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Chooichiro ASANO and  Sokuro SATO 

        (Received December 20, 1960)

§ 1. Summary and introduction 

   This paper attempts to give some extensions by the consideration of 

pooling data of a bivariate population, and shows us certain formulae and 
some properties of the inference procedures. 

   The principle and methodological aspects of pooling data used in this 

paper have been discussed by Bancroft (1), Kitagawa (1) Bennett (1) and 
various other authors. And recently Asano (1), one of the authors of this 

paper, proposed also seven types of the inference procedures to be of use 
in practices on the background of biometrical and pharmaceutical researches. 

   These have been, however, mainly developed in case when the obser-
vations were obtained from the univariate populations, and, so f ar as the 
authors of this paper are awake to, the results and the properties caused 
by pooling data have not been given in case when the observations were 

drawn from certain multivariate populations. 
   Under the consideration of certain practical necessity, the inference 

problems through this paper are discussed for bivariate population. And 
here the authors of this paper shall note that the inferences of a mean 
vector for more general multivariate can be also expressed by the similar 
formulae as Section 2 and that while the inferences of a generalized variance 
and a variance-covariance matrix cannot be expressed explicitly by the 
similar formulae because of the complexity of the fundamental distribution 
of the statistic considered for us, but may be able to express by similar 

properties as Section 3 and 4. 
   In conclusion, the authors wish to express their heartiest thanks to Prof. 

T. Kitagawa for his kind advice and valuable suggestions and criticism in 
connection with this work.

2. Pooling of sample mean vectors 

   2.1. Type 1. (The inference of population mean vector with 
        " known " population dispersion matrix) 

   Let 0,„: (xi", xP, x;;),) be a random sample of N1 vector observations 
from a bivariate non-degenerate normal population N[,t(1),M] and let 0,, : 

(x;.2), .x,C,2),•-•,x) be another rondom sample of N2 from some bivariate normal 
                             39
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population N[A(2), EL The values of these two common population disper-
sion matrices are known to us, but the populations have not necessarily the 
same population mean vector. The distinction between two populations may 
be regarded however as hypothetical. Let us suppose that we may pool the 
two sample mean vectors and form an estimate vector of the assumed same 

population mean vectors simultaneously in case when testing the hypothesis 
that it(1'=/2") shows that the hypothesis cannot be rejected. 

   Our rule of inference procedure is as follows : 

    ( i ) Let --(1) be sample mean vector defined by Om, 2). 

   (ii) Let the statistic be defined by 

            U'II,---(X(1)—X("y( 1 + 1 )-1E-1(X(1),k(")                      Ni N2 

where = EXy) / Ni . 
                            =1 

   (iii) Then let us define the statistic x in the following way. 

          (a) (N1x(')+N2(2))/(N1+N2) if U'U<A(a), 

    (b)if U'U>A(a), 

where A(a) means the significance value of f-distribution with significance 
level a in case when the degrees of freedom is equal to 2. 

   Theorem 1.1. The distribution function of x is given by 

       1VN1 ±N2  (1.1) Pr.,Yc<u*=f 1p                                                                                2•1— 

               ^27r21—PV 0.221/ 1 — P2 

                       ri< 
                      1/Ari+N2(ui —NoLi(1)+N2A1(2)  

                   ^/                 aiiNI+ N2 

          (it,\ 1111'1) + N2/IP)1}1dr1 x1exp[— 1(4+ sD]dsids,          Nl+ N2/2x2 

                                                         Pal—a2  \2                                   ( si-hai)2+V2)<x22 (a)                                                       ^1 —P2 

                        2      ff-1exP[——12(A+ sD][/ 17r2                           exp[—jr•[1—q)   
           27r                                                          1/1—p2r1 

   1, 

      (sid-a1)2(s2+Pui —a2)>,22(a) rr<VNI-F-N2(ui/11) L1/N2                                                                    Si 
    1/1—P2Ni 

         ^Ni+ N2 tt 2 /41) ) VN2( PS1—S2)}dr 11 ds1ds2.        -1/0.221/1—p21/1—p2 

4= Note : For the sake of convenience, throughout this paper, the notation of Pr{i<u} or Pr [Li 
 <u} shows at the same time the probability that each element of the vector .k or the matrix 

 Edoes not over a corresponding element of the vector or the matrix u namely, the distribution 
 functions of the respective elements of x or t simultaneously.
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 Proof  . Now let us put for a moment 

                                     p(" x(')—  (1.2) y(,),_ (y 1).) = ( 1  I 2,   )(i=1,2),                             V aii/N1),/ 

 and by using the following orthogonal transformations 

 (1.3)4,_1/ N1N217(1)_ Y(2)9q____1/NiN2_((i)+31(2)               N,+ N,\ 1/Ni 1%'N2V+N2\i/ N2 )/ 

 the joint elementary probability of p and q may be given by 

         1  

                                    

' (1.4) h(p',q'= (2702 (1_ p2) exP[ 21 p2) (P21 —2PP1P2+ 
                                  + (e-2pq,q2+ el] 

    Now let the sample space be divided into two distinct sets D1 and D2 
 which are defined as domains U'U<A(a) and U'U > x2 (a) respectively. 

