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       Ann Arbor, Michigan

   At a given genetic locus, natural selection may operate to f avor in-

dividuals who are homozygous or heterozygous, that is, who possess two 

genes which are alike or two genes which are unlike in function. In the 
former instance, the frequencies of the genes at equilibrium depend upon 

selection and mutation ; whereas when the heterozygote is f avored, the gene 

frequencies at which equilibrium occurs are dependent upon selection alone. 

Thus, the response of these two systems to an increase in mutation would 

be different the former being sensitive to change in mutation rate, and the 

latter not. At a time when man's exposure to mutagenic agents is on the 

increase, the relative importance of these two systems, in the overall picture 

of selection, is of considerable concern. Some insight into their importance 

is afforded by studies on the effect of inbreeding on variables indicative of 

the general size of individuals. The pertinence of these studies arises as 

follows : An inevitable consequence of inbreeding is a decay in the fre-

quency of heterozygosity ; the rate of this decay is a function of the degree 
of inbreeding. Now, it is possible to show that the two systems of selec-

tion we have described are dissimilarly affected by a decay in heterozygosity. 

Thus, if we can measure inbreeding and, simultaneously, size in a group of 

individuals, an evaluation of the importance of the two systems is possible. 

A conventional measure of inbreeding is the coefficient of inbreeding, F, 

which may be defined as the probability that, at a given genetic locus, an 

individual will be homozygous for genes alike in function and origin. Clearly 

a variety of measures bearing on body size exist. We shall here limit our 

attention to measurements of growth and development, and, specifically, to 

measurements on the head. 

   The statistical problem and the model :— A number of factors other 

than parental inbreeding are known to influence the measurements under 

discussion. To cite but a few, we know that age, sex, and nutrition may 

all be of importance in determining the measurement of a particular child
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at a particular time. Clearly if unambiguous answers are to be obtained 

with reference to the genetic question of interest, then the possible effects 

of concomitant variation must be allowed for. Our analysis must also take 
into account the fact that head measurements are interdependent. The gene-

ral problem may, therefore, be stated as follows : What is the effect of 

inbreeding on the dimensions of the head when allowance is made for con-

comitant variation and the interdependence of the measures used to describe 

head size ? 

   We begin the analysis with the assumption that the distribution of these 

four head measurements can be described by the multivariate normal density 

f unction 

              1 
(1) ^  (2), is2, exp [— 12 (x — ' (x — it)] 

where ,a is the mean vector, 2 is the variance-covariance matrix, and n is 
the dimension of the vector of variables; in our particular case n=4. This 
model is valid for those children of specified sex, age, A, and inbreeding 
coefficient, F. The effects of concomitant variation, if randomly distributed, 
appear on the mean vector, it, and the variance-covariance matrix 2, but 
need not affect the normality of the distribution. 

   It is the usual practice to assume linearity of age and consanguinity 
effects that is, that values of these 4 measurements can be represented as 
follows :

(2)

           x1 = + aiA + biF + E1 

            X2 — 7n2 a2A + b2F + E2 

            X3 — ni3 chi! + b3F + E3 

            x4 = m4 a4A + b4F + E 4

where (E 1, E 2, E 3, E 4) are the error terms, and m'= (m1, m2, m3, m4) a'= 

(a1, a2, a3, a4) and b' = (b1, b2, b3, b4) are called the vectors of the general 
mean, the age effect, and the consanguinity effect. As a consequence of the 
interdependence of the four measurements the correlations among the error 
terms E 1, E 2, E 3, E 4/ are non-negligible, and hence these data cannot be 
meaningfully analyzed by a s eries of univariate regressions, and we are 
obliged to use multivariate normal regression theory. Thus, we assume E „ 
E 2/ E 3, E4, to be distributed in the multivariate normal distribution with 

mean vector zero and a variance-covariance matrix, which is assumed to 
be independent of the concomitant variables, age, and inbreeding coefficient. 

