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§1. Introduction. We have in the previous paper [6] derived a
modification of certain well-known rank sum tests in the sense of raising
their asymptotic efficiency. For this purpose, the following forms have
been proposed as the test statistics

) mT =S E%.Z, k=0
i=1

where Z; is 1 or 0 if the 7-th smallest in the combined sample is X or Y
and

@ B (Z/N)* for locations problems
" [G/N)*+ ((N+1—-4)/N)*—|(i/N)*— ((N+1—1)/N)¥/2

for scale problems.

We shall also notice that all notations in this paper are followed by [6].
In [6], the asymptotic normality of the statistics 7, has been proved and
moreover the asymptotic efficiency has been calculated for some 2>0 and
some alternatives. We shall deal in this paper with more general statistics
among the form (1), i.e. E%, is some function of rank, and intend to
construct the tests with some optimum properties.

§2. Wilcoxon’s type. Our purpose is to test the hypothesis 0=0
against the alternative 6 >0 based on the two samples X, ---, X,, and Y,
-+, ¥, from the distributions F(x) and F(x+06). Then we define the sta-
tistics U[#] as an extension of Wilcoxon’s U

3) mUOA =31 h(i/1+N)Z, N=m+n , dy=m/N

,where we assume /(%) to satisfy the following conditions
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@ rQ)=0GN)

@ () (2@ < Kit(1-1)}

(i) h(t) dt=0, R (t) dt=1.

0 0

TV for i=0,1,2 and some 80

Assumptions (i) and (ii) are needed for the asmyptotic normality of iJ[h]
and (iii) is only a normalized condition. Following [2], we may prove the

asymptotic normality of U[A] by the same tecknique as in [6]. Moreover
applying the theory of Chernoff-Savage [2], we may get the efficacy Ez(f])

of our f/'[h] tests if the mean value of U has a finite derivative under the
hypothesis

®) E*(0)=2(1-W[\ f@FF ()] dF ()]

,Where R’[F(x)] means the derivative with regard to F(x).

If there exists some suitable function £(¢) maximizing the value of E2(D),
it will give an optimum statistic within the class of our form (3). Then
it is sufficient to maximize the integral

Iin) =§ FERIF(%)] dF (%)
®) - |
- S fIF-{@®I (.

(a) Normal case. We may use the method of undetermined multipliers
in the calculas of variations to maximize I[%] subject to the assumption (iii).
Thus from

1

g SR (D e[P ()] —ah?(t)} df=max

0

,where @ is the standard normal distribution function with density ¢ and
a is an undetermined multiplier, we may obtain the following solution of
Eular equation for variations,

O h(t)=0"'(2).

The statistic U [#] with the above 4(¢) derives what is called as the Normal
scores test that has been shown to be locally most powerful rank test for
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the normal alternative by Dwass [3] and others. Thus it has been shown
that an optimum test also results from the point of view of our generaliza-
tion.

(b) Uniform case. From the form (6),

ITh)=lim h(t)—lim h(?).

Thus we must give more weight (positive or negative) at extreme ranks.
Now we assume % () to be @~'(¢) for a time, then the expectation x (6)
has not a finite derivative »'(0) at #=0. On the other hand, the fact that
the efficiency of U, tests approach to infinity when £—0 as has been shown
in [6] leads us to the following consideration. Construct the normalized
function %,(¢) corresponding to the case £—0 in [6] as follows,

8 . (B+1)y2k+1/, 1
® (@) <tim DL (e )

k—0
=log #+1.

However our test statistic

~ Xy i
® mU[h, ;E\ log],\f__,*_A1 . 1) Z,

has not also a mean value with a finite derivative at 6-=0. For these cases,
we may apply the theory of Hodges-Lehmann [4] that is a slight generali-
zation of Pitman’s efficiency.

Consider the sequences of test statistics { Sy}, {7»} to test the hypothesis
6=0, whose expectations

uy(0) =E.(Sy), vy(0) =E, (Ty)
and suppose that
[Sy—uy(0)]1/by and [Ty—vy(6)]/cy

tend in law to N(0, 1) whenever 6—0, Let the sample sizes necessary to
achieve the same power 4 against the same alternative at the same signi-
ficance level «a be respectively 7y and N. Then it has been proved in [4]
that

. vy(0) —vy(b, by
(10) hm/TEeg—T((e% oy 1

Now let
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mSy=mUlho) =3 (mgN - 1)2

m T‘V:@_](Néﬁ) Z.

We may get from (10) the asymptotic efficiency e,y of Ulk,] test relative
to the Normal scores test
([o-1§ 2, F 1=2)F (x+0)} — 0" {F(x) {]dF (x
an eLN—hm—N:@im [ () ———) ( )i- (x) Jar( ))
Noo Py M Novoo J'[log A (x)+ (1= F(x+6)} —logF(x)]dF(x)

After some easy calculations of integration and L’ Hospital rule, we obtain

(12) e y= (hm[

N- oo

1 Ax Ay N
ey smanml) -
Thus it follows that for the uniform alternative (and also exponential case,
see (c).) our test with 72,(¢) is very much more efficient than the Normal
scores test. The similar considerations lead us that the Normal scores test
has infinite efficiency with regard to U, tests with non-zero fixed 2 (Hodges-
Lehmann have dealt with only 2=1).

(c) Exponential case. Since we get the same results as the uniform
case, we omit them.

§3. Ansari-Bradley’s type. In this section, we concern with the scale
problems and generalize Ansari-Bradley’s statisticc. = We first define the
statistics STh]

(13) m =3/, Z.

,where Jy= [ (N+1>+h(NAJ;_}1_1_Z ih N+1> h(%) ]/2

We assume that #(#) and Jy, respectively satisfy the assumption (17) and
the regularity conditions of Chernoff-Savage. Then its asymptotic normality
is established and the efficacy is expressed if the expectation of S‘[h] has a
finite derivative under the hypothesis

) E®= f S @HIF ()] dF () - f "kt (W[~ F (@) ]dF (5)]-
When F(x) is symmetrical, the expression /[#Z] in bracket of (14) becomes

(15) I[h] =2 J () () fIF- (5]t
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(a) Uniform case. Easy computation shows that

I[h]z—Zlig) h(t).

Though both %(¢) =07'(¢) and %,(¢) =log 2¢ + 1 give very much large weight
at extreme ranks, we prefer %,(t) to the other A(¢)=0"'(¢) as the similar
results as in section 2. However it may be possible to exist more favour-
able 2(¢) than k,(%).

(b) Double exponential case. Since the density is

f(x)::%;exp(—ﬂx),

we may get

1/2

(16) I[h]=2 J t () log 2t dt

0

which must be maximized subject t> the normalized restrictions
1/2 1/2
an J R(x)dz—0, f W (%) dz—1/2 .
0 1]

Following the method of variations, we may determine the form (18) as
the solution of Eular equation,

(18) h(t)=log 2¢+1.

This form may be also attained from our S, tests in [6] by the similar ca-

Iculation as (8). Capon [1] has also derived the same form by another

point of view and proved to be locally best for the double exponential case.
(c) Normal case, I[h] may be expressed as follows,

1/2

(19) I[h] =2 J B ()01 (£) o[0-1(2)] dt.

0

Eular equation under the conditions for %(#) is given as
(20) n(t)— G0 @) el07 ()] =0
and it iS solved as
1 _
21 h(t) = ——[07'()*-1].
(21) @ l/.2[ H*-1]

The corcesponding statistic S[#] has thus an optimum property and it has
been shown to be locally best rank test for the normal case by Klotz [5].
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