 Then we may and shall decompose the probability (1.1) into two parts, 

                    N 'cm +N2X(2)       Pr.1,X<u} =PrN i+N2<u, Di} + Pr.IX(i)<u, D2 • 
    On the other hand, in view of (1.2) and (1.3), we may be obtained that 

 (Nlic(1)+ N4(2))I (Ni+ N2) = E+ Fq and 

       ,X(1)=-,u(')+Fq—GFp where E-= N2A(2))/ (N1 + N2), 

     F= (1/&11 _/0„,)//Ni+ N2 and G=VN2/N, . 
                          Vu22 

    Then the first term of (1,2) may be given by 

          (N4°)+N25c(2)   (1.5)N ,+N2 <u, Di}_=---ffh(P',q') Hdp,dq, 
                                                                                   i=1 

                                        q<F-1(u—E) 
                                     (PH-a)'R-1(p+u)cx22(a) 

where a'=0//             N,N2 g(2)/  N1N2 142) —  ) andR= (1 P)And,          Ni+ N2 1/a11N1+ N2 /622p 1) 
 by using the transformation p=Ls and q=Lr, where L= p2) , 

 s=(s1) and r=(r1), the probability may be written in the following way : 
  s2r2 

 (1.6) Pr. -I(  N1:kw+ N2,(2)     N i+ N2• 

       = I 27c1exP[12 (ri+71)]dridr2ff 27r1exP[—i2(s+sD]dsids2 
  Wl,02
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    i/Ni+N2(u o Arigi(1)+N2fl1(2) 
  ,/Ni+N2 

     1    1---exp[ri2111-01—p1 P2r,)G221p 2N+N2(u2_Nli:++NN,22P)ddr,   T/2772/1\ 

   • f f 217r exP[— 21 sDidsids2 
    (sid-a1)2+ (s2+v/PaiLap222<X2) 2(a) 

                  ( N1+ N2 ( + N2/112)  
                       (0 where we put that,=                           u1N

I+ N2r2>1 p2 ri — 

 j/N2
1—22+/V2NN1 +2)— N 2PF)  )/6221/                            r, co2 — (Ls +11-1 (Ls + a) ‹A(a)•               N 

This gives us now easily the first term of the left-hand side of (1.1) by 

the transformation v1= s1 + a1 and v2 = s2 + Pal a2 • 
                                                 p2 

   The second term of (1.2) may be similarly given as follows : 

                                          (1.7) Pr.ico)<u, D2 =Ulf(2702 (1— p2) exP[—2(1-1                                                   p2)(P1— 2pP1P2 + 

                                    2 

      + (q7. —2pq1q2+ } i• dp tclq, 

   =Tiff1 1                exp[---2(Vir+M+r+ rr2)dW 
     (2z)2i=1 

    =-21 7,exP[— 21 (W+ W2)][  1f27,ex P[211,P                                                           1/ 1— p2 

                             ri<t/Ni+N2  (ui0),Al, 
                               1/a1j7- VATI"       ii 

                                            i

2 

                           pW           / N1+ N2 (u2Alh1/NN2( ,  W2) .cirildW idW 2 
      Va2221/1—P'iI/1—p 

where we put that 

   W4_ 1q<F-1(u— IP)) + Gp, (p+ a) R--' (p + a) __>_;d(a), 

    (05r1<1/1V1+N2 (uip11)) _t_2W 
                      a11 

    r 2>p rN N 2 upco)2—W)1- 
        v/1p 2117/0221/p2(2f____7,0212 

   Thus we obtain the second term of the left-hand side of (1.1). In com-
bination of (1.6) and (1.7), we may obtain (1.1) to be proved.
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   Theorem 1.2. The mean vector  ELx# and the mean square deviation 
M.S.D. ,X.# of the estimate x are given by 

(1.8) = p(t) + NN2 

and 

                     1,
N 1+22((2) (1))((2) (1)'I (1.9) M.S.D.4#=            NN 2'mN2)(4g-It)Pr*D11 

     NiNi 
where we put 

                         r1 (1.10)f f 1- -exPL-2-PR-1P1 dPic1P2                        27ri/ 1.1? 

                     (1)+a)/11-1(PH-a)<X22(a) 

( 11 1 )ID 2L-pffp27, 1vexi,[12p'--p                      ~RI'p] dP1dP2• 
                      (PH-a)'R-1(Pd-a)>x22(a) 

   Proof : Making use of the notation in the enunciation and proof of 

theorem 1.1, we may write 

        12 (1.12) E (X) =Liff(E+Fq)(2702RleXP[1(p'R-lp+q'R-1q)111dAdq, 

       1r12     + JURA")+Fq-GFP)(27021R,exPL2(p'R-lp+q'R-'q)]gdpidq, 
                D2 

   _fiff {40)+Fq+ NiNN2(12(2)to)1. (2,02Alexp[21 (p/R--'p+q'R-lq)] 

                                                                                      2 

                                                lI dPidq, 
                                                                                                              i=1 

    12     +fill (A")Fq — GFp)  (2702 Rexp[2 (p'R-1p-lq)igdp,dq,. 
                D2 

Thus the mean (1.8) is obtained and the M.S.D.1.t is obtained from a fol-
lowing relation : 

(1.13) E=If[p(1),a("'+ Fqq'F' + Ni+Niv2Iti,(1)(0(2)-1A(1)Y+(ti(2)-12“))0(1)' 
                          Di 

    +(Ni1V2            +2N2) (gt(2) OW) (41(2) gel)) (11(1)q,F' Fq1(1'1)
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                                         r1 

      NN,N,Fq (a(2)Amy± (e)F'(270)24-ilexpL—2 (p'R-'p 
                                        +q' R-1q)iffdp,dq, 

       ff.ft /Ole' --E-Fqq'Ff +G2Fpp'F'+ (1.t(1'q'F'+Fq,u(1)')—G(/.4(1)pF' 
                D2 

     +Fp1.1(1)')—G(Fqp'F'+Fpq'F') (27)21Rexp[ 21  (pfR-1p+q'R-1q)] 

                                                                                      2 

                                                            dpidqi. 

   Then substituting the following relations, I D„,.,,2qq' =(% , 
= I D q = (g) and =ID, Pg'#--(0(j) 
for (1.13), we may obtain that 

ElXX'-=tem' + +1N
2E+N iN+2NAt(1) (AG) —At(1))'(12(2) —11911w' #Pr.D1# 

     +(NiN+2 N2)2(,u(2) —12(1))(AO—1-1(1))'Pr.1Di+N:ID2Fpp'F' 
      IN     —1/ 

IV +FPA("' #. 

   Thus the mean square deviation M.S.D. of the estimate g may be 
otatined in the following manner. 