   Before we consider this specific set of observations further, it seems 
appropriate to review the statistical theory pertinent to the type of analysis 
to be illustrated. Briefly this theory is as follows : 

   The model : Consider the q-population, k-variate linear regression model, 
namely,
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  +api„Xn+ E 1 

(3)p =1, 2 q 

                   .7 k'—± a pknX „ + E n 

where yi, •••, yk are the measurements of interest, x„ •••, x„ are the con-
comitant variables, a „ii's are the regression coefficients for the PI measure-
ments, y, on the jth concomitant variable, x), of the pth population, E 19 —9 
E k are the error terms which are distributed in the multivariate normal 

form with mean vector zero and variance matrix Ep. 

   An observation consists of n concomitant variables and k measurements 

(x1, •••, xn, y1, ••, yk). In our particular case, the concomitant variables are 
the constant 1, age, and the inbreeding coefficient, and the vectors of regres-

sion coefficients corresponding to these three concomitants we call the gene-
ral mean, the age effect, and the consanguinity effect. On the basis of 
samples of N1,.1\12,--,N, observations drawn from the first, second, ...9 gth 

population, we wish to make inferences about the parameters api, and Ep. 
Theory suggests the use of the raw sums of squares and cross-products of 

the samples, (Ex,xj, Ex,„Egiy„) , as the material for analysis. We may write 
these quantities in the pth population as 

(4)S(P) , S(P)(x,y,), S(P)(y,y,) 

collectively they form the matrix 

                    i-S(P)(x,x) S(P) (x,y) (5)S(P) — ,p1, 2, •• , q                     S(P) (
x, y)' S(P) (y, y) 

of dimension k+ n, with submatrices S(P)(x, x), S(P)(x, y), S(P) (y, y) corres-

ponding to the cross products of concomitant variables, those of the con-
comitant variable and measurements, and those of measurements, respect-
ively. 
   The statistical inferences can be broadened by introducing certain as-
sumptions, namely that 

    1) the variances, E(1), •-•,E(P) are homogeneous and/or 
   2) some of the regression coefficients are homogeneous. Without loss 

of generality we can express the latter assumption as follows : 

                                            i=1, •••, k (6)
aw= a2ij= • • • —apii• 

                                          = 1 + 1, •-•, n. 

   If this assumption is true, we can combine the q sets of regression equa-
tions into one by modifying the definition of the concomitant variables as 
follows :
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         Yi =-• (a111 Xi • • ± • • • -H + • • 

               ++(X11 + • • •±X,i) + • • •± 
(7)a, „(X,„+ • • • ± X11„) E 1 

               = • • •+aq,iX,,)+••(am1-1)X1(1_1)±••• 

                 + aoc(i_oX(qi_o) + aki(Xki+ • • • + Xqi) + • • • ± 

                 al,,(Xin+••+Xqn) E 

where xo=x; if the observation belongs to the ith population and xo = 0 
otherwise. Thus, we have a regression equation involving (1 — 1) q + k —1 
concomitant variables and vectors of regression coefficients. 

   The relation between the matrix of cross products s(,) (p=1, •••, q) and 
the same matrix S based on the above model is the following : 

   The concomitant variables are classified into two ; those having regres-
sion coefficients different from population to population, and those where 
the regression coefficients are the same for all populations. Therefore 
S(P)(x, x) can be divided into four parts, 

                       S(P•l) (x,x) S'"'2) (x,x) 
(8)L S (P '2) (x , x)'S'")(x, x) 

where S(1" (x, x), S") (x, x), S") (x, x) are respectively, the sums of squares 
and cross-products of the concomitant variables of both the first categories, 
the sums of cross-products of the first and the second, and sums of squares 
and cross-products of both the second categories. 

