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   § 1. Summary. The property of median-unbiasedness is discussed in 
relation to other probability properties of point estimators. Median-unbiased 

estimators are given for the parameters of normal, binomial, and Poisson 
distributions, for which they are shown to be approximately equal to the 

commonly used mean-unbiased estimators, except with extreme parameter 

values or very small sample sizes.

   § 2. Unbiasedness and other properties of point estimators. An 
estimator 0 =0* (x) of a real-valued parameter 0 is called median-unbiased 
if Prob [0* (X) <0 ' 0]=Prob [0* (X)>0 0] for each 0 ; that is, if for each 0, 
the median of the estimator's distribution is 0. For any estimator with 
continuous distributions, this condition takes the form Prob [0*(X)<01 0]= 
1/2 for each 0. 

   A central place in estimation theory has long been occupied by the 
property or " criterion " of mean-unbiasedness (usually called simply " un-
biasedness ", a designation which would risk ambiguity in the present disc-
ussion) : 0* is mean-unbiased if E [0* (X) 0]=0 for each 0. But as Savage 
has remarked ([1], p. 244) " it is now widely agreed that a serious reason 
to prefer unbiased estimates seems never to have been proposed. " Recent 
discussions of these properties of estimators may be found in [2] [3], pp. 
10-12, 22, 83, 174 [4], pp. 2.1, 3.13-3.15, and in further references cited 
therein. Some principal points of these discussions and some complement-
ary comments are given in the following paragraphs : 

   (a) If 0* (x) is a median-unbiased estimator of 0, then any strictly 
monotone function g(0) has the median-unbiased estimator g(0* (x)). This 
property, which is not shared by mean-unbiased estimators, seems particul-
arly natural and convenient in contexts of application where an estimated 
value may have to be substituted for 0 in several different formulae, not 
all linear. 

   (b) Mean-unbiasedness is sometimes incompatible with considerations 
of precision of estimators which seem more basic. For example, even if a 
parameter is known to have a positive value, each mean-unbiased estimator 
may have to assume negative values with positive probability. In such 

(1 Work supported in part by the Office of Naval Research. 

                        25



26Allan  BIRNBAUM

  cases the obvious improvement of replacing negative estimates by zero des-
  troys mean-unbiasedness, but such improvement does not affect the property 

  of median-unbiasedness. 

     (c) In the important areas of linear estimation (regression) theory and 
  multivariate analysis, with normality of error-distributions assumed, the 
  classical " best unbiased " estimators are normally distributed, and hence 

  are median-unbiased as well as mean-unbiased. Conversely, in these problems 
  we may consider as an alternative to the classical criterion " best unbiased ", 

  the criterion " uniformly best median-unbiased ". Both criteria are satisfied 
  uniquely by the classical estimators, and so are mathematically equivalent 

  under the assumptions mentioned. Hence one is free to choose which, 
  if either, is preferable as an expression of the notion of a good estimator ; 

  and if one criterion is chosen, the other becomes a mathematically-en-
  tailed property. In this sense, the criterion of mean-unbiasedness need 

  not be regarded as essentially bound up with the general reasonableness 
  and usefulness of the classical estimators. (The latter comment does not 

  apply to the important theory and techniques of linear estimation when 
  normality of errors is not assumed.) The same comments apply to asym-

  ptotic estimation theory, where asymptotically normal and " asymptotically 
  unbiased " estimators play a basic role ; here " asymptotically median-unbia-
  sed " is equivalent to " asymptotically mean-unbiased ", with respect to all 

  asymptotically normal estimators. 
     Thus within the scope of normal-error estimation theory, the customary 

  reference to mean-unbiasedness, which seems to stem from Gauss' fundam-
  ental work, can be replaced whenever desired by a reference to median-
  unbiasedness without affecting the essential content of the theory. It is 

  interesting that an earlier formulation of the problem of point-estimation, 
  that of Laplace in 1774 ([5], p. 636), took median-unbiasedness as the cri-

  terion of location of an estimator's distribution, along with minimization of 
  mean absolute-error as the criterion of concentration ; Laplace's results incl-

  uded that the sample mean (i. e. the classical estimator) is best in terms 
  of his criteria in the case of normal errors but in no other case. (The 
  writer is indebted to Dr. Churchill Eisenhart for references to Laplace's 

  results.) 