           = E (=x — )(x- - ) ' 

           =Erxie— 'OE—E/of4_ ii(oit(or 

                                              2 

           =N1+ N2(NITN2) (g(2)—µ(1)) 41(2) g(1) D'} 

        +Ni/,21Fpp'F'}.             N, 

   Corollary 1.1. Specially when &2) = um. E,-t= &1), that is, it- is an 
unbiassed estimate of ti", but the variance components and the absolute 
value of covariance components of the dispersion matrix are greater than 

  (Ni + N2) and la (N 1+ N2) and less than aid N, and ja,/Ni, respectively, 
(i, j = 1, 2). 

   Corollary 1.2. Specially when N1 is very large compared with N29 
that is N1)N2, the bias of the estimate of X becomes small, and the dis-



A bivariate analogue of pooling of data45

 persion becomes ERNI+ N2) nearly. 

   Corollary 1.3. Specially when A(1) =le), the variance component of the 
estimate x in case of bivariate pooling of data becomes smaller than the 
variance of the corresponding estimate in case of univariate pooling of 
data. The difference is given by 

      N90-                [1
.02A# -1-D2.3Ad<O, (i =1, 2)     (N

,+N2) N 

where 

     112      402 3=f27ry Ri-ex PL-—2PR-1Pdk, 
                                                                          i =1 

                  -1P>X
22 (a) 

      3=f.P  e-                ?;1 --4dp, 
            -• 

             

1131>1/ Xi2(a) 

   Corollary 1.4. In case when the dispersion matrices of two bivariate 
normal populations are distinct but these two correlation coefficients is 
assumed to be common, the similar results given by the similar inference 
rule of this section are obtained. 

   Otherwise if these correlation coefficients are assumed to be unequal. 
the similar results may not be expressed explicitly. 

   2.2. Type 2. (The case with "unknown " population dispersion 
       matrix in Type 1) 

   Let 0 : (xP) , x,C') ,•, 40 be a random sample of N1 vector observa-
tions from a bivariate non-degenerate normal population N[1.1(1), E] and let 

    (x12), xP, ••-, x.0) be another random sample of N2 from some bivariate 
normal population N [ci2), J. In this section, the values of these two com-
mon population dispersion matrices are assumed to be unknown to us, but 
the populations have not necessarily the same population mean vector. Our 
attempt of the present inference procedure is the same in Type 1. 

   Now our rule of inference procedure is as follows : 
   (i) Let x" be sample mean vector defined by Oivi, (i=1, 2), and let 

S be the unbiassed estimate of common population dispersion given by 
                                  N1     S= (N1+N,-2)-1{E(xl) -x(1))(„e)i'k(1))I+(x2)x(2))(x.2)x(2)) 

      i=1j=1 

   (ii) Let the statistic T2 be defined by 

                    T2
i(x(`)-x(1))PS-14(2)--o-c(1)).                  N+N2 

   (iii) Then let us define the statistic x in the following way :
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                                 Ni+N
+N2—3  (a) x= (N1x("+ N2x')/ (NI + N2), if 2(1‘112-2)T2--F2'N'+'2-3(a) 

                                    Ni+N2-3  (b)
=x(1),if2 (N

, + N2 — 2)T2>F2,„,,,_,(a) , 

where F2,,,,,2_3(a) denotes a-percent point of F-distribution with the pair 
of degrees of freedom (2,N1±N2-3). 

   Theorem 2.1. The distribution function of x is given by 

                            I/N1±N2N1i41)  N2PPLi (2.1) Pr.#X<W,-----1[1— Oil p2r,1/,221/u2 N+N)1 
                        ;-N2(p1NiiiiN(0-1+-NN2g1(2)) 

                                         2 

             • 1/ exp[ — 
                                                                     N,+N2-3 

                              (x2/2)_1e--               22      •IIf 217,exP[21(4+ sDNN3dsids2dx2    DI2r (  22 
          V N2N P  

      f[1[1—°V1P---P2r1—1/ G2211+1—p2 (u2 141))AT2I(V1._p2 SiS2)11 
           D2 

       ri<VN1+N2(ui_mai(1)) +/N1 s1 
            Van 

                                                                                           NI-1-N2-3_, _x2 

     •1 -exp[—r2ldril-217,exPL— 21 (4+4)(X2/2)2e 2 ds,ds2dx2,   I/27cNi+N2                          2r( 2  

                                                                                        2 where sets D1 and D2 are defined as domainsl(s,+a,) 2(S2 +1()1(-22)1-/ X2 
                                                           1/1 —,0 

            F2                    3 (a) and -(s,+a,) 2-I-(S2-I-Pa'a2)21./ x2>2 
 N,±N23"Vi+N-1/1 — p2Ni+N2 —3 

F2,IV1-1-N2-3(a) respectively. 

   Proof : Let us use the notation in the enunciation of this section and 

proof of Theorem 1.1. 
   Let 

    1  
B 0Iy/ N1N2   V^a 11

_// 
                                     V-(1)) Y*= (yliC) =BY, S*—BSB',                             1V1+N2
_1/ clip-vall 11 

       E t/ E' 
    y,*11",  

Q ^y*,y* , V=QY*, C=Q(N1+N2-2)S*Q', 
    Yt 177 

   (1/Y*'Y''' J/ Y*'17*)
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then  BEB'=I, and Q is an orthogonal matrix. Y is distributed according 
                                                                                                                                          -V1-1-N2 -2 

to NrN1N2(a(2) -A"))and (N 1+ N 2- 2) S is distributed as E Z oZ o'  L
i'N1±N2/3=1 

with the Zo independent, each with distribution N[O, E], and Zo is inde-

pendent of X(", X (2), thereby is independent of p and q. (N1+N2-2)S* is 
                     Ni+N2-2 

distributed as E Z, -EoBZ (B. Z 0)' with the Zfrf independent, each 
                             =1 

with distribution N[O, I], and ZR is independent of Y. p, and q. The con-
ditional distribution of C given Q is that of E0W0TV", where conditionally 
theWo defined by QZ's' are independent, each with distribution N[O, I]. 

