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§1. Summary and introduction

This paper attempts to give some extensions by the consideration of
pooling data of a bivariate population, and shows us certain formulae and
some properties of the inference procedures.

The principle and methodological aspects of pooling data used in this
paper have been discussed by Bancroft (1), Kitagawa (1) Bennett (1) and
various other authors. And recently Asano (1), one of the authors of this
paper, proposed also seven types of the inference procedures to be of use
in practices on the background of biometrical and pharmaceutical researches.

These have been, however, mainly developed in case when the obser-
vations were obtained from the univariate populations, and, so far as the
authors of this paper are awake to, the results and the properties caused
by pooling data have not been given in case when the observations were
drawn from certain multivariate populations,

Under the consideration of certain practical necessity, the inference
problems through this paper are discussed for bivariate population. And
here the authors of this paper shall note that the inferences of a mean
vector for more general multivariate can be also expressed by the similar
formulae as Section 2 and that while the inferences of a generalized variance
and a variance-covariance matrix cannot be expressed explicitly by the
similar formulae because of the complexity of the fundamental distribution
of the statistic considered for us, but may be able to express by similar
properties as Section 3 and 4.

In conclusion, the authors wish to express their heartiest thanks to Prof,
T. Kitagawa for his kind advice and valuable suggestions and criticism in
connection with this work.

2. Pooling of sample mean vectors

2.1. Type 1. (The inference of population mean vector with
“known ” population dispersion matrix)

Let Oy (%, x{, -, x¢) be a random sample of N, vector observations
from a bivariate non-degenerate normal population N[g",3]] and let O,,:
(x®, 2, ---, x®) be another rondom sample of N, from some bivariate normal
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40 Chooichiro Asaxo and S6kurd Sarto

population N[¢®,3]]. The values of these two common population disper-
sion matrices are known to us, but the populations have not necessarily the
same population mean vector. The distinction between two populations may
be regarded however as hypothetical. Let us suppose that we may pool the
two sample mean vectors and form an estimate vector of the assumed same
population mean vectors simultaneously in case when testing the hypothesis
that 4 =4® shows that the hypothesis cannot be rejected.

Our rule of inference procedure is as follows:

(i) Let ¥® be sample mean vector defined by Oy, (1=1,2).

(ii) Let the statistic U’'U be defined by

U'U=x0—50) (p+ y-) = @O—&)
1 2

where X0 = %&gw/m .
j=1
(iii) Then let us define the statistic ¥ in the following way.
(a) X= (N XD+ N,x®)/(N,;+N,) if UU<i(«a),
(b) x=xW if UU>x(a),

where x3(a) means the significance value of y*-distribution with significance
level a in case when the degrees of freedom is equal to 2.

Theorem 1.1. The distribution function of x is given by

(1.1 Pr.%?c<ug*:J Lexp[ fl][l—d)ﬁ%pzrl V' N+ N,

v or 2 1/0221/1“:0
V' Ni+N2 N1y W+ Nosty @
n e (T )
_NluS“+N2ué2’ { 1 1. ., -
(=S lroc || pu st [ g e b Jasias,

ﬂa1—az

(s1+a1)2+(32 T

% Y <ox? (@)

+ sziﬁexp[— %(sf%— s%)] Ul/lzzexp[—%}.[l— @{7. A

) N
(51 al>2(30+/1 pz)Sxf(a) r<'/11i1+N2( ﬂ;)—*— ;/% 5

Mz_ (5 1§0) — /Nz( 031

14 0221/1‘— 5 >}d7’1:| ds,ds;.

Note : For the sake of convenience, throughout this paper, the notation of Pr{x<<u} or Pr {ﬁ‘,
fu} shows at the same time the probability that each element of the vector X or the matrix
37 does not over a corresponding element of the vector or the matrix u# namely, the distribution
functions of the respective elements of x or ﬁ} simultaneously.
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Proof. Now let us put for a moment

) D 0
O — (D (D x— p? x—pf? 1.2
) =0 = (T BT ) 1)

and by using the following orthogonal transformations

NN,y vO NN, (80 v
as  p=j NI+N \ ;/N1+;/Nz>’ =V N+ N, (V’ SR
the joint elementary probability of p and ¢ may be given by
. A _ i 1 2_ 2
(14) h(P ,(1 ) (272.) (1 ,0 )exp[: 2(1_[)2) Z (pl zpplpz sz)

+ (gt —2049,9: +q3) %] ]

Now let the sample space be divided into two distinct sets D, and D,
which are defined as domains U'U<xi(«) and U'U > zi(a) respectively.
Then we may and shall decompose the probability (1.1) into two parts,

) (2)
Pr.ix<<u} :Pr{ Nx®+Nx® xu,Dl} + Pr.xV<u,D,}.