     (d) It is interesting to try to account for the fact that the criterion 
  of mean-unbiasedness came to occupy a central position in the development 

  of estimation theory, when in retrospect no very clear grounds can be 
  found to support that position. It seems likely that attention was focused 

  on mean-unbiasedness as a consequence of the interest which developed 
  during the seventeenth century in problems of making f air (" unbiased ") 

  economic valuations (" estimates ") of articles or commodities being bought 
  and sold ([6]). For such purposes, if precise valuations are not available, 

 equity requires that any method of valuation should at least in the long
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run give each party  f  air value, and hence should be mean-unbiased . ,Cons- id
eration of such problems was complicated by the simultaneous early 

consideration of problems of estimation involving observational errors in 
surveying and astronomical work. An interesting contribution to the rat-

her obscure but heated controversial discussion of such problems was made 
by Galileo (c. f. [6]), who stressed the distinction between " estimation " in 
the sense of fair valuation, for which mean-unbiasedness seemed relevant 
and appropriate, and " estimation " in the sense of the astronomer and sur-
veyor, for whom errors of over- and underestimation could not necessarily 
be claimed to be even comparable. The latter non-comparability entails 
the lack of inherent meaningfulness of " mean-unbiasedness ". Galileo's 
comments seem to have merited more attention than they received. 

   (e) For many typical purposes of estimation, several writers have 
proposed that a confidence limit or interval at a uniquely chosen confidence 
level can with advantage be replaced by use of a nested set of confidence 
limits or intervals ([7], [8], [9], [10]). In such " omnibus " estimates , the 
center of the nested set of limits or intervals is a point estimator with the 

property of median-unbiasedness. (A median-unbiased estimator is, forma-
lly, an upper (and also a lower) 50 per cent confidence limit estimator.) 

   (f) All of the considerations of the present paper are based on prob-
ability distribution properties of point estimators, in the sense of [10], for 
example, and are not particularly relevant to the more basic issues of sta-
tistical inference treated, for example, in [11].

   § 3. Best median-unbiased estimators in simple standard problems. 
The simplest standard problems of estimation are those in which the family 
Of densities f (x, 0), 0 a 9, satisfies the monotone likeliheod ratio condition 
([3], p. 68). Under this condition, it was shown in [10] that a uniformly-
best median-unbiased estimator exists (and is admissible). For example, in 
the problem of estimating the mean of a normal distribution (with known 
or unknown variance), on the basis of n independent observations 
the classical estimator b----3) is the uniformly-best median-unbiased estimator 
when is the real line. Other examples are discussed in the following 
paragraphs. 

   In general, if t is a sufficient statistic for the real-valued parameter 0, 
with the monotone likelihood ratio property, and if its cumulative distribu-
tion F(t, e)is continuous in t and 0, then the equation F(t, 0) =1/2 defines 
implicitly the uniformly-best median-unbiased estimator O=6(t). Thus a 
table of F(t, 0) as a function of t, for each 0, or the equivalent, is the 
basis for determination of such estimates. 

   If F(t, 0) is not continuous in t, such estimators can nevertheless 
be constructed by use of auxiliary randomization variables. However, for
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reasons such as those discussed in [11], Sect. 3, many statisticians feel 
that use of such randomization is well avoided for most typical purposes 
of estimation. The criterion of median-unbiasedness cannot be met exactly 
without randomization when t has discrete distributions ; but the criterion 

may be considered most nearly satisfied by a non-randomized (admissible) 

estimator e(t) with " minimum median-bias ", defined implicitly, for each t, 
by the equation 

                Prob(T<t '1 O)=Prob(T>t 

Such equations are conveniently solved for e(t) by use of suitable tables of 
F (t, 0); some examples are given below. 

   3.1 Normal variance or standard deviation. In the problem of est-
imation of the variance a2 of a normal distribution (with known or unkno-
wn mean), on the basis of N independent observations y„•••y„ the best 
median-unbiased estimator is 

                            62 s22n,                              Rwhere k2„=. 
                                               X2n ,                                                                                                      n,0.5 

and similarly for the normal standard deviation a, 

where s2 is the usual mean-unbiased estimator of a2 based on n degrees of 
freedom. Here 4A5 denotes the median of the chi-square distribution with 

                                             N n degrees of freedom ; n N and s2 = N--E (y,—,u) 2 ifAt= E (y) is known ; 

and n=N— 1 and— nE (y,--- j))2 if12is unknown. 
   Table 1 gives values of k2„ and k„ which can be used to compute 52 or 

a from values of the classical estimates s2 or s. Since 1<kn<1.02 for 
n>18 and 1<k2<1.06 for n>6, this modification of the classical estimators 
is a quantitatively minor one except for small n, and for many purposes 
it will suffice to take the approximate values a2=s2and i5=--s except for 
small n. 