   In the same way, S(19)(x, y) is divided into two 

                       FS(P'1) (x, y) (9)                           I
-S(1)'2) (x, y) 

   These matrices to be used in the regression analysis, and the ones 
furnished by the data f rom each population are connected by the following 
relations : 

                                                                                 N 

     S") (x, x) (x, x) 

                     S(2'1) (x, x)s(2,2) (x, x) 

     •

• 

(10) S (x, x) =• 

                                                                                                                            •                                                                                                                                                                                                         

• 

                                         So'" (x,x)5(q,2)x) 

               S(1,2) (x,x)jS(2,2) (x,  50'2)(x,x)iS0,2)(x,x) ,
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 S" (x, y) 

(11) S (x, y) som (x, y) 

             iS(''') (x, y) 

(12) S (y, y) (y, y)1 
The matrix 

          CS (x, x) S (x, y) (13)  S (
y, x) S (y, y) 

is called the working matrix, and 

             ,S(P)(x,x) S(P)(x, y) 
(14)(p=1, 2, •• , q)             LS(I')(y , x) S(P)(y, y) 

is called the data matrix. 
   If x1=1 for all observations, and the regression on x1 is not of primary 

interest, the matrix of corrected sums of squares and products can be used 
instead of the raw sums. The basic arguments remain unchanged. 

   Estimation: The material from whence the estimates are derived is 
the symmetric matrix 

(15)sS (x, x) S (x, y)            S (x
, y)' S (y, y) 

   The submatrices, S (x, x), S (x, y), and S (y, y) are of dimensions (n, n), 
(n, k) , and (k, k) , respectively. 

   General theory tells us the following : the matrix of estimates à of a, 
the regression vector on x, are given by 

(16) , = [S (x, x)]-1S (x, y) and 

the estimate of the variance matrix E is given by 

(17) [S (y, y) — (S (x, y))'S (x, x) -1S (x, y)]/ d, 

where d is some constant (the degrees of freedom), and the variance or 
covariance matrix of a, and a, is equal to CijE, where Co is the (i, j) 
element of S (x, x) -1. 

   Tests of significance: Four types of hypotheses are of interest here. 
Firstly, we wish to know whether a specific vector of regression coefficients, 
say a, differs significantly from a vector all of whose elements are zero. 
The hypothesis is, then, 

    a) Ho : a, -----0
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   (In this case, the superscript p is not pertinent and is deleted). A test 
of this hypothesis is afforded by the statistic, C(?) which is distri-
buted as x2 with d.f., k, when the sample size (N) is large, otherwise as 
F with d.f., k and N— k +1. In the above statistic, C° is the (i, oth 
element of the inverse of S (x, x), it, is the estimate of the vector, a„ and 

a,/ is the transpose of a,. 
   Secondly, we are interested in ascertaining the legitimacy of the as-

sumption that the variance-covariance matrices of the q-populations are 
equal. The hypothesis is, now, 

    b) 11",: E(1) = • • • ---E(') 

and the appropriate statistic is 

                 11 I (,) (p) 
               p-1 Ip=1 

   Each term in the numerator is the determinant of an estimate of the 
variance matrix obtained by analyzing each sample separately. The denom-
inator is obtained by analyzing the working matrix as if the hypothesis 
under test were true. 

   Thirdly, we are interested in knowing whether a specific vector is 

homogeneous over the p populations. That is, 

    c) cs,(1)=-•—aP) i=ji,j2,•••,ji, 1<n. 

The statistic is now . The numerator is the determinant of 
the matrix obtained by analyzing the working matrix assuming the variance 
matrices to be homogeneous whereas the denominator is based upon the 
assumptions that the hypothesis is true and the variance matrices are homo-

geneous. 
   For the distribution of the statistics appropriate to b) and c), the reader 
is referred to T. W. Anderson, pages 178-210 and 247-259. 

   Finally, if we are interested in the comparability of two vectors but 
cannot assume that the variance matrices are homogeneous, then the follow-
ing hypothesis and test is in order. 

   d):=11P. 