On the other hand, in view of (1.2) and (1.3), we may be obtained that
(Nx®+ N,x®)/(N,+N,)=E+Fq and

xV=pV+Fq—-GFp where E=(Nu®+Nu®)/(Ni+N,),
_(ou 0 NN NN
F—< 0 /@)/’/NH"Nz and G=)"N,/N, -

Then the first term of (1,2) may be given by

‘le 1) + Nx(z)
(15)  Pri=y N <u Dl}: [ ] [rpa) Tdpda,

q<F~'(u—E)
(p+a)R-'(p+w)<x2?(a)

v/ NN, #®—p® /NIN2 2§ — p 1o
Wherea__< Nt N, 1/0“ 1N+N V/E;)andR ( 1). And,

by using the transformation p=Ls and ¢=Lr, where L:@ - /i——ﬁ> ,

s:( gl\) and r=< :‘ > the probability may be written in the following way:
027 2

Nx® @
(1.6) Pr. | §V1+N’“

1
:,[J’ZTE

<u, Dl}

[ o (?’1+T>):|d7’1d7’2 JJ 5 exp[ > (S[T‘SZ)]dSId82
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NNy N N

l/ ‘711 N1+N2
N S 1 N;+ N, _ 1/‘“);11\],“”()
= J ) z,fﬂ’ [ 2 } [1 = ™ a1 (1 NN )} Jar,

. J‘ le;texp[— ; (S‘f—'r 35)1] ds,ds,,

ra;—az

(sitan?+ (Sz+71:022<x2) (e

( I/NITN Nl/l(])—r—Nﬂ -
where we put that o;- 717’1 ~ e ( U, — N+ N, ), 7.
V' N,+ N, ( N, pf® — Nopf?
‘_*ffi 9 — 3

“NAN )}, w,={ (Ls+a) R (Ls+a)<ri(a)}.

This gives us now easily the first term of the left-hand side of (1.1) by

the transformation v,=s,+@a; and yz_szj_%‘;‘%z )
—p
The second term of (1.2) may be similarly given as follows:

(1.7)  Prix<u, D} HU(Z”) T p)exp[ 2(11p)§ —2pp:102+ 1Y)

+ (gi— 20,4, + G3) iJ g dp.dq,

B U_f J'('zl,rf)zexl’[—%—(W%W%Jrr% 75) LidWidr

:L _Lzln expli—%(WH W?)]U;Zexp[ [1 o {—1/1 7
r </j;l~+N2 (g —m, ) -l-y
S o oo

where we put that
w,={q<F(u—p®)+Gp, (p+a)R(p+a)=ri(a)i,

wsz‘trL <l/;>]l‘+72\£2 uy— ") + /N2W1,
01
o V' N,+N, oy /N,
7’2>V/1_p271 ‘/0221/1_ ) l </1 erl Wz)l‘

Thus we obtain the second term of the left-hand side of (1.1). In com-
bination of (1.6) and (1.7), we may obtain (1.1) to be proved.
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Theorem 1.2. The mean vector E{x| and the mean square deviation
M.S.D. (x| of the estimate x are given by

(1.8) Ei%) =0+ 5y @@= s PriD,| ~GF I, p!
and
= 1 N, @ _ g (gD — gDy 7
(1.9 M.S.D.§x$:N1+*N;Z <N+N) (U — ) (' — )Y Pr.iD.}
-sz 13 N4
+ TIILM%FPP F'y,

where we put
(1.10) Pr.iD,} = Hzl/ ® exp[ 5 PR p] dp,dp,
(pt+aYR-(p+ a)éxﬁ(a)

(L11) Lipi=[ [Py - = exp[— 5 p'R7p | dpidp..

(pt+a)yR-1(pt+a)>x2(a)
Proof: Making use of the notation in the enunciation and proof of
theorem 1.1, we may write

(1.12) E(a:c):JJJJ(E‘TFq)@)l—zlmexp[——% (0'Rp+a'R™q) | [dpda,

+ [ ] J@O+Fa-GFp) g ysgest| — 5 @'R-p+a'R") | ldp.da,

s P S - e - LR ]
| 11 dpda
[ [ [ [0+ Fa-GFp) gy, pext| —5 (0'R-p+qRq) [lldpda.

Thus the mean (1.8) is obtained and the M.S.D.{x{ is obtained from a fol-
lowing relation:

(1.13) E{x%'| = | J j [[£0u+Faq'F'+ NIJXZN;%a‘“(u‘”—#“’)’+(ﬂ‘2’“u‘°)u‘”’%

2
T (N%V;) (@ — p®) (1@ — ™)’ + (uOq'F'+ Fqp®)



44 Chooichiro Asaxo and Sokurd Sarto

N, Dy 7 DN oy I 1 IRt
‘T—N }\7 FQ(aU’“ﬂ()) i (ﬂ()_ﬂ'())qF :](2 )2‘Rlexp[ ’"’(pR D

+q'R™'q) |0 dpda,

[ [ [180a" s Faq'F'+ G*Fpp'F'+ (a"q'F'+ Fqu®) — G (a"pF"

+Fpu®) —G(Fqp'F' = Fpq'F')} mem[—%@’klp +a'R-q)

2
il:IIdptdqi.
Then substituting the following relations, I,,.,,1qq’{ = (}3; s Ipian, 14}
:IDx‘iq% :(8> and Il)zgqp g Degpq g <6’8)
for (1.13), we may obtain that
1 N
(1) (17 + ! 2 ) @) __ gDy 2 (2) ___ 4D [OOU
Efwx’|=pOu® + y g2ty Sy 10 (@O = a0 (a0 — ) u Pr Dy

2
I <ﬁ2-\+-72N2> (2@ —u?®) (u® — p)' Pr.D, | + %zlngFpp’F’i

l//g,z ”(l)plF,+Fp”(l)/ ; .