   If the criteria of admissibility and median-unbiasedness are adopted for 
this problem we see that the classical estimates s2 and s are justified as 
very convenient and close approximations to the best estimates except for 
small n. The magnitudes of the median-bias of the classical estimators, 

           B (o2, $2)B (a, s) =Prob S2 > 0 2 0.2                                               Prob S2<a2 a2 are 
independent of C ; they are shown in Table 2 for various n. For example, 
for n=70, s2 underestimates 02 with probability. 0.5115=0.50+ (0.023)/2. 

   3.2 Poisson mean. Let x=(31„••.yn) be a sample of n independent
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   TABLE 1. Constants for computing best median-unbiased estimators of the variance or 
       standard deviation of a normal distribution, from values of the classical estimators. 

 n-l-1 

a2-k;is2 and zi=k„s, where s2-[ ei .5-)91if,u-E(x) is unknown,and s2=1E 
      nJni=i

if A is known. 

n kn, k„nk),kii 

 12.1981.483201.0341.017 
 21.4431.201211.0331.016 
 31.2681.126221.0311.015 
 41.1921.092231.0301.015 
 51.1491.072241.0281.014 
 61.1221.059251.0271.014 
 71.1031.050261.0261.013 
 81.0891.044271.0251.013 
 91.0791.039281.0241.012 

10- 1.0701.035291.0231.012 
111.0641.031301.0231.011 
121.0581.029401.0171.008 
131.0541.026501.0131.007 
141.0501.025601.0111.006 
151.0461.023701.0101.005 
161.0431.021801.0081.004 
171.0411.020901.0071.004 
181.0381.0191001.0071.003 
191.0361.01810001.0011.000

TABLE 2. Median-bias of classical unbiased estimator s2 of the variance 
      a2 of a normal distribution. 

  Bias B(s2, 02)=Prob[s2>a21-Prob{s2<a2}-2 [Probts2>a21 -1/2] . 

 n1/2 B(s2, ci2)n1/2 B(s2, a2) 

 1-0.18310-0.060 
 2-0.13215-0.049 
 3-0.10820-0.042 
 4-0.09430-0.034 
 5-0.08440-0.030 
 6-0.07750-0.027 
 7-0.07160-0.024 
 8-0.06770-0.023 
 9-0.063

observations from a Poisson distribution with unknown mean 0, 0<0< CO ; 

then the sufficient statistic z=E )7, has the Poisson distribution with mean 
                                                          1=1 

nO, 

           h(z, 0) =ProW=z 0 } =e-n6(ne)zz=0, 1, 2..., which has the 
                                  z! 

monotone likelihood ratio property. For each z=0, 1, 2-, 0(z) is the value 
of 0 for which 

            ProbZ<z 0=0(z) -ProbZ>z ; 0 =-0 (z)}.
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Such values of 0(z) are easily determined by use of tables of the Poisson 
distribution, and are given in Table 3. A single such table suffices for all 
sample sizes n, since the distribution of z depends on nO but not on n and 
0 separately hence the table gives, for each z, the value of nO(z), which 

is to be divided by the sample size n occurring in any particular application. 

               TABLE 3. Minimum-median-bias estimator 6 of Poisson mean O. 

                     z=Ey,=sample total=na, where 6—classical estimate=z/n. 

    znO(z)znO(z) 

                      99.166 
    11.1461010.165 

      22.156 
   33.159• 
  44.161• 
    55.1621414.165 

  •2020 .17    •25 i 25.17 

   It will be seen that 0(z) differs only slightly from the classical estim-
ator O(z)=z/n : for 0 <z <25, 

                   z (z)  (z) <z+ 0.2. 

Table 4 compares the median-bias functions of e(z) and O(z) again the 
differences are slight. Thus for most purposes the classical estimator O(z) 
will serve as a convenient and close approximation to 0(z). These comp-
arisons provide a new justification for the classical mean-unbiased estimator, 
having approximately minimum median-bias among non-randomized admiss-
ible estimators. 

