satisfying (4. 2) and (4. 3). 

   Proof. The density function under Ho is obtained by putting p=1/2 
and R1=1?2 in (3. 1), and from this we can evaluate 

(4.4)r = P,(k, = 0 Ho) + Pr(k, = 0 Ho). 
   In case 1 — a < r we define co „(k,) as follows 

                     1—a           Too(ki) = 

       -cMki) =1-1 r aif k, = 0 

          (k) = 0 CI 
(4.5)(i=1, 2) 

         (400(k) = 0      )
pk,) = 1if ki>1. 

             = 0 (i i) 

   In the other case 1 — a> r, there exists a positive integer r such that 

(4. 6)fi=---P,.(ki<r-1 Ho) + —1 < 1—a 
             < r(le H0) P (k2<r j Ho) 

and in this case we define the decision function 0-, (k) as follows 

       Mr0(ki) = 1          0,(k,) =0if k,<r — 1 

           k) = 0 C1 4) 

          -00(k) =  1 —6a73/3 
(4. 7)    -0,(1?,) =1— 1—6if k, = r(i=1, 2)                        a—fl  

                           13 

           Mk,) = 0 (..1i) 

       rC6o(ki) = 0          ki) = 1if k,> r 
            --

J(ki) = 0 (..1 i) 

It is a straightforward matter to see that this decision function satisfies the 
condition (4. 2) and (4. 3) . 

   Theorem 4.1 The decision function 0-.„ (k) defined by (4. 5) or (4. 7) 
sttains the maximmm of (4. 3) among all the decision procedures satisfying
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the equalities (4.2) and (4. 3). 

   Proof. 

   Let us here consider the following summation 

(4. 8) F (co, c,4) =E[P,.(k,1110)C°0(k1)cP, (kiH1,4)coi(k,)+ cP r(ki112,4°2 (kl] 
         ki=0 

        +E [P,-(k2f10)0 (k2) cPr(k2H1, 4)401(k2)+cP,(k21112, 4)c92 (k2)] 
                    k2=0 

                         co 

      =E P , (ki 110)1400 (ki) +cco,(k,)(1+24)Th+"(1-24)R1 
                  ki=0 

                                  + cco2 (k1) (1 + 24)Th(1-24)R1+1 

        +E Pr( k2 Ho) [so. (k2) + cco1(k2) (1+24) Ri (1-24)Ri+k2 
                    k2=0 

                                    + CC 0 2(k2) (1+ 2,d)R' (1 — 24)11 

for any fixed 4 and positive number c, this summation is easily found to 
be maximized by the decision function satisfying 

       500(k) = 1 if ki<B(4, c) 

(4.9) ca, (k,) = 1 if ki> max (0, B(4, c)).(i= 1, 2) 

    ,C0 )(k) =0if k,= 0, 1, 2,-- 

where 

                        —log c—R 1log(1-442)  (4.10)B(4, c)=                       lo
g (1+24) 

for any fixed 4, this function B (4, c) is continuously decreasing function 
varying from infinity to minus infinity. Therefore for any 4 we can select 
c such that F (co, c, 4) is maximised by the decision function 0 '„(k). We 
write such c as c(4, a). 

   Now let us consider a class of decision functions satisfying (4.2) and 

(4.3), and try to maximise F(c9, c(4, a), 4) in this class of decision funct-
ions. In this case the sum of the first terms in the summations is a con-
stant, 1— a, and moreover the sums of the second terms and that of the 

third are identical, because of the conditions (4.2) and (4.3). Maximizing 
F(co, c(4, a), 4) is nothing but the maximization of the sum of the second 
terms or the third. On the other hand this is maximized unconditionally 
by the decision function coc,(k), which leads us to the conclusion.

   § 5. The limits of the density and the distribution. 

   In case R1 and R2 are both less than 50, we can evaluate the density 
and the distribution function by making use of the available table of the 
incomplete beta-function [141. If one of the R's is larger than 50, there 
does not seem to exists any table available. 

   We have made some investigations about the limiting distributions, and
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we shall here describe briefly the results. 
   We shall first discuss the limiting density  function in more general way. 