   If we put that C= (c11c12) , then C11.2=Cii Ci2q21C2i is conditionally dis-
                                    C21 1'22 

tributed as x2 with N1 + N2 3 degrees of freedom. Since the conditional 
distribution of c11.2 does not depend on Q it is unconditionally distributed as 

x2, and is independent of p, q. 

   On the other hand, if we put that Q= („,(11112, then V1=Eq„r                                                        Li21 q22 

/y-,y*, and putting it(2)------A(!), Vi given by p'R-lp or by Y*fY* has a x2-
distribution with 2 degrees of freedom. Therefore if a(2) =PP), 
T2 (N1 + N2 3) /2 (N1 + N2 — 2) is distributed as a F with 2 and N1 + N2 3 
degrees of freedom. 

   The joint probability density of p, q and X2 given by c11.2 may be given 
by 

                                                                                                       Ni+N2-3 _, 

                1(X2/2) 2  e 2  h(13',g').f.vi+ v2-3 (x2)-(27)2;RlexPL2(p'R-lp+q'R-1q) •                                                                +N2 —3                                  2r( 2 l 

   Now let the sample space be devided into two mutually distinct sets 
D1 and D2 which are defined as, (NH-N2-3)p'R-Ip/2x2<F2 ,N,+.,2_3 (a) and 
(N1 + N2 — 3)p'R-1p/2x2>F2,,vi+ N2-3 ( a) respectively. Then 

(2.2) Pr.{-,k‹u=Pr.INJXm+ N2"k (2) <u,D, +Pr.{ x(' <u, D2 } •                        Ni+N2 

   The first term of the right-hand side of (2.2) may be 

  N     Pr{N , <11,DiF   N,+N2ffT2                               h (p', q'VN,N2-3 (X2) (17104qi)d)(2, 

                                                                              1 

                                q<F-1(u—E), D1 

and by using the transformation (1.5), the probability may be given by 

 Pr.IN,,X(Ni)++N24(2)<„,Di} =MU12expLFs-21(ricr                                   (270r+sis)fyi+.v2-3(x2) 
                             Lr<F-1(u—E) 

                                 1+N2-3)s' Is /2x2<F2,vi+ N2-3(a) 

          2 

     (rIcls1)clx2 
             i=1
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                     !N1+N2N1 /A" T+N2142)\I1\3'2 

  f f f 1[1—0-L42-p2r,—N)U27, 
    ri<l/N1/1+N2(uiIN(01-NN2g1(2)) 

    (N1+ N2-3)s'Is/2x2< -F2,vi+A-2-3(a) 
 exp[1           — (r1+s'Is)]fNi„,,( X2) dri• (Ilds,)dx2, 

  2/=1 

and putting that vi=si+a, and V2S2 +pa, a2 , we may obtain 
                                V 1 p2 

(2.3)Pr JN,,X(1)+ N2X(2)                         <u,D11- 
             i Ni+N2 

 ---- 1[1-01—e-4-1/N1 + N2_N ipP) + N 24))t] 
               1—p-/ 6221/1 — P2\2Ni +N2/) 

    ri<VN1H-N2(14 NtiliN(1)++NN2tti  (2)) 
          I/ci\ 

    (Ni+N2-3)(v12-0'22)/2X2<F2,N1+N2-3(a) 

   • (21-7r)3)2eXP[1+ (viai)2+ (v2pa,—a2)2tif                                           3 (X2) dri(ftdvi)dx2 
       2v 1_ pNi+N2-- 

   The second term of the right-hand side of (2.2) may be similarly 

                                                                 2 (2.4) Pr.TI D2fh(p',q')I,„+,2_3(x2)(11dPidgi)dx2 
                                                                                   1=1 

                        q<F-1(u-1 (1))+Gp 
                         p'R-lp(Ni+ N2— 3) /2X 2>F2, + N2 -3(a) 

                                                                                 2 

   =MN (27r) 222-               exP[—(eI                               Ir+SS)]ifNi+N3(X2                                              ) (11dpidqi)dx2. 
                                                                                                   i=1 

             Lr<F-1(u- PO)) H-Gp 
              (Arid-N2-3)s'Is/2x2->F2,_vi+N2-3(a) 

   In combination of (2.3) and (2.4), we shall reach (2.1) to be proved. 

   Theorem 2.2. The mean vector Ex and the mean square deviation 
        of the estimate .t are given by 

  "(2)
4.*'.(I) (2.5) E,x-= /AM -I--                 NN+2N2 

and 

       12 2( (2.6) M.S.D.LX=N1-+N2I(NN1+N2)(0\(2)(/)) Pr. D1 

              +N  

where we put
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 _  - Ge 2)  2 e  
 (2.7)  Pr.{Di}= r,x,  1 Nexp[ 1 p'R"p1  Ni+N2-3dpidP,dx- 

 ( ) 

                                       i 

                   p/2x22<F2,s1+.1.-2_3(a) 

   Proof : Making use of the notation in the enunciation and proof of 

Theorem 2.1, we may write 

      .11 {(1)+Fq+NiN±2N2 (11" (2x)R                                      211—exp [21(p'R-'p 
      Dl, 

               2/2)e                                       Ni+.2\2-3_/_%,2 
       q'R-1q)] (xN+N(Hdp,c1Cdf               2r (  2 2  ) i=1 

    + (#.(1) + Fq—GFp)(270-1//4;texp[ —(p'R-'p±q'R-1q) 
                D2 

                     N1 +N2- 32X2 

      (x2/2) 2e                  2 (Ildp,dq,) dx2        2r (AT, +N22-31 i=1 
             N2      =1-4(1) N

,+N2(a(-)--A('))Pr.ID,—GFID2€Pi• 

   Thus the mean (2.5) is obtained and the mean square de viation 
M.S.D. may be obtained from a following relation; 

(2.8) E{jtic'} 

            i(o+Fq+ NiN+2N2(0(2)it,(1)){4e(i)Fq+NiN+2N2(0(2)flu)) 
              Di 

  11 
      (270 2,/IR2 

              exp[—(p'R'p+q'R-1q)]fNi+N2-3 (x2) (2ili-1dkdq,)dx2 

   + -1.t(1) F q iN+2 N 2(4u(2) — ,a(1))} {tem ±Fq NiN2 N(1.4(2)—(1))1! 