   3. 3 Binomial mean. Let (y1, be a sample of n independent 
Bernoulli observations, Prob Yi =1  =0, Prob Y,=0 ' 8 =1— 0, with 0 un-
known, 0<0<1. Then the sufficient statistic 

               z=-Ey, has the binomial distribution 
                                         2=1 

         h(z, 0) =Prob 0= (z)02(1-0)"-z, z=0, 1, •-n. 

For each sample size n, an estimator 6(z) can be determined, from tables 

of the binomial distribution, which has minimum median-bias in the above 

sense. Table 5 gives such estimates -6(z), for sample sizes n=3, 5, 10, and 

20, in comparison with the classical estimates 6(z)=--zFor n=2, O(z)-=---
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TABLE 4. Median-bias of classical estimator "0 '-_=yi/n of the mean 0 of 

      a Poisson distribution compared  with that of estimator fi of table 3. 
      For each sample size n, Prob [0>0 01- Prob(0<0 01=B(n0, nO), 

     and Proble>0 01-Prob[O<0 01=B(n0, We).

nO 1/2 B(nO, nij) 1/2 B(nO, nij) 

0.00Same, except 
0.0+-0.500where values 
0.005-0.495are given. 
0.01-0.490 

0.05-0.451 
0.10-0.405 
0.15-0.361 
0.20-0.319 
0.25-0.279 
0.30-0.141 
0.40-0.170 
0.50-0.107 
0.60-0.048 
0.70+0.003 

0.80+0.051 
0.90+0.093 
1.0-0.236+0.132 
1.1-0.199 
1.2-0.163 
1.3-0.127 
1.4-0.092 
1.5-0.058 
1.6-0.025 
1.7+0.007 

1.8+0.037 
1.9+0.066 
2.0-0.177+0.094 
2.2-0.123 
2.4-0.070 
2.6-0.018 
2.8+0.031 
3.0-0.147+0.077 
3.2-0.103 
3.4-0.058 

3.6-0.015 
3.8+0.027 
4.0-0.129+0.067 
4.2-0.090 
4.4-0.051

 nO 1/2 BnO, nO) 1/2 B(n0, n0) 

 4.6-0.013 
 4.8+0.024 
 5.0-0.116+0.060 
 5.2-0.080 
 5.4-0.046 
 5.6-0.012 
 5.8+0.022 
 6.0-0.106+0.054 
 6.5-0.027 
 7.0-0.099+0.050 

 7.5-0.025 
 8.0-0.093+0.047 
 8.5-0.023 
 9.0-0.087+0.044 

10.0-0.083+0.042 
11.0-0.079+0.040 
14.0-0.070+0.036 
15.0-0.068+0.034 

      • 

      • 

      • 

      • 

     • 

19.0-0.061+0.031 

     •       

•       

• 

20.0-0.059+0.030 

      •       

•       

•      

• 

21.0-0.058+0.029 
25.0-0.053+0.027 
30.0-0.048+0.024 
40.0-0.042+0.021 
50.0-0.038+0.019 
70.0-0.032+0.016 

100.0-0.027+0.013

0(z). It is seen that 0(z) --0(z) <0 .016 for n>5, and e(z)-e(z) <0.007 

for n>20. For n=10, the median-bias of the classical estimator is comp-

ared with that of e in Table 6. For n=20, the same comparison is given 

in Table 7. Again all of the differences are slight. 

   Thus if the estimator e(z) is adopted on the criterion of having mini-

mum median-bias among non-randomized admissible estimators, for many 

purposes the classical mean-unbiased estimator 0 will serve as a convenient
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TABLE 5. Minimum-median-bias estimator 0 of the binomial parameter 0, 

       compared with the classical estimator e.

z=Eyi, 0=z,/n.

n=3 

000 
10.30.347 
 20.6I 0.653 

 3 I 1.01.0 

n=5 

000 
10.20.216 
20.40.406 
30.60.594 
40.80.784 
51.01.0 

n=10 

0 00 
10.10.111 
20.20.209 
30.30.306 
40.40.403 
50.50.5 
60.00.597 
70.70.694 
8 I 0.80.791 
90.90.889 

101.01.0

 n=20 

1 

zee 

000 
 10.050.057 
 20.100.106 
 30.150.156 
 40.200.205 
 50.250.254 

 60.30 j 0.303 
 70.350.352 

 80.400.402 
 90.450.451 
 100.500.500 

 110.550.549 
 120.600.598 
 130.650,648 
 140.700.697 
 150.750.746 
 160.800,795 
 170.850.845 
 180.900,894 
 190.950.943 
 201.001.000

    TABLE 6. Median-bias of classical estimator b=z/n of a binomial parameter 

          0, for sample size n=10, compared with the estimator 0 of table 5. 