Instead of two we shall here consider n exclusive events E, with the pro-
babilities pi (1=1, 2, • ••, n). In this case we should continue sampling if one 
of the events E, has occured less than a prefixed number R, (i =1, 2, •••, n), 
and we should stop sampling as soon as all E, 's have occured not less than 
R. times respectively. At the termination of the sampling E, must have 
occured Ri + K, times where all the K. should be nonnegative and at least 
one of them be zero. When the sampling terminates with Ei, K, =0 and 
the joint density function of the rest of K .; 's is given by 

(5.1) Pr(ki,•••, k+1, ••-, kn) 

            kl+ +k,_,+k,+,+ ••• + —I)!R+kR•i+k•R•R+k                                  73
111.-1-1Pi'131+-1'n            (R

,-1)!(Rj+ k g)! 
                             i*z 

where R,. 
                    i=1 

   Let p,= (k+mi)/R, where —Rj<mj<R—Rj(j=1, 2, • , n) 
                                                                                                   i=1 

then the joint distribution can be written in the following form 

(5.2) Pr(ki, • 14) 

       (R+k,+ • • • + ki_i+k1+1+ ••• + km)! R,(R,+ mi)Rill(Rj+ mi)Ri+ki 
  R,IRj+ ki)!(R+ k1 •-• +iki+i+ •••+k„)Rij:•     ffiki+•••+ki_i+ki+,+•••+k,r6• 

We consider the limit of (5. 2) when all the R; s tend to infinity under the 

condition m; / Rj—›0 and k3/R;-->O (j =1, 2,—, n), where k = E kJ. 

By making use of the Stirling formula, we have that (5. 2) tends to 

        1  (R+k—k,)R+k-ki+1/2Rick+Ri(Ri+m j)Ri-Ekj 
          fi  (5. 3) (1/2,r,• Riz,+1/21-1(R

i+k)R j+kf+112(R+k_ 

                              /,-1-—k,‘ R+k-ki(1+-111-11)Rill (1 ±Mi )Ri+kj 
        1( R,\h`z e.R)R„*,R•  

     4/27cr-1R.j+k2L. 1/2                    j11(1+ -opk)j11(1+13:0„)11(1+  
               j*ij*i 

Taking the logarithm of (1+ kj/Rj)ki , (1+ (k—k,)/R)k-ki and (1+ mj/R)k., and 
applying the condition, we arrive at the limit 

(5. 4)1  (Ri)1/2ex,L(k—ki)2+E m jk _E  
      (I/27c)71-1\RIM;Rj*i RiJ 

        =  „_,( RTIRj)1/2e            (^27r)xp [— (k— a)'A(k— a) 

where
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   k,a1 

   k= hi_, 1,a'--1miRi(j-=1,•••, i-1, i+1,—, n),              ai+1,2R,                k
i-1-1 

    ki„a,, 

  (1/R1 / 1         0 11 1 

      i/R'1 A=•           1/Ri+1R 

       0 

                1/R„ / \ 1 

It is interesting to note that the limits tends to a multivariate normal density 
function. In view of the condition, however, it does not cover entire range 
of k, 's. Indeed the integral of the entire range of k is not equal to 1. 

   Now let us turn to the limiting distribution function. In this case our 
treatment is not so general as in the case of limiting density function. Our 
result may be ennunciated in the following. 

   Theorem 5.1 When R1 and R2 tend to infinity, the limit of the 
cummulative distribution function given by (2. 3) tends to 

(5. 5) L1/     1_FqR,—pR,—pko--                       ko)Pq-ILi/(R,+R2+ ko) Pq--1 

for all ko. 
   Specially when P=R1/(R1+R2), (5.5) becomes 

(5. 6)R2k0 1_0r- — (Riko+R)                [:/ (Ri+ R2 + ko)R1R2-1(Ri + R2 + ko)RIR2—• 
where is the standardized normal distribution function. 

   Proof. Now let us recall to the relation between the distribution function 
of the binomial distribntion and the incomplete beta function. 

(5. 7) k+1) Enc.Pr(1—p)n–x - 
                                   —0 

Because of the central limit theorem applied to binomial distribution (c. f. 
De Moivre Laplace Theorem in Feller [6] p. 172), we have 

(5. 8)I1„(n—k, k+1) 0(  k—n-P                                ^npq 

as k and n-k tends to infinity, and applying this relation to (2. 3) we obtain 
(5. 5), from which (5. 6) follows immediately. Q. E. D. 