Thus the mean square deviation M.S.D. {¥} of the estimate & may be

otatined in the following manner.

Ef@
:E{i' "—uPEIXY—E{Xip® + uPp
2

Corollary 1.1. Specially when u® =p®. E{x|=pu®, that is, X is an
unbiassed estimate of p®, but the variance components and the absolute
value of covariance components of the dispersion matrix are greater than

«/ (N1+ N,) and o,/ (N,+ N,) and less than o,,/N, and |o,|/N,, respectively,

(74,7=1,2).
Corollary 1.2, Specially when N, is very large compared with N.,,
that is N> N,, the bias of the estimate of X becomes small, and the dis-
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persion becomes 33/ (N,+N,) nearly.

Corollary 1.3. Specially when u=u®, the variance component of the
estimaie X in case of bivariate pooling of data becomes smaller than the
variance of the corresponding estimate in case of univariate pooling of
data. The difference is given by

W%[Im;p%;~lwapis]<0, (i=1,2)

where

2
L)ﬂgpfg:jfp%Z ;(RTrexp[— ;—p'R—lp]gdP

P'R-1p>xs2(a)

1)0* pz Jpzl/ 2; e“p dplo
{p: >;/X12(a)

Corollary 1.4. In case when the dispersion matrices of two bivariate
normal populations are distinct but these two correlation coefficients is
assumed to be common, the similar results given by the similar inference
rule of this section are obtained.

Otherwise if these correlation coefficients are assumed to be unequal.
the similar results may not be expressed explicitly.

2.2, Type 2. (The case with “ unknown ” population dispersion
matrix in Type 1)

Let Oy (20, 289, -+, ) be a random sample of N, vector ohserva-
tions from a bivariate non-degenerate normal population N[g®, 3]] and let
Oy,: (x®, 28, -+, x2) be another random sample of N, from some bivariate
normal population N [«¢?,3]]. In this section, the values of these two com-
mon population dispersion matrices are assumed to be unknown to us, but
the populations have not necessarily the same population mean vector. Our
attempt of the present inference procedure is the same in Type 1.

Now our rule of inference procedure is as follows:

(i) Let % be sample mean vector defined by Oy, (=1,2), and let
S be the unbiassed estimate of common population dispersion given by

S= (Ny+ No—2) {33 (000 a0 (00— 89"+ 3] (wf? — %) (w2~ )1 |

(i) Let the statistic 7% be defined by

N.Z\g
__Nl

(ili) Then let us define the statistic # in the following way :

T2 — ( (’) &(U)’S—l (&(?)_5(1)).
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_ _ e + N, .
(a) X = (le(l)+N2x(")/(N1+N2> if QTK};_?]V’%)T?‘SFE,NWA‘Q%(a) ’
1 o NN,—3 .,
(b) x=x®, if ZT\;T:T\;E)T>F i3 (@)

where F, y.,v.s(c) denotes a-percent point of F-distribution with the pair
of degrees of freedom (2, N,+N,—3).

Theorem 2.1. The distribution function of x is given by
. ol P 1/N1—y—N o N4 Nopf®
(2.1) Pr.jx<u\ _H1 ol L arim —, (s )H

l/oozl/l Pk N,+N,
r<< l/FA{/I[;TiA@(M Nlﬂll(\lfﬁi%ﬁlt) )
. V%exp[—g:ldn
1 (x*/2)
. [D{f%exp[ o (SITSZ)J ;F/WB) ds,ds,dy*
( N+ N, .
+”“[1 (D';/lp b :/072/1— —#) VN1<1/1 0® ‘52)H
r1<‘/g1 ;INZ(u — () _H/N? 51

L exp[ T ar, ] Lews[— Lstas aj(zf)éﬁﬁf‘z st

'/2"[ <N1+N2—3>
2
where sets D, and D, are defined as domains%(sl»kal)zﬁh( +p/ai 2) }-/xz
0
g P @ ant {(scray s (s B oy By

Foyisne-s(@) respectively.