The statistic is 

               (e) _a(2)),[c- (i)± (2)]__1(at)_ ii(t2)) 9 

which is distributed as x2 with k degrees of freedom if N1 and N2 are both 
large. 
   Computational logic :—To put into practice the analysis here outlined 
was, in pre-computer days, a formidable undertaking. Today and particu-
larly as a consequence of the development of more flexible algorithmic 
languages, such as MAD (Michigan Algorithm Decoder), the computations
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are no longer so  formidable a task. In f act, the procedures here outlined 
have been programmed in MAD. Certain aspects of this programming are, 
we believe, widely applicable. 

   To derive the estimates and the data required for tests of significance 
of hypotheses b.) and c.) the calculations of the denominators and the numer-
ators can be easily included in one program. To do this, we use, as input, 
the elements of the data matrix arrangde in the order 

                      (S11, S12, • • • , Sim, S22, • • •9 S2m• •9 SIM) • 

   There are two important issues here. The first one is the reordering 
of the input data. In the data matrix, if the subscripts assigned to the 
concomitant variables are smaller than those assigned to the measurements, 
and if the equality of the regression vectors is assumed, then the matrix 
of the sum of squares and products of the concomitant variables can be 
split into four submatrixes as in (8). The nature of the reordering may 
vary from one computation to the next. For example, if the consanguinity 
effect is assumed to be common for all populations but the age effect is not, 
then age should be the first, and the inbreeding coefficient the second vari-
able. If we assume the contrary, then the inbreeding coefficient should be 
the first variable, and the age the second. A single control card, preceding 
the input data, serves to indicate the permutation to be applied to the sub-
scripts. 
   The second issue is the formation of the working matrix, shown in (15). 
Again, a single control card is sufficient to specify completely this task. 
The control card must, however, indicate 

   1) number of populations. 
   2) number of concomitant variables whose regression vectors differ from 

      population to population (/ in (7)). 
   3) number of concomitant variables in the working regression equation, 

      or equivalently the dimension of S (x, x) in (13). 
   4) dimension of the working matrix. 

   After construction of the working matrix, the next step is to calculate 
the estimates of the parameters, and the determinants of the variance 
matrix. These calculations are straightforward, and we need only assert 
that the three sets of estimates, namely, the matrix of the coefficients, (C,), 
the regression estimates and the estimate of the variance matrix need not 
be computed separately. The well-known Gauss-Doolittle method will com-
pute these three sets of estimates simultaneously (see Rao, 1955, Appendix). 

   In the program which we use other computations have been added to 
assist in the evaluation of the probability level of the test statistic, and the 
statistic needed for test a) is also computed. Still another program has 
been written which can compute the statistic for the test a) and d), as
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well as others. 
   We are not, as yet, prepared to make defiinite statements with respect 

to the memory capacity required by the program we have been discussing, 
for we feel that a number of refinements can still be made. At present, 
and as a MAD program for the IBM 704, the following restriction holds : 

                       2n + k < 40, 

where n is the number of concomitant variables and k the number of me-
asurements. 
   The data :—In the course of a study on the genetic effects of the atomic 
bombs in Hiroshima and Nagasaki, some 71,280 children were examined in 
these two cities between 1948 and 1953. Of this number, 4,598 children 
were born to parents who reported a consanguineous marriage at the time 
of pregnancy registration and had received no or inappreciable amounts of 
radiation. The findings in these children at birth, and, in a subsample, at 
nine months of age, as contrasted to the remainder, were sufficiently pro-
vocative to indicate the need for further studies (see Schull, 1958 ; Morton, 
1958). Between 1958 and 1960, comprehensive follow-up studies were und-
ertaken on these children of consanguineous marriages and a suitable con-
trol group. The nature of these follow-up studies have been described 
elsewhere (Schull and Neel, 1961). In all 9,382 children, approximately half 
of whom were of consanguineous parentage, were selected for reexamina-
tion. Of this number, about 6,700 were still alive and available for exami-
nation in Hiroshima or Nagasaki in the years mentioned. As one facet of

   Table 1. The distribution by sex, age, and parental relationship of 
      children seen in Hiroshima as part of the Child Health Survey. 