          2       1  

       (27)2J/lt,exp[—2- q'R-1q)],fy1+N2_3 (X2) (21L-4Pidqi)dx2. 
   Then substituting the following relations 

(2.9)fo       ID,+D,qq'=(p1)) ,== 

      ID, {PT = ID, 44P' I = (g (0)) 
for (2.8), we may obtain that
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(2.10) Elx-X'=12(1)it(i)+N1+N 2E+N244(1) (°(2) +12(1)) 

           (11(" IL") ) IA") Pr.D1 -4- (N,N+ 2N2 ) (a`')— te1))(,(2)--41>1)'Pr.{D1 

      +N2r/N2r(1),, p,„(or           N21D2 -A PP'A-s1,D2 (pi•G s • 

Hence the M.S.D.Ix may be obtained conclusionally by 

(2.11) M.S.D.X}=E(x— Am) (X— it(0)' 
      =EX-X'i—i.t("El-xt—Ex4(1)'+,1A(1)11.(1)' 

       1 , N2 )2 (2) (2)(1) 
                           Thel(1)(it/Pr4Dd+ 

   Corollary 2.1. Specially under the same assumption as corollary 1.1 
or corollary 1.2, the same results are obtained correspondently. 

   Corollary 2.2. Specially when tt(2) At(1), the variance component of the 
estimate x in case of bivariate pooling of data becomes smaller than the 
variance of the corresponding estimate in case of univariate pooling of 
data. The difference is given by 

              N20- 
            2)Ni (2.12)(N[ID,p`fl--111)2*Pi}1<0, (i =1, 2)          +N.- 

where 

                                                             • 

                                                                                                                  A1-1-1,2-3       •
2  1•22dp ,dP2dx2,               1,Ce  e                     exP[—2pRp]./2)2

2 FN'+N2-3                27r/1R 
   p'R-1p N1+N2-32 

            X22>Fi,+2\72-3(a) 
                           vi+-r                           '• 

                  1 -2922 V 2-e 
           .13? —e2    di,LdV               I2rr, (N,+ N2 2) 

       NiN2  2   P
i N

i+N2      ^N
i+ N2*1/ 2v>tN1-i-N2-2(a)

§3. Pooling of sample dispersion matf ix 

   Let 0,, : xV), • • x(.;,D be a random sample of N1 from a normal 

population Np4(1), E(1)], and let 0,2: (xF)x2) , • • •, ix(.,2) be another random 
sample of N2 from some normal population N[A(2),M(2)]. The population 
dispersion matrices E(1) and E(2) may or may not be distinct. Now let us 
assume that we are in a situation of estimating the E(i) on the basis of 

pooling data in order to make better the precision of a estimation of E(1).
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And we shall pool the corresponding elements of the two sample dispersion 
matrices  1:i(" and E(" respectively and form an estimate of respective ele-
ment of E") in case when testing of the hypothesis that ;E(1) =j> (2' against 
the alternative ,Z(1);<M") leads us to the decision that the hypothesis E(1) 

  Ei(2); cannot be rejected. 
   Our rule of inference procedure is as follows : 

   (i) Let A(') and X') be matrices of sample sums of squares and cross 
products about the sample mean defined by 

             Aw= E (xT—x(")(xV--,X-(1))' (i = 1, 2), 
                                       ci=1 

                   Ni 

where ,-c(') = E / N, . 
                      .=i 

   (ii) Now let us introduce the estimate 5",(') of X,(1) defined in the fol-
lowing way. 

   (a) = (N + IV 2t(2)) 1+ N 2) , if 1A(2)1112/ A(1)i112<Afx, 
   (b) (1),if A(2)1,2/4(i)1,,,>,3.,,, 

                               au) () where we put that t("= A(I)/Nc----- (4)I, (i =1, 2), and the non-negative                                    621(42)i 

switching constant prescribed 2„ denotes a value of ca-percent point of F-
distribution with the pair (2N2 —4, 2N1-4) of degrees of f reedom. 

   Here we note that the test or switching criterion of our test procedure 
is substituted for an ordinary but troublesome test criterion (N1 + N2) xi +'12 

2 

   I.A.(i),Ni/2/NiNiNZT2A(1)+ A(2) (N1+31-2)/2 and now our concern is the results of 
an inference procedure caused by the present test criterion. 

   Theorem 3.1. The distribution function of f,(1) is given by 

(3.1) Pr. i(1)<u} = f-• f(n), r1, r2, 2)d611)d621)d6ll)dr 4)-42 
                                 DI 

               

I  fo)              (2 ,(2„,i-                                            ctaTddd                                               rr                                         11"229 ')111,r2,A,"11(.(522-1-2/19 

                                             Di' 

where we put that u= (u„u12)and 
                              \I/112 U221 

          2NNil 
(3.2) f (aR)aP,r 1, r2, A)Ni-1 E                        i=i 47r (N i- 2) f ai1)02!2) (1— o) } 2 

         1  NiptafPoV  
                (l—pi) 

                                                             Nien(0             N
t-4+,2v,1-1-v2-1 — 

           (1 — r2) 2rr (1 ---rD 2 -K42.611, e 2aii(1)(1—p12)
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              N2e11(2)N1a22(1)  
                                                              1V 

             ^ag")-le 20.11(2)(1—P22)e 20.22(1)(1-P12) 

                   _  N2  611(1)&22(1)(1-n2)22 
           •( /12) v2-1e 2u22(2)(1—P22)                             a11(2)(1-r22) • dafPda22)dalPdridr2d22 , 

and the domain D1 and D2 in the sample spaces denote that 

     ( 1              O<Ni+N2 (NIag)+N:ag)_g)(1-r) 22<742 2 for2),                              ali)(1—rD 

D,: 0<2<2, O<N 
i+N2(NA)+N2ali)) <iti for ail), 

                 - 00                                                        ,_22 
                                                  u22ri)A                                                          <u

,2 for°iL,),                  N
1+ N2                 <-t111122 

                   1  (N r1/ama(,)+N2r2laii 
                                        alf)(1—rp 

(3.3) 
            ' 0<eq<u ii,0<anag)<,,,,,—1<r1,r2 < + 1for611), 

D2 2a<2<0, 0<4)<U22, 0<cif1),6iV<co, -1<r1,r2<+1 for °1), 
                                                                                 /A\              — co<r,,/aipag)<u,„ 0<afi)<09, —1<r2<1 for 91). 