Proof: Let us use the notation in the enunciation of this section and
proof of Theorem 1.1,

Let
1
— 7 0 I i / NN:) ) 1 Y 7
Beon Y| g a0, Yoy =BY, S*=BSB,
_l/oup VvV oy }
VS s
/Y Y
Q: /Y*'Y*I/Y*'Y* ’ V:OY*, C:O(N1+N2_2)S*O',
Y Y
\W"'Y ¥ W??Sé )
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then B3IB'—1, and Q is an orthogonal matrix. Y is distributed according
N1+Ng ~2

to N[}/ N 17\7;<a<2>—u<*>),2J and (N,+N,—2)S is distributed as S} Z,Z,'
LV N,+N, a=

with the Z, independent, each with distribution N[O, 3], and Z; is inde-
pendent of x‘“, &(2) thereby is independent of p and q. (N;+N,—2)S* is

1+Ne—

distributed as 2 Z*Z;’*ZﬁBZS(BZB)' with the Z} independent, each

with distribution N [O,I], and Z% is independent of Y*. p, and q. The con-
ditional distribution of C given Q is that of S ;W W where conditionally
theW, defined by QZ¥ are independent, each with distribution N[O, I].

If we put that C:(ﬁ“ g”
21 22

tributed as »*> with N,+N,— 3 degrees of freedom. Since the conditional
distribution of c¢,.. does not depend on Q it is unconditionally distributed as
%%, and is independent of p, q.

On the other hand, if we put that Q= (I 912) | then v, =3¢, ¥~
21 2

v Y*'Y*, and putting g®—=u®, VI given by p'R™'p or by Y*Y* has a x*
distribution with 2 degrees of freedom. Therefore if u#®=pap®,
T*(N,+N,—3)/2(N,+N,—2) is distributed as a F with 2 and N,+N,-3
degrees of freedom.

The joint probability density of p, ¢ and »* given by c¢,.. may be given
by

) , then ¢;..—=¢,;, — €,:¢%'C,, is conditionally dis-

Ni+No~3 x2

, , , 2/9 2 o™

7D @) frianema() = 2n)2‘R‘m’[ 2PRD+qRG). QF/(Z\)M Nz;g}».
2

Now let the sample space be devided into two mutually distinct sets
D, and D, which are defined as, (N,+N,—3)p'R™'p/2x*<F, v, .v.—s (@) and
(N, +N;—=3)p'R'p/2y*>F, v, +nms(a) respectively. Then

_ N,xD -+ Nx® -
(2.2)  Prix<ul :Pr.{ ”NJ:L Nn"’ u,D]}+Pr.;x<”<u,D2}.
The first term of the right-hand side of (2.2) may be

PriNSE RS cuD = [ [ [ [h(, @) ures () (Tldpda) i,

q<<F-Y(u—E), D
and by using the transformation (1.5), the probability may be given by
Nx® 4+ N,x® . 1 r 1,., T o 2
Pr.{ N1+N2 <u,D1}M [IIjJ(ZE)ZexPL_ 27 (r Ir+S IS)f\'pth—Z{(Z )

Lr<F-1(u—E)
(N1+No—3)s'Is/2x2<F2, v+ vo—3(Q)

2
(l;[ldsi)dlz
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IS Tmofy 2=, o SR )

_V'Ni+Ns Ny W 4-Npuy @
rl‘\'77011 (ul T N1+ Na )
(N1+N2—3)s'Is/2X2< F2,x1+ Na-3(t)

exp[— %(rﬁ s’Is)])’4“”2_3(;(2)a’rl -( }i[ldsi) dyt,

and putting that v,=s,+a, and V,=s,+ ‘ﬂ;ﬁ—;, we may obtain

vV 1i—p
(2.3) Pr {%’f\}: j]\}fz 2@<u,Dl}
= J J j Jl:l —@-’1{)—‘027‘1 — ‘//GNII/':]VEID? <u2 __ngvgl)—?—%gﬂ?))}]
) 022 — 1 T4V

(N1+Na—3)(v12--v22) /2X2< F2, Ny 4+ Na—3( 1)

RS S N O P AL and
(5) ext[ — 5 {r+ @i=a)*+ =25 | [ frns ) (do)

The second term of the right-hand side of (2.2) may be similarly

(2.4) Prx®<u, Dy = [ [ [ [ [1(0',@) franms () (M dDda) di

q<<F-(u—u0))4-Gp
P'R-1p(N1+Ne—3)/2x2>Fo,m+me—-3(Qt)

1 1, , :
= [ ] [ gyt~ 5 T 8T [frans(c) (MMdpda)
Lr<F-'(u—2W)+Gp
(N1+N2—3)8'Is/2X¥>F2, 31+ ne—3( Q)

In combination of (2.3) and (2.4), we shall reach (2.1) to be proved.