   The more important limiting functions are these of (2. 5) and (2. 6), as 
they are used in the uniformly most powerful one sided test. The similar 
calculations as in Theorem 5. 2 yields. 

   Corollary 5.1 When R1 and R2 tends to infinity- the functions F 2(k0) 
and F1(ko) tend to
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(5.9) [ qRi—PR2q rqR,—pR,— pk— 1 
                  (Ri+R2—1)Pq  Li/ (Ri+R,±ko)Pq 

and 

(5. 10) qR,— qk,  1_ 0r  qR,—pR,--q  
                   (R1±R2 ko)Pq--1 (Ri+ R21) Pq 

respectively for all k0. 
Specially when P/R,-----q/R2, (5. 9) and (5. 10) become 

(5.11)0 r_R, —(ik+  R)                LV(R
i+R2-1)RI1-1/ (R, + ko) RiR2 

and 

(5.12)[ 1/  RA°kr 1/R2+R2+o)RiR2I-V(Ri-FR2-1)Ri 
respectively for all k0.

    § 6. An example. 

    A large scale survey on consaguinity is now proceeding in Fukuoka City 
by a group headed dy Prof. K . Yamaoka of Kyushu University, medical 
school under the sponsorship of U. S. Public Health Service (Gm 09470-02) . 

    The survey has so far taken the following steps . 
   1) Listing of all the 55,315 females born between 1912 and 1931 from 

the address registrations at city offices in 8 different regions . 2) All of 
them have been sent questionairs as to their marital status , number of 
children, and consanguinity, and 46,901 (84.78 %) of them have answered , 
and among them the percentage of those who have answered as consangu -
ineous has been approximately 7.37 %. 3) The confirmation of the con-
sanguinity by Koseki (c. f. Yanase [16]) is now proceeding . 4) The sampling 
of the control group from non-consanguineous marriages is now proceeding 
by the following way. 

   The main purpose of our study is to determine the effect of consanguinity 
on fertility and the mortality and morbidity of the children . As the con-
comittant variations, to be taken into account , caused by age and regional 
difference are expected to exist, we decided to sample the controls from each 
one of the age groups of 8 city offices . 

   The non-consanguinuous group has been already classified according to 
8 regions, but classification and the enumeration of these 8 groups again 
according to the marital status and the age are almost prohibitive by our 
available means because of the large scale of the survey . 

   The only means to us seems to be the multiple inverse sampling in 
each of the 8 regions. As both the consanguinities and the controls are to 
be examined by direct interview , which means a considerable amount of 
cost and task, we decided to draw only the same number of controls in each
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             TABLE 3. 

Years No. of , Sample size                                 Redun-
       consanguinity, at the                                      dancy (

born) (Ri)termination 

1912 8135 '13 112514 
'14 14140 
'15 122614 
'16 142612 
'17 122412 
'18 152914 
'19 16193 

'20 122614 
'21 17247 
'22 21 i 3211 
'23 142612 
'24 133219 
'25 152813 
'26 20244 

Total 214 I 368— 
'27 163519 
'28 19278 
'29 193516 
'30 123826 
'31 93526 

Total 75170—

one of the age groups in each re-

gion. 

   For the purpose of sampling, 

a program for a high speed corn-

putor was written to generate ran-

dom numbers less than a perfixed 

value, which, in this case, 3964, 

the total number of non-consan-

guinity in this region. 
   'fable 3 shows how the sampl -

ing was terminated in the region 

called KATAKASU, one of the 8 

regions, and this seems to suggest 

the decrease in the consanguinity 

rate in recent years. 

   It is commonly believed that 

the consanguinity decreased after 

the World War II, namely of ter 

1945. We seek for the evidence 

of it by means of statistical tests.

But we have not developed a test procedure adequate to our purpose. 

   A drastic change might have occured between those who are born before 

and after 1926, who became age of twenty at the end of the World War II. 

For the purpose of the test, we classify into two according to this criterion. 

   Ordinary x2 test of 2 x 2 table is in this case 

                                 TABLE 4. 