   Proof : Let us put Pr.1M(1)<u#,----Pr.#(N1E(1)                                        +N22(2)) / (N1+N2)<u, 
D11 + Pr4 t(1)<u,D2 where D1 and D2 are the domains in sample space 
ON, and ON, defined by the above relations (a) and (b). Then the theorem 
is easily shown from the fact that the joint distribution function of A(1) 
and A(2) is denoted by the following Wishart distribution 

               Ni-4 1 
         2A")12 exP(1-trE(t)-1 A(i)) 

(3.4)Ni-12dA(i), 
          2Ni-11/2M(i)2 r [(N :1) /2] 

                                          j=1 

and by using the transformations ri=1,/ afpag>/a172 and afterwards 22= af2,)ag) 

(1- ri) /a Wag) (1 - rD. 

   Theorem 3.2. The mean value Elt(')1 and the mean square deviation 
M.S.D. i>;(') 1 of the estimate E 1) are given by 

(3.5) E /(;11) 22, _ lam ,+  (1 02) (n2-1)/2 (2p2(L2 I,02+ 1) 

  2 

              nln, + n2-,(n2-1\777'1)2!2Ac, 
                          1/ 7V 2 

    (n2+ v2-1){2a1V(1- r(n2 +112 + 1)ni -(n2+ v     2n22n,\ 2 

                                                                                                   "2-1 

     E c(1.2),n1-1(i) n2 ni-1,(1-P2) 2 E (2,02)" r(2)2 + 1)          022—a2P             n1ni+ n2 n1 1/-7,i(n2 1)v21^2 / 

                                2
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    F(222+2-1)1. 2 (n2+1)212—                               og(1—pD(1P2) 
                                                                                 (n2-1)/2 

         2A. 2+ ni  +  n2vv-- 7r _r (n2-1) 
                                         \ 2 

       (2p2)'2r (p2-1-1)r(n2+2)2+1\1/n2+v2+1\,_       „,2/2)AI2)112— 2m, 
      . _.- 

        ni1  n2 n1-1,))(1—A) ("2-1) / 2 
                                    1/ciiC22Pi             ni 

EMP1''/crl)c. -C`-')P1—ni+n27711 77F(n2-1) 
      (2,02) v2 r (v2d-1)r (n2+ v2-1)41/4(n2+v2-1)+ 2                                               n1+ n2-1/ afPoT   z-'7.)t2l22/      m 2. 

     P2(1— p2)(n 2 - 1 ) / 2(2p2)'3(v3+2)r (n2+ v3)I(n2 + 1)3  
      1/77,-,(n2-1)V.,--7,1v3!r22'I2)' 

           2 

                                                         v2=_—_2m, v32m + 1, 

M.S.D.{tfp } 

   =  1 (2_
n1)e)2+ 1 (1— P2)(n2-1)/2(2P2) '2r(                                                               /1)2+1                                       \2       n,il1' (ni +n2)2—(222-1\7.v2r 

               /7 I'  -                           2 

    .inin2 — 2n, — n2 ,/1,2 r (n2 + v2-1) —4 (n2 +1) (1 PD GIP oTr (n2+ 12 + 1) 
   n;.2 

    +4(1 — pD2 a T.' r (n2 +v2+3)}A0,(n2+2—1) , v2-----2m, 
                  2 M.S.D.It W} 

   =1(2 1((6(1)2+ 1 (1—P22 E) (n2-1)/2(2P2)°2r( 2 / 
            f/1)2 + 1) 

     ni\n,I\22(ni ±n2)2—n2-1\m1)2.!
zr                   2) 

    {n,n2 —2n, —n202)2rx2(n2 + n2 — 1')4 (n2+ 1) (1 p2) 0g2)Cg)r,2 (n2 + v2+1)  ,2!.22 

                       2 

                      n2+v2+3    +4(1 —A) 2, 4r xl (  2 )v2 =2m, 
and 

M.S.D. .g>1 

      ni—l+ n2,01,0)(i), 1 (1___p2)(n2-1)/2„,(2p2) .2                             ull"227-        )21(n1+n2)2—r1 .(n2 — ÷2)21 
                              1/7r                           2 i 

     i n2 (ni —1) (nin22Pi22n—n2)(,)712+1/n2+112—1 \               i— cf,0a„r ( 2) FA!k2 i                   n,
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     —4(222+1) pp2) v/o .C`PF(v3+2 2)FA,,(222 -21-1)2) 
     +4(1—PD61'GDF(122+3)Fx1 (722±22±1)-, 

   Proof : The mean valus EL-±,(1) is given by 

(3.6)Nit(1)+N2t(2)f(GO,rbr„,l)dafpdaTclag)dr,dr,d), 
              i+N2 

    + rkifCaf1),ag),2)cicVdc4PdafPdr,dr,d2 
                 D2' 

and the mean square obtained from 

(3.7) M .S .D = (E ",;1';) — 2 (jAaj).ENGT;) + (a ) , (i , j =1, 2), 

                2 where.E1-d1,) is given by 

       /Nap)+N2aP\2-r•••-2^11^()d2 (3
.8)11\-'7.