Theorem 2.2. The mean vector E{x} and the mean square deviation
M.S.D.ix} of the estimate X are given by

(2.5) E{x}{—=n® +N12:\(:2N2 (ﬂ(z) — )Y Pr.iD,}— GFID;!%D i
and

2
(2.6) M.S.D.ix} :Nl—il— N22+ (NII—VI—2N2> (u® — ) (@ —puM)’ Pr.iD,}

N,

+FIID2%FPP,F,2’

where we put
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Ni+Ne—=3 *2
1 oo 1(2/2) e 7 .
@n  Prapd= [ [ |t peen - ) pRpJ A S apap.as
(Nl——N 3>P'R—1P/2X2£F’ \1+N2—3(a)

Proof : Making use of the notation in the enunciation and proof of
Theorem 2.1, we may write

Eix JUH“ TF‘”N oA ““))f(zml, exp[ 3 @R

Nithe=B_y _&
+q’R‘1q)](;/21)v +N,—3 (ﬂdpdq‘)d/

PR

+f j J f j WP+ Fg—-GFp >’(2n)*"’1éfmexl’[" é (P’R‘1p+q’R“q>}

%2
(x2/2)" = TeT 2 .

— (D 1 NZ (2) wyp D GFJ

=4 TN1+N2(u ) Pr.iD, {— i DY

Thus the mean (2.5) is obtained and the mean square de viation
M.S.D. may be obtained from a following relation;

XX
IJ j 41”'(1) {AFq_*_N]j‘ _ (u() h“))}{ﬂ(“ ;AFq +NZ_\[]:W (u(’)~‘u(1))}

(2r)? ,/‘Rexpl: (P'R*1P+Q'R_IQ)]f v+ v-3(2%) ClLimdp.dg)dx®

+j } ‘ }} {.u<1>+Fq+NA_}7_ (a(z>_n(1>)H”(n : FQ+N i (”(m_#(l))}

1 . - ' R— 2y (2 \
(277) V' Rexp[ 2 (P'R'p+q'R 'q) ]f-'V1+N2—3(x") Cilicdpda;ydx .
Then substituting the following relations

(29) ID1+D2§qq = (i i’) ’ IDHDZ{q}:ID‘{q} :(8),

Im{pq’izlmﬁqp'3=(8 8>

for (2.8), we may obtain that
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. N.
(210) E{xx'| :”mu(l)’j‘leﬂ;‘l:NE TN, +2N fu? (u®—

uny’

(= ) PrD () (89— ) (w0 — ) Pr D,
1

SN L Fpp Y~/ R L wp B Fpu.

Hence the M.S.D.{x}{ may be obtained conclusionally by

(2-11) M.S.D.ix}=F} (x_'a(l)) (50__”(1))/}
= ?705'%—# E{W §—E{x’§u(1)’+”(l)ﬂ(1)/

I () 6= ) (WO =) Pr Dy A L F PR F S,

Corollary 2.1. Specially under the same assumption as corollary 1.1
or corollary 1.2, the same results are obtained correspondently.

Corollary 2.2. Specially when u®=u", the variance component of the
estimate x in case of bivariate pooling of data becomes smaller than the
variance of the corresponding estimate in case of univariate pooling of
data. The difference is given by

NG”

(2.12) N, +N)N[I — I, i pi}]<<0, (i=1,2)

where

dpzd)( ’

o (g 1 etp]. /2 T
Lﬁﬂz%—& \ S "2m R exp[ sz P] orNi+N,—3
PR-p NH—NZ

%2 >F2 N+ ¥a-3(Q)

M+Ne_, ~T
2 YTz g
20 2 2 .
IDz*%pz’E‘_‘X Spi]/zfe I‘v N1+N2'—2)
2

dp.dv.

/ N1N2 My (2)— ,ul(l)

Pl‘f‘y :
PN A YA Ni+N
/N1+N2' - 11/+2; h a“ >tNL+Nz—2<a)

§3. Pooling of sample dispersion matfix

Let Oy, : (%, x8", ---,x%) be a random sample of N, from a normal
population N[«®, \®], and let O,: (¥Px, -, xQ) be another random
sample of N, from some normal population N[g®,$3®]. The population
dispersion matrices 3} and 3 may or may not be distinct. Now let us
assume that we are in a situation of estimating the S} on the basis of
pooling data in order to make better the precision of a estimation of 3},
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And we shall pool the corresponding elements of the two sample dispersion
matrices 3, and 31® respectively and form an estimate of respective ele-
ment of 31 in case when testing of the hypothesis that ST =31® against
the alternative 3\V<<3\® leads us to the decision that the hypothesis >
|= ¥ cannot be rejected.

Our rule of inference procedure is as follows:

(i) Let A® and A® be matrices of sample sums of squares and cross
products about the sample mean defined by

. Ni B . .
A0 = Z} (XD —x®) (6P —x®)" | (i=1,2),
=
- + A'i ¥
where &x®=31x9/N, .
a=1

(i) Now let us introduce the estiwate 31V of S0 defined in the fol-
lowing way.

(a) ﬁ(l): (le(t)+N22*(2>)/'\N1+N2)’ if A AW

(b) ﬁ(l)zz(l), 1f },A(E)‘I/EAA(I)H/2>XM

A~ (H )
where we put that >*=A"/N,= <‘fl(1, f}i)) , (=1, 2), and the non-negative
22

switching constant prescribed 2, denotes a value of «-percent point of F-
distribution with the pair (2N.—4, 2N,-4) of degrees of freedom.