  AgeMales Parental relationshipFemales Parental relationship 
(months) Unre-                2nd C.11/2C.1st C.Unre-                                              2nd C. 1172C. 1st C.   latedlated  

60-651389 1523 12211 

66-715496 15508 1112 

72-7762 16 10 2450 13728 

78-8362 106 28468821 
 84-8957 108 3761 14 1322 

 90-95759 16 2964 14 1431 

 96-10169 14 12 3960 17 1434 

102-10779 13 13 3271 11935 
108-11375 169 3763 12 1846 

114-119100 14 15 3286 10 1742 

120-1258398 3859 19732 

126-1311862 14254511 

132-1381 — — —2 — —— 

 Total749 134 114 340 1 660 142 125 325
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the stuidy of these children, detailed anthropometric measurements were 
obtaned. We wish to make infcrences regarding the effect of inbreeding on 
a subset of these anthropometric measurements, namely, those derived from 
the head. Our problem, then, is to ascertain whether or not inbreeding alters, 
in a predictable  f  ashion, the girth, height, breadth, and length of the head. 
Since our purposes are essentially illustrative, we shall, for convenience, 

restrict our attention to just those children who were examined in Hiroshima. 
   In Table 1, we present the distribution of the children whose measure-

ments are to be analyzed by age, sex, and consanguinity. In Tables 2-6, we 

present in numerical form the logic previously set out in more general 
terms. Table 2 is, in effect, the raw data ; here, it consists of the corrected

Table 2. Data matrices consisting of corrected sums of squares and products 

   of age, inbreeding coefficient, and the four head measurements. Age is 

   measured in months, F as the numerator of a fraction whose denominator 

   is 64, and all head measurements are in mm. 

                   HIROSHIMA MALES 

AgeFHead                    Ci
rcum. Length Breadth Height 

428164.7461 -607.6191 85927.0000 27225.5000 19650.5000 12990.5000 

            3789.9561 -2810.0078 -1164.0586 -796.7480 -898.0977 

                     211224.0000 86032.0000 39900.0000 31111.0000 

                                 80705.0000 -11873.0000 11172.5000 

                                           47039.2500 9317.0000 

                                                     23305.5000 

                   HIROSHIMA FEMALES 

425391.2500 1645.1699 137599.0000 50443.5000 20928.7500 5295.2500 

            3526.1661 -1175.5000 -290.41418 -1044.1914 -125.7090 

                     200872.0000 0993.0000 32873.0000 25470.0000 

                                 69904.5000 -7996.2500 9020.0000 

                                          132244.0000 8627.5000 

                                                     23268.2500

sums of squares and products of age, inbreeding, and the f our head measure-

ments for the sexes separately. Table 3 indicates the method of construc-

tion of the working matrix appropriate to a specific hypothesis, namely, that 

age effects are different in the sexes whereas the inbreeding effects are not. 

Table 3 further illustrates the reduction of this matrix by the Gauss-Doolittle 

method to obtain the vectors of the estimates of the regression coefficients, 

a matrix of coefficients which when combined with the variancecovariance 

matrix will yield a matrix whose elements are the variances and covariances 

of the regression estimates, and finally, the residual matrix. In Tables 4-6, 

we give the results of analyzing the data in Table 2 under several different 

assumptions. In Table 4, the sexes are analyzed separately both with res-
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           Table 3. Formation of the working matrix : Age effects are treated 
               separately for the sexes, but inbreeding effects are pooled. 