,2± Nj)ah), all), r1, r2,doh)daWda1.1dridr2 

                    (1f,••(1,)^(1           DI           H''92(2• 1, • 2, )d6ll)d6g)d6ri)dridr2dil. 
                 D2 

Integrating out alp, aLP, r1, r2 and 2, we obtain the results (3.5) sim-

plified by the following formulae: 

  (1 p2N+v—i                  )(N-1)/2ce(9ps                   )(v+1)r()_1 for v=2m,    \-
y r            \m=0 .2/^2 

        (1_ p2) (N-1)/2 •‘Thp•   rV*1--2)r(N_21 —                                   N-1                                                 P
p2for v=2m+1,                  v!\(2/       7r` 2 

      (1— P2)(-V-1)12(2P)'"r (11+ 1\141\7+1) —1)—(N-1)
1—P2p2for v=2m, (3.9)/)2" 

   71-FN-1\2          2 

      (1 — p2) (N-1)/2E  (2P)V1) r
\± 2)r(N+v)_(N-1) p 1 + n p2                                                            for v =2m-i-1,     v

7rrkv!2/22(1 — p2) 1 — p2  2 

     (1 — p2)E(20'2(1)+1)r(N+v-1\(N-1),02# (n-1) p2 ± 2  

                    r 

         v!2)2 (1 — p2)2 
        \ 2 / 

                                                              for v=2m.

   Corollary 3.1. Let us consider in particular an inference procedure 
defined by 2„=(), that is to say, this corresponds to the case when we never 
use poling of data. We have then the following results,
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(3.10)  E  /0\fl) = (N1-1) of1)/N1,M.S.D.{ 6'11) = (2 — 1/N1) all) /N1, 

       E = (N 1— 1) GTM.S.D.{.j.2)= (2 — 1/Ni) 

         612) = — M.S.D.{ /o'ff'? = (N1-- 1 + NiPp 0-f1)4)/Ni. 

   Otherwise if we apply an inference procedure of always pooling defined 
by 26,= co, the results are given by 

(3.11) E = (N1-1)011) + (N2 —1) 4) / (N1 + N2), M.S.D. 
 22 

          (Ni— 1) Gil) + 2 (N1-1) (N2— 1)+ (1\7),— 1) aii)  
                         (Ni+N2)2 

         +2611), (N1-1)+(N2 — 1) a") ±2                                            11 0.2)                       /V
1± N2 

             = (N1-1) + (N2— 1)4) 1 ( Ar +N2), M .S.D.iic,,PS 
 22 

          (Nf— ag) + 2(Ni— 1) (N2— 1) aWaT (N2— 1) aT  
                       (Ni+N2)2 

         2aW#(N1-1) ag)+ (N2 — 1) (71V }.2    +—+ CU9                    N
i+ N2 

       E1 6i2)1 = 1 (N1— 1) v/afVoTP + (N2 — 1) /cfPGDP2 (N1 + N2), 

      //(N1) = (N
1+1N2)-(N,— 1) (1 + NiPi)41)(4'2) + (N1-1)(N2— 1) P1P2 

      aiPaT °Tag + (N2— 1) (1 + N2PD aTa.!,!) 

         2/0(i),(,01      _ 220(N1— 1) Vag) aTioi + (N2 — 1) / C1PCT P2} + cfP012)P21. 
        Ni+ N2 

   Corollary 3.2. When we define that t(')=A(i) / (Ni— 1) in our proce-
dure, t(1) gives us the unbiassed estimate in case that pi=p2---- 0, N1=N2 
and E(1)=E(2) regardless of a value of 2„ and the mean square deviation 
of E(1) is greater than that defined by always pooling procedure and is 
less than that defined by never-pooling procedure, independent of the 
assumption N1= N2- 

   Corollary 3.3. In case when we assume that p, =0 and E(1)=(2) the 
present inference procedure shows us the smaller mean square error of 

                     2 the estimate/i(il) regardless of N1 and N2 than that defined by the pooling 
procedure of Bancroft (1) in univariate case, (i=1,2). 

§ 4. Pooling of sample generalized variances. 

   Let 0,, : (x11), M1), • -•, xn be a random sample of N1 vector observa-
tions from a bivariate normal population N[A(1) , Em], and let 0 : (x12), ,
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      be another random sample of N2 from some bivariate normal popu-
lation N[fiz(", E(2)]. The population generalized variances Em and E(2) may 
or may not be distinct. Here let us suppose that we may pool the square 
roots of the two sample generalized variances S" 12 and S(2)11/2 and form 
an estimate of the square root of the same population generalized variance 
in case when testing of the hypothesis that E(') = E(2) for the alternative 

jE(')> E(2)1 leads us to the decision that the hypothesis IE(1)1= E(2)1 cannot 
be rejected. 

   Our rule of inference procedure is as follows : 

   (i) Let S(') be sample variance-covariance matrix defined by 

                                               xi                     —  E (x50— ,(i)) x(t))',                     N -1 

                Ni 

where x(t) = Exy)IN, and let A(i) be defined by A(1), (Ni-1)S(i). 
                  j=1 

   (ii) Now let us introduce the estimate E                                        1/2 of E(i),"2 defined in the 
following way : 

      (a) L7(1)!1/2 A(1)1/2 A(2)11/ 2                               ) / (N1 + N2 4) , if 2=1A(1)/1/2/A(2)11/2<2,,, 

      (b) fr) 1/2 —114.(1)1/2/ (N1 —2), if 2=4(1)1/2/A(2),1/2>2a, 
where the non-negative switching constant prescribed 26, denotes a value of 
a-percent point of F-distribution with the pair (2N, —4, 2N2-4) of degrees 
of freedom. 