Here we note that the test or switching criterion of our test procedure
is substituted for an ordinary but troublesome test criterion (INV,+N,)¥+*

2
i A®NE/N NN Y, A L A® W2 and now our concern is the results of
i=1
an inference procedure caused by the present test criterion.
. . . . A 0 -
Theorem 3.1. The distribution function of 33 is given by
. .
(B1) PriSO<ui-— J | £, 59, 50, 7 7o D P doP A dr dr
o
{ f(8R, 68,8, 71, 7s, 1)d6Pd6Yd6Vdr dr.dA,

where we put that u=<u11 um) and
Uiy Uy

2 il
(32) S, 88,00, 71, e D=l
Szl (Ny—2) foQo® (1— p9) | 5 =

1 ( Npoofof }w’

il ool (1= o)

G (D
PR TN Lo Ne—d_, Ly —2,4](\{;,?11}( \
(L= Ut (U= T s e 200
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CNEW® L Nygw)
GD1g T 201 @(1—02) , *(1) g 2020(1—0%)
N: G110 (1—n2) ,

Il -~ -~ -~ {2 32
(2Bl T 200®(1—02) G0 (1—rs%) -do{’dedsPdr,dr,dA®,

and the domain D, and D, in the sample spaces denote that

15 2\ 22
i/o< AL +Nz°“f’(§f((11 7))1

D.: 0<x<xa,‘ O<N N(lefl‘i’+Nzo‘°))<uu for T,

A
<Uyy forsy)

22

LN/ os@+ Noroy/ 7 *T(Lllfrj)i<u SO,

1
LTSN+,

(3.3)
0<<ofP<<myy, 0<<ofY, 6P <o, —1<<ry, 7,<<+1 for ‘/7A\E{’,
D,: A<ci< oo, 0<oD <y, 060, 50 <00, —1<r,, ro+1 for/f?\;y,

— 007y F0eP<ty,, 03P <o, —1<r,<<1 for G

Proof: Let us put Pr.{ﬂ“)<u§ = Pr.} (N12(1’+N22‘2>)/(N1+N2) <u,

D} +Pr.§ﬁ:‘“<u, D.,} where D, and D, are the domains in sample space
O, and Oy, defined by the above relations (a) and (b). Then the theorem
is easily shown from the fact that the joint distribution function of A®
and A® is denoted by the following Wishart distribution

. !AU) 2 exp( 1 Ol A(L))
(3.4) I dA®,

M A IE‘“i HP[(Ni —7)/2]
and by using the transformations r,=41/505%/6{ and afterwards A*=o¢Po§)
(1—=73) /ool (1 —7Y).

Theorem 3.2. The mean value E{ﬁ“’} and the mean square deviation
A N
M.S.D. {3V} of the estimate E Y are given by

@5 Eiop)="dopy ta A=W @007 pva ]y,

n, n1+n21/,gp<@;)m vyl
(nﬁ-;z‘lM (»(712 Pz)]"(ﬁz—?-;z—f—l) ijag)r(’w_gzzl)},yzsz,n’

Eyspy="1"2 Lo 7 m—1 o (1= 03 DE 2(202) <V2"”1)

n,+n, n1 Vw F(”22 )m 5
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ny+r,—1 -1y, 2 1 — p2)(me=0i2
g () i A
VI >
204)% 1 2 s+ v,
B b “)xu P s,
7’!1 ﬂl—rnn — n2—1
yqr(z)

PEe)]
vV oPoP

SO ) s

2 2 2 n,+n,

TR Y (9 )
2

O2

ve=2m, vy=2m+]1,

1 1 X 2 1 (1 ,02) (no—1)/2 (210 )VZ JNER 1
__<2—4)0( Y+ (n,+mn,)® w P(nz—l)z yj ) F(izi)
2

{w mzr(&%z_) 4(n,+1)(1— pz)of})m?r(nﬁ_;zﬂ)

ra(=ppto® (Mg, (LY L gy,

e S Y
2

)

2
{@ﬂ?—nM o’ I (”2_“‘%_1)_4(;12-}-1) (1—pd oo Tz (Qng-l_-_l
+4(1_p§)2°§;-’)zp’\i (%‘;ﬂ)}, v, =2m,
and
M.S.D.{ G}
ol mot g, 1 (1—pf) ™ Ve (205)
2
" (n,+n,) 1/;1*(%7,1) w Vel
7, (12, —1) (n, nzpl 2n,—n) (1) ( +\1 wz;l\
{ " o P( 277)11“3( 2/
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2 S DY L0 9) V3+2 5 n2+v2
— 4t Do (A=p oPofelad I' (7o ") T (72

+4(1 ,01)0() (2)F<V2;3>F>\i (ﬁ;ﬁ+l>"_’ ;’252m’ y332m+1'

Proof : The mean valus E%ﬁ(”} is given by

(36) g gzylg]\(])ii%zz f( (]) 0(1) &11 » V1, 7o l)dei)(l’O(l)del)df d?’od?