                 B(0, 6)=Prob[0>0  0}-Prob{e<0 I 0}, 
                 BA 6)=Probfe>0 01-Proble<0 01. 

 01/2 B(0, 0) i 1/2 B(0, 0)0 1/2 B(0, 0) 1/2 B(0, 0) 
0.000.0Same, except0.08+0 .066 0

.00+ I -0.5where value0.09+0 .111 
            given.0.10-0.236+0.151 0

.01-0.4040.11-0.197+0 .188 0

.02-0.3170.12-0.158 
0.03-0.2370 .13-0.120 
0.04-0 1650.14-0 .082 
0.05

,-0.0990.15-0.044 0.06-0.0390.16-0.008 
0.07+0.0160.17+0.027
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 e  1/2B  (0, 0) 1/2 B(0, 0)0 1/2 B(0, 0) 1/2 B(0, 0) 

0.18+0.0610 .35-0.014 0
.19+0.0930 .36+0.013 0
.20-0.178+0.1240.37+0 .040 0
.21-0.1470.38+0.066 

0.22-0.1170 .39+0.092 
0.23-0.0860 .40-0.133+0.118 
0.24-0.0560 .41-0.108 0
.25-0.0260 .42-0.082 0
.26+0.0040 .43-0.056 0
.27+0.0340.44-0 .030 0
.28+0.0620.45-0 .044 0
.29+0.0900.46+0.022 

0.30-0.150+0.1170 .47+0.047 0
.31-0.1230 .48+0.073 0
.32-0.0960.49+0 .098 0
.33-0.0680.500 .0 0
.34-0.041

                                  0 1/2 B(0, 0) 1/2 B(0, 0) 

                                0.35-0.014 
                                0.36+0.013 
                               0.37+0.040 
                               0.38+0.066 
                               0.39+0.092 
                             0.40-0.133+0.118 
                                0.41-0.108 
                               0.42-0.082 
                               0.43-0.056 
                               0.44-0.030 
                               0.45-0.044 
                               0.46+0.022 
                               0.47+0.047 
                               0.48+0.073 
                               0.49+0.098 
                        0.500.0

TABLE 7. Median-bias of classical estimator 0 =z/n of a binomial parameter 

      0, for sample size n=20, compared with the estimator e of table 5. 

             B(0, b)=Prob[b>e ( 0}-Probt0 <0 I 01, 
             B(0, 0)=Prob[b>0 01-Probf0<0 I 0}.

 0 1/2 B(0, b) 1/2 B(0, é) 

0.000.0Same, except 
0.00+-0.5where values 

                          given. 0
.01-0.318 

0.02-0.168 
0.03-0.044 
0.04+0.058 
0.05-0.236+0.142 
0.06-0.161+0.210 
0.07-0.087 

0.08-0.017 
0.09+0.048 
0.10-0.177+0.108 
0.11-0.120 
0.12-0.063 
0.13-0.008 
0.14+0.045 
0.15-0.148+0.095 
0.16-0.099 

0.17-0.050 
0.18-0.003 
0.19+0.044 
0.20-0.130+0.089 
0.21-0.086 
0.22-0.042 
0.23+0.001 
0.24+0.044

      1/2 B(0, 0) 1/2 B(0,0) 

0.25-0.117+0.085 
0.26-0.077 
0.27-0.036 
0.28+0.005 
0.29+0.045 
0.30-0.108+0.084 
0.31-0.070 
0.32-0.031 
0.33+0.008 

0.34+0.046 
0.35-0.101+0.083 
0.36-0.064 
0.37-0.027 
0.38+0.011 
0.39+0.048 
0.40-0.096+0.084 
0.41-0.059 
0.42-0.023 

0.43+0.014 
0.44+0.050 
0.45-0.091+0.086 
0.46-0.056 
0.47-0.020 
0.48+0'017 
0.49+0.053 
0.500.0

and close approximation to O. 

   § 4. Acknowledgment. The writer is grateful to Mr. Leslie Zurick 
for computing the tables. Median-unbiased estimators of the standard
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deviation of a normal distribution were described and compared with other 
estimators by Eisenhart and Martin in [12]. 

         COURANT INSTITUTE OF MATHEMATICAL SCIENCES, NEW YORK 
         UNIVERSITY.
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