   (1)(2)(3)(4)(5)(6)(7) 

(1) 428164.7461 0 -607.6191 85927.0000 27225.5000 19650.5000 12990.5000 1 0 0 
(2) 0 425391.2500 1645.1699 137599.0000 50443.5000 20928.7500 5295.2500 01 0 
(3) -607.6191 1645.1699 7316.1222 -3985.5078 -1454.4727 -1840.9394 -1023.8067 0 0 1 
(4) 85927.0000 137599.0000 -3985.5078 412096.0000 167025.0000 72773.0000 56581.0000 
(5) 27225.5000 50443.5000 -1454.4727 167025.0000 150609.5000 -19869.2500 20192.5000 
(6) 19650.5000 20928.7500 -1840.9394 72773.0000 -19869.2500 179283.2500 17944.5000 
(7) 12990.5000 5295.2500 -1023.8067 56581.0000 20192.5000 17944.5000 46573.7500 

In the construction of the above matrix, the first row (or column) is transferred from the first 
row of the male data matrix ; the second row (column) stems from the first row of the female 
data matrix ; the remaining elements are obtained by summing corresponding elements from the 
male and female data matrices, for example, the element 3, 3 in the above is the sum of 3789.9561 
and 3526.1661. 

           Table 3 (continued). The first step in the preceding matrix by the 
               Gauss-Doolittle Method. 

1 0-.001419 .200687 .063587 .045895 .030340 .00000234 0 0 
0 425391.2500 1645.1699 137599.0000 50443.5000 20928.7500 5295.2500 0 1 0 
0 1645.1699 7315.2600 -3863.5665 -1415.8360 -1813.0527 -1005.3715 .00142183 0 1 
0 137599.0000 -3863.5774 394851.5682 161561.1599 68829.3803 53973.9748 
0 50443.5000 -1415.8397 161561.1961 148878.3121 -18619.7357 19366.4783 
0 20928.7500 -1813.0553 68829.4001 -18619.7337 178381.3903 17348.3038 
0 5295.2500 -1005.3732 53973.9755 19366.4731 17348.3010 46179.6182 

At the first step (i) adjust the scale of the first row so that the first element in the row 
                        becomes one. 

                (ii) eliminate the first element of all the remaining rows. 
At the nth step (i) adjust the scale of the nth row so that the nth element in the nth row 

                        becomes one. 

                (ii) eliminate the nth element of all the remaining rows. 

           Table 3 (continued). Finally, we arrive, after the third sweep-out, 
              at the following matrix; 

      (1)(2)(3)(4) 

(1) 1 0 0 .19983327 .06327372 .04552697 .03014077 .00000233 -.00000000 .00000019 
(2) 0 1 0 .32579052 .11943382 .05020101 .01299077 .00000235 -.00000053 
(3) 0 0 1 -.60142051 -.22040574 -.25913529 -.14035640.00013682 

   0 0 0 347699.5140 144275.6777 60920.6103 51644.1854 
    0 0 0 - 142541.6085 -24017.9642 18512.4583 
  0 0 0176860.9296 16821.9506 
 0 0 0 45969.7197 

The submatrix of dimensions 3X4 in the upper middle is the matrix of regression vectors. The 
submatrix of dimensions 4X4 in the lower middle is the matrix of residuals which is distributed 
in the Wishart distribution with degrees of freedom equal to the sum of the degrees of freedom 
of the data matrices minus 3. The unbiased estimate of the variance matrix can be obtained by 
dividing the elements of matrix of residuals by the degrees of freedom. The submatrix of di-
mensions 3X3 in the upper right is the matrix of coefficients to the matrix of variances and 
covariances of the estimates of the regression vectors This is identical to the inverse of the 
submatrix formed by the first three rows and columns of the working matrix.
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          Table 4. The results of the analysis of the data in Table 2. The three 
              matrices for each sex are the regression estimates, their coefficients, 

              and the estimates of variance and covariance. D.F. are the degrees of 
              freedom on which the estimates of variance and covariance are based. 

 X2 is the value of the statistic for testing the hypothesis that the 
              regression vector on inbreeding is not significantly different from a 

              zero vector. A is the generalized variance. 