D1
J [Z‘.‘“f(o“) 80, 68, 7,, 7o, N d6VdoD dsPdr,dr.d]
and the mean square obtained from

(37)  MSDISW{=(E{30 ) -2(0WE{50D + (o), (,i=1,2),

where E 0‘” } is given by

(2)
@8 || (VO NIV 1,00, 00, 11, 1, Do iR dr drd

D1
+} } SOF(GO, 5, 50, 7y, 70y D AFOAFVATOdr dr o,
D2
Integrating out &, ¢, 6, r,, . and A, we obtain the results (3.5) sim-
plified by the following formulae:
(1—pH)-ni2z (Zp) v+1 N+v—1
/*FIN_]_ ngl V' < 2 >F< 2
(%)

):1 for »=2m,

(- pl\)f(v_ll)/z”;i}og%l ( : ) (N;—u) N_2 11_,0 . —om+1,
var(85h)
29 1<1Fg;\>7“1”> 5@ (b ) r(NE =l - V-1 2 for v=2m,
a 2
(1- 1p2)N<\ 11)/2(21}/-”) <v42—2> F(NZ—H) é](\i 1{))2§>11+m; for v=—2m- 1,
vl (U)
(1—=0") """ (20)7 2 1 N+v—1y (N-1)p* (n—1) p2+2}
/2T ?Nz 1>2 S ) TR
for v=2m,

Corollary 3.1. Let us consider in particular an inference procedure
defined by 2,=0, that is to say, this corresponds to the case when we never
use poling of data, We have then the following results,
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(3.10) E{o®{=(N,—1)s/N,, MS.D.{¢®P}=(2—1/N,)o? /N1,
E{601=(N,—1)e@/N,,  M.S.D.i5@{=@2—1/N)of /N,
E{0@{=(N,—1}/000p:/N\, M.S.D.{GP}{=(N,--1+N,0}) ool /Ni.

Otherwise if we apply an inference procedure of always pooling defined
by 2,= oo, the results are given by

3.11) E{z?‘” § (N, ~1)o§})+(N 1)o@t/ (N,+Ny), M.SD {00y

_(Ni=DoafP +2(N —1D)(N,—1) oo + (N:—1) 0(2)
- (N, +N,)?®
201 (N, —1) o + (N, — 1)}
1+ N,
E{c®{={ (N, -1)0‘”+(No—1)n }/(Ny+N,), M.S.D.{ 5§}

_ (N = 1Yo +2(N,—1) (N, = 1) oo + (N3—1)ofp
- (N, + M)
L 20 (N, = 1) o 4 (N, = 1) o}
N,+N,
E{of}={(N,~1), sfofo+ Ve 1)y ofofoal/ (Ni+ N,

2
1
+oai?,

1’2
‘+{7§2)’

MSDA5R =y i jrye | Ne= 1) (L4 i) oo+ 2N, ~ 1) (Vo= 1) oo

V006D @@ + (N, —1) (1+ Nyod) oPo@}

)
B O (N, 1), oooet (No—1), offe i + ol oot

Corollary 3.2, When we define that ﬁ“’:A‘“/(Ni—l) in our proce-
dure, ﬁ‘” gives us the unbiassed estimate in case that p,—p,=0, N, =N,
and Y0 =31 regardless of a value of 2, and the mean square deviation
of E/A\“) is greater than that defined by always pooling procedure and is

less than that defined by mever-pooling procedure, independent of the
assumption N,=N,.

Corollary 3.3. In case when we assume that p,=0 and IO =3® the

present inference procedure shows us the smaller mean square error of
A’

the estimate ) regardless of N, and N, than that defined by the pooling
procedure of Bancroft (1) in univariate case, (i=1,2).

§4. Pooling of sample generalized variances.

Let O,,: (¥, 2, ---,20) be a random sample of N, vector observa-
tions from a bivariate normal population N{g®, Y], and let O,,: (%, x,
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-+, x2) be another random sample of N, from some bivariate normal popu-
lation N[e®, 33®]. The population generalized variances 3} and 3®' may
or may not be distinct. Here let us suppose that we may pool the square
roots of the two sample generalized variances S ' and |S®'? and form
an estimate of the square root of the same population generalized variance
in case when testing of the hypothesis that 33" =31® for the alternative
>S5 leads us to the decision that the hypothesis ‘ST = S\® cannot
be rejected.

Our rule of inference procedure is as follows:

(i) Let S® be sample variance-covariance matrix defined by

1

Ni .
S Z_N i jzﬂ(x](i)_x(1>) (xg_t)*x(n)/’

i

where x®— Z\Evixj‘-”/N,. and let A® be defined by A?¥=(N,—1)S®.