                                 before 1926 after 1927 total 
        consanguinity21475 289 
          non-consanguinity368170 538 

          Total:582245 827 

whose e value is 2.87 which is not significant. 

   For the illustration purpose, we sampled the controls by the double in-

verse sampling method according to the above two categories, where the 

sampling ended with the first category, and the redundancy in the 2nd 

category was 26. In this case the 2 x 2 table is 

                                 TABLE 5. 

                                  before 1926 after 1927 total 
        consanguinity21475 289 
          non-consanguinity214101 315 

          Total:428176 604 

whose x2 value is 2.723 which is again not significant. On the other hand, 

however, applying the test procedure described in § 3, taking R1=214, R2=
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75,  Po=214/289-0.740, HO P=P0, H1; p<po, we obtain, from corollary 5.1, 
Pr(k>26)=0.047, which shows the significance at the 5% level. 

   This fact illustrates the advantage of this test procedure in the double 
inverse sampling over the ordinary x2 test, which has been already proved 
by Themorem 3.1. It is interesting to observe that the x2 test based on 
Table 4 is not signifcant even though the total sample size is 827 much 
larger than 604 of table 5. 

   These figures are only provisional, subject to alteration by confirmation 
by Koseki and direct interview. They are borrowed here merely for 
illustrative purpose. 

   As this example indicates, our results ought to be extended to the case 
of inverse sampling f rom multinomial population and there has to be de-
veloped a test procedure for testing the equality of proportions against a 
kind of an ordered type of alternative (c. f. for instance D. J. Bartholomew 

[1]). The authors wish to develope these in a near future.

References

[ 1 [ BARTHOLOMEW, D. J.: A test of homogeneity of means under restricted alternatives. J. R. S. S. 
    Ser. B Vol. 124 (1961), 239-281. 

[ 2 ] CHA.PM AN, D. G.: Inverse, multiple and sequential sample. Biometrics, Vol. 8 (1952), 286-306. 
[ 3 ] DEGROOT, M. H.: Unbiased sequential estimation for binomial populations, Ann. Math. Stat., 

    Vol. 30 (1959), 80-101. 

[ 4 ] DIEULEFAIT, C. E.: Note on a method of sampling, Ann. Math. Stat., Vol. 13 (1942), 94-97. 
[ 5 ] EPSTEIN, B. and SOBEL, M.: Life testing, J. Amer. Stat. Assc., Vol. 48 (1953), 486-502. 
[ 6 ] FELLER, W.: An introduction to probability theory and its application, Vol. I, 2nd, ed., John 

    Wiley (1957). 

[ 7 ] FINNEY, D. J.: On a method of estimating frequencies, Biometrika, Vol. 36 (1949), 233-234. 
[ 8 ] GIRSHIOK, M. A., MOSTELLER, F. and SAVAGE, L. J.: Unbiased estimates for certain binomial 

     sampling problems with applications, Ann. Math. Stat., Vol. 17 (1946), 13-23. 

[ 9 ] HALDANE, J. B. S.: On a method of estimating frequencies, Biometrika, Vol. 33 (1945), 222 
      -225 . 

[10] KunO, A.: The symmetric multiple decision problems, Memoirs of the Faculty of Science, 
     Kyushu Univ. Ser. A, Vol. XIV (1960), 179-206. 

[11] LEHMANN, E. L.: Testing statistical hypotheses, John Wiley, (1959). 
[12] NADLER, J.: Inverse binomial sampling plans when an exponential distribution is sampled with 

     censoring, Ann. Math. Stat., Vol. 31 (1960), 1201-1204. 

[13] PAULSON, E.: An optimum solution to the k-sample slippage problem for the normal distribution, 
     Ann. Math. Stat., Vol. 23 (1952), 610-616. 

[14] PEARSON, E. S.: Tables for incomplete beta functions. Biometrika Office, London. 
[15] TWEED CE, M. C. K.: Inverse statistical variates, Nature. Vol. 155 (1945), 453. 
[16] YANASE, T.: The use of the Japanese family regrister for genetic studies, Proceedings of the 

     seminar on the use of vital and health statistics for genetic and radiation studies, sponsored 
     by the United Nations and the World health organization, held in Geneva, 5-9 Sep t., (1960), 

     119-133.