HIROSHIMA MALES 
        HeadHeadHeadHead 

           circum. breadth length heightAge 
   Age0.199680 0.063165 0.045607 0.030010 .000002332 .000000373 

   F-0.709422 -0.297016 -0.202914 -0.232156 .000263914 

Head circum. 145.730362 60.523372 26.867191 21.153207 
Head length59.665825 -10.129644 7.651901 D.F. = 1318 
Head breadth34.887240 6.481266 X2 = 18.30 
Head height17.228490 Q = 1176553.5 
HIROSHIMA FEMALES 

   Age0.325341 0.119115 0.050435 0.012609 .000002354 -.000001095 
   F-0.485156 -0.137934 -0.319658 -0.041533 .000284106 

Head circum. 124.527719 51.593892 20.462311 18.964172 
Head length51.125597 -8.513374 6.702896 D.F. = 1249 
Head breadth104.767554 6.661529 X2 = 9.10 
Head height18.571868 A = 5281988.1 

pect to the effects of age and inbreeding. In Table 5, it is assumed that 
the inbreeding effects are common in the two sexes whereas the age effects 
are not. Finally, in Table 6, we assume age effects are common, but in-
breeding effects are not. It is interesting, perhaps, to point out at this 

juncture that the average time spent in the calculations for each of the 
above analyses was less than ten seconds, While it is not our purpose to 

dwell ont he biological findings, it should be noted that there is a significant 
depression of the f our head measurements- with inbreeding, and that the 
residual matrix is larger in the case of the female than in the male. With 

          Table 5. Analysis of the data in Table 2 under the assumption that the 
              inbreeding effects are equal in the two sexes. 

           Head Head Head Head Age of Age of 
             circum. length breadth height malefemale 

 Age of male 0.199833 0.063274 0.045527 0.030141 0.000002332 -0.000000000 0.000000194 
 Age of female 0.325791 0.119434 0.040201 0.012991 0.000002347 -0.000000529 

    F-0.601421 -0.220406 -0.259135 -0.140356 0.000136815 
 Head circum. 135.397007 56.182117 23.722979 20.110664 

 Head length55.506857 -9.352790 7.208901 
 Head breadth68.871078 6.550604 

Head height17.900981 

             D.F.=2568X2=23.23A=3429757.1
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         Table 6. Analysis of the data in Table 2 assuming equality of age effects 

             in the sexes, but not the inbreeding effects. 

           Head Head Head Head                                                   F of male F of female Age 
                circum. length breadth height 

F of male -0.699390 -0.292549 -0.202529 -0.233546 .0002633885 -0.000000082 .000000186 

F of female -0.455724 -0.124829 -0.318527 -0.045609.000283845 -.000000544 

 Age0.262257 0.091027 0.048011 0.021345 .000001170 

Head circum. 136.672049 56.740385 23.791947 19.898766 

Head length55.748727 -9.317169 7.106532 

Head breadth68.863329 6.559442 

Head height17.900296 

            D.F.-2568x2=8.72A=3481591.2

respect to this latter observation, we would point out that because of the 
large sample size biologically meaningless differences in the variance matrices 
are apt to be statistically highly significant, and that under these circu-
mstances test procedure d) appears to be more appropriate than b). 

   Summary : Considerable concern presently exists with respect to the 

genetic damage accruing to mankind as a consequence of his increasing ex-
posure to mutagenic agents. Information pertinent to the magnitude of this 
risk is afforded by studies on the effect of inbreeding on a number of va-
riables indicative of general fitness. These latter variables tend to be in-
terdependent measures of the same phenomenon hence, traditional analyses 
of the univariate variety are inappropriate and must be supplanted by 
multivariate procedures. In the past, multivariate analysis has been ham-

pered by the cumbersomeness of the computations, not to mention certain 
interpretative ambiguities in the earlier tests. High-speed computers have, 
in the main, overcome the computational difficulties, and in so doing, have 
opened up opportunities for the devising of less ambiguous and more broadly 
applicable statistical procedures. The relevance of these procedures to a 
broad class of genetic problems, including the radiation hazard, is briefly 
indicated in this paper.
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