3=

(ii) Now let us introduce the estimate 1%‘“}‘-/2 of N2 defined in the
following way :

(@) [SOP=(AGLAON) /(N +No—4), if 1= A0V A<,
(b) ‘%(1);1/'2:11&(1)11/2/ (Nl _2) , if l — ;A(l)!l/Z/‘iA(i’)!‘l/2>la’

where the non-negative switching constant prescribed 1, denotes a value of
a-percent point of F-distribution with the pair (2N, —4, 2N,—4) of degrees
of freedom.

Theorem 4.1. The probability distribution function of the statistic
EA]“),?”? is given by

S . (ri+r)x
(4.1) Pr. {133 )J Plxi= { b (D)1 (,‘Emi’/zt‘*‘ @] —f) ,71+7’2>dt

1

_:_} brl,rﬁ(t)I<T£é+W, 7’1+7’2> dt,
4

where we put

u

42) A= gDty (No=2)/2 for i—1,2.
MIREED SO :
Proof : The joint elementary probability of 'A®"* and |A®* is given

by

H) " expl —Hi/2] (0<H:< ),

=
(4'3) H o ZZV{:ff*(Ni _:2)

=1
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where H?=2/A®/FNON2,
Here adopting the transformations of Hi==R®*cos® 6§ and H:=R®sin®0

and afterwards £=cos®*6 and V=R?/2, (4.3) becomes
I +72) ye

(44) F(r;)F(r)trll(l )" 1dtr( 7Y

exp[V1dV, (0<<t<1, 0<V<<o).

Further decomposing the probability distribution function into two parts
defined by

(45) Pr.iSM0r<g)=Pr (i<, i<l,] + Pr.f S0 0, 12,1
= Pr SOt 4 (IO — 4]V [y + 7o)<, 0t SO /(ST IO 122, §
 Pr| SO [ <x, TN/ (D04 ROV ) <t <11,

we may obtain (4.1) to be proved.

Theorem 4.2, The mean value E| 12““’ of the estimate \S_.‘“"
given by

©
(4.6) Ei 12(1) 12y [1+N +N 4 {IIO(NI-Z, N,— 1)1§(‘>“/2 Ixo(N1—1,Nz—2)H
s,
where we put that x,= ]%:2‘3220,(1 ;%:1?1/2 )and L (a,b)= J'I 21 (1— )"
dx/B(a, b).

Proof: Since 249"/ 3@ distribute mutually independently as x*-
distribution with 2N,—4 degrees of freedom, (i=1,2), the joint distribution
of |[AW[”* and |[A®* is given by

%) C- IIAY =Y exp| — AOI /SO d AOM,

i=1
2
where C:H{I‘(Ni—Z)JZ(“I“““”’Z}“‘ Then integrating out @, after making
use the transformations, @, =|A®"?+/A®" and Q,=AV"*/|A®'% the ex-
pected value E, of @,/(N,+N,—4) under @,<1, is given by

1
(N N—D) PriQ, <!

+ N, —=2) I,(N,—2, N,—1)| 3?4,

where £,=|SI®%,/{| SION 1 1,/ IO,
While the expected value E, of |[A""*/(N,—2) under @,>1, is similarly
as follows:

4.9) E,=|1-L,(N,—1,N,—2)}{{3)""*/ Pr.{Q.;>2,}.

(4.8) E,= (N —2)L,(N,—1,N,—2) 3"

Since Pr.{Q,<2,} and Pr.{@,>1,} are easily given by
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410 N =D L, (V- LN S0 (N 2) LN, -2 N DSy

ETURN

J(N;+N,—4) and | LO(N -1, N, — 2) S S¥@1E respectively, combining
(4.8) and (4.9) we obtam (4.6) to be proved.

Theorem 4.3. The mean square deviation M.S.D.g@“"”g of the est-
imate {ﬁ(”"’g is given by

(4.11) M.S.D.jSwey

N N =D W=D L (NN, =) 5
+2(N, —2) (N, —2) SOV R@ 2, (N, —1, N, ~1)

Ni—1

+ (No—1) (N,—2)I,,(N,—2, N,) 3@} +N‘42§ 1-I,, (N, N,—2) {39
—

[

1 2D -, N D B - L -1 N2 ] 50

Proof : Using the same method as theorem 2.2., we may prove this
theorem.

Corollary 4.1. Specially, an inference procedure defined by the “ never
popling 7, that is, 2,=0, shows us that Ef{ ‘”J‘f =ore M.S.D. Zlﬁ“’lmi
:12<‘)J/(N —2). An inference procedure defined by the « always pooling”,
that is, 2,— o, shows us that

g 2(1) 1/0; N]Yl_N 4I2(1)]1/ sz\_fzzv 4;'2(2)‘1/2’

MSDISO = iy =5 d V=D + (Na=D* S
~2(N:~2) IS0 SO (N, 1) (Ve —2) 501,

Corollary 4.2. In case when the dispersion matrices of two bivariate
normal populations are assumed that pP=0 and o =c)—=o, the present
inference procedure shows us the smaller variance of the estimate * than
that defined by the pooling rule of Bancroft [1] in univariate case.
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