   Theorem 4.1. The probability distribution function of the statistic 

±(t)i112 is givenby 

                                 (ri+r2)x  (4.1) Pr.11Z(1)1"2<xl=br1,7-2(t) I (lay/2t.+Emit/2 (1—t) 'ri+r2)dt 

                                  0 

                                    1 

                                         riX                     bri,„(t) I( Eciy,2tri+r2)dt, 
                                  2 where we put 

              r (ri+ r

(r))07-2-1,(, r) =u1        r (r)r(r2)vdv,                                                r(r)vr-le- 

                                                                         0                     

,E(2) 1/22,, (4.2)— ,c--1(1)11/2E(2)11/22
,, r,=(Ni-2) /2 for i=1, 2. 

   Proof : The joint elementary probability of rA(1)11/2 and 1A(2),112 is given 
by 

       2(HONi--3exp[/ 2] 
(4.3) II2c11-1L(0<1-P<03),              r(N i-2)
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where  I--T=ZA.("1/2/  y(01112• 
   Here adopting the transformations of Hl -=R2 cos2 0 and R2 sin2 0 

and afterwards t=cos2 0 and V=R2/2, (4.3) becomes 

    r (ri+r2)Vri-Er2-1 
    r (r(r2)t (4.4)rl-1(11-)1'--1dtr (ri+ r2)exp[V]dV, (0<t<1, O<V<co). 

   Further decomposing the probability distribution function into two parts 
defined by 

(4.5) Pr. (1)1112<x i;(1)1/2<x,2<2„ + 112<x, 2>2a} 
 _pr .1 [E(1),1/2t1(2)1/ 21t)]t7 Ari+r2)<x,0<t<M(2y/2,1a/( E(1))1/ 24_E(2) 1/220} 

 + Pr.11E(1),'12tV/ri<x,E(2),1/22.4E(1)1/2--EE                                      .(2).'/2/1.) <t<1 }, 

we may obtain (4.1) to be proved. 

   Theorem 4.2. The mean value E FE'-(1);'/2} of the estimate ml/ 2 is 
given by 

            N—21-1(2) 1/2 (4.6)+2N 24.tI„(N, 2, N2 1)1`-'0,1,2 Iro(N,-1,N2 — 2)}1 

             E  

                                                                     IE(1) 1 /2, 
                                                                                                            xo 

where we put that x=12((1)2)P11E222a/(1+[E(1)(2)1/21122„)and Ixo(a,b) =xa--' (1— x)b-i 

                                                                                  0 

  E1 
dx/B(a,b). 

   Proof : Since 21A.(t)(1/2/1E(i)1/2 distribute mutually independently as x2-
distribution with 2N2-4 degrees of freedom, (i=-1, 2), the joint distribution 
of 1A(1)1/2 and IA(2)j1/2 is given by 

                       2 (4.7)C• 111A(')(m-8)12exp—A")1"2 /IE");1/2 d A")"2, 
                           i=1 

              2 

where C= II I r (Ari-2)1E(i)1(N1-2)/2 –1. Then integrating out Q1 after making 
                 i=1 

use the transformations, Q1 = A")1/2+ IA(2)11/2 and Q2 = 1A(1Y/2/1,4(2)11/2, the ex-
pected value E, of Q1/ (N1 + N2 — 4) under Q2<2 2 is given by 

(4.8) E1= (N ,± N2 —4)Pr. (22 –‹–Act (A11-2)Ix°(N1— 1, N2 2) 2(1)1/ 2 

         + (N2— 2) I,(N,-2,N2— 1) 1E(2)112 

where x0=1E,(2)!1/22a/ E(1) 1/2 + 2a1E(2)1/2 
   While the expected value E2 of A(1)1112/ (N1 —2) under Q2>2a is similarly 

as follows: 

(4.9)E2 = (1 — 1-x0( N1-1,N2-2) }iE(1)11/2/ Q2>2a } • 

   Since Pr.Q2_<_2„ and Pr. { Q2>2 I are easily given by
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(4.10) #(N,-2) Ix° (Ni-1,N,— 2) ,E(l) 1/2 + (N2 - 2) Lo (N, — 2, /V2-1) IE(2)112} 
/ (N1 +N, —4) and 1 — L.° (N1 — 1, N2— 2) •1E(2) 112 respectively, combining 
(4.8) and (4.9) we obtain (4.6) to be proved. 

   Theorem 4.3. The mean square deviation M.S.D.#1t0"12} of the est-
imate r(1)112 is given by 

(4.11) M.S,.D.r(1)11i 

  1  

            2 (N1-1) (N1— 2) ixo (N1 f N2— 2) • M(t)  (N i+N,-4) 
 + 2 (N, —2) (N2 — 2) E(" v2IE,(2) 1/24x0 - 1, N2 — 1) 

  + (N2-1)(N2-2) Ixo (Ni— 2, N2) E(2)1 +1V1—21`>>1(N1,N2-2)E(')                       N, 

       2(N—2)
4.E(1‘-7(1,)1,/2 

                                                     2 

  — [1 ±IV22"[Ixo(N,2,N,1)''i/2— 1, N2 — 2)d E(1);. 

 N 

   Proof : Using the same method as theorem 2.2., we may prove this 
theorem. 

   Corollary 4.1. Specially, an inference procedure defined by the " never 

popling", that is, 2,,=0, shows us that E# ft(1) 1/2 = E("l1/2, M.S.D. IE(1)11/2 
=E(')1/— 2) . An inference procedure defined by the" always pooling", 
that is, 2„=00, shows us that 

                  Ni+ N2—4Iz_,(0                  N1—2N,— 2 4fg‘-1(2> 1/2N

M.S.D.             1(1) 1/2 = (N
,+ N2 — 4) 2[ (N1-2) 2 + (N2 2) 2 E(1)' 

         — 2 (N 2— 2) 2 E(1) 1/2 E(2)11/2 + (N2 — 1) (N2— 2) ;E(21. 

   Corollary 4.2. In case when the dispersion matrices of two bivariate 
normal populations are assumed that p(')=-0 and a -= a, the present 
inference procedure shows us the smaller variance of the estimate 62 than 
that defined by the pooling rule of Bancroft [1] in univariate case. 
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