On the Efficiency of Sukhatme’s Test

Tamura, Ryoji
Shimane University

田村，亮二
島根大学

http://hdl.handle.net/2324/13005
ON THE EFFICIENCY OF SUKHATME’S TEST

By

Ryoji TAMURA

(Received February 10th, 1962)

1. Introduction.

Nonparametric two-sample test for dispersion was not much investigated as the test for location. However, several authors, especially Mood [1], Lehmann [2] and Sukhatme [3], [5], [5] have for a few past years proposed some suitable nonparametric two-sample tests for testing differences in dispersion.

In general, it is difficult to calculate the power of the nonparametric test except in the case of extremely small sample size though most tests have the property of consistency. For this reason, we shall consider the asymptotic relative efficiency relative to the standard test as one of the principal problems of the nonparametric test. The theory of this subject has been developed by Mood [1] and Noether [6]. Sukhatme has also computed the asymptotic relative efficiencies of the tests which he proposed relative to the variance ratio F test. Tamura [7] has succeeded in construction of the more efficient test than Sukhatme’s tests which is the same kind extension for Sukhatme’s first test [3] as Lehmann [2] has done for the Mann-Whitney test for location.

It is however interesting to reconsider the methods that they have used to get the asymptotic efficiency. Because they (i) assumed the asymptotic normality of the test statistics which are not always true in certain cases and (ii) used the limiting distribution, i.e. the normal distribution itself to get the efficiency. Recently Witting [8] has tried the generalization of Pitman’s method to compute in more detail the asymptotic efficiency of the test for location. The purpose of this paper is also to obtain the asymptotic relative efficiency of the Sukhatme’s first test with regard to the standard z test up to terms of order n^{-1}. Then it will be seen that our result contains the Sukhatme’s result on the efficiency as its first term and the remaining terms represent corrections for finite sample size.

Now let X_1, X_2, \ldots, X_m and Y_1, Y_2, \ldots, Y_n be independent and identically distributed according to the continuous distribution $F(x)$ and $G(y) = F(y/\theta)$, respectively. Moreover we assume that $F(x)$ and $G(y)$ are both symmetrical and have without loss of generality median 0. It is natural to use the
well-known z statistic (or F statistic) to test the null-hypotheses $\theta = 1$ against the alternative $\theta < 1$ (or $\theta > 1$) when the underlying distribution is normal. However there are some nonparametric tests to test the above hypothesis since we have no reasons for the validity of z test under the unknown distribution. We consider the following statistic T that Sukhatme [3] has proposed,

\begin{equation}
T = m^{-1}n^{-1} \sum_{i=1}^{m} \sum_{j=1}^{n} \varphi (X_i, Y_j)
\end{equation}

where $\varphi (u, v) = \begin{cases}
1 & \text{if } 0 < u < v \text{ or } 0 > u > v \\
0 & \text{otherwise,}
\end{cases}$

We call this test to T test. Then Sukhatme has obtained the following asymptotic relative efficiency of T test in the sense of Mood relative to the standard variance ratio test.

\begin{equation}
er = 12(\beta_2 - 1) \left[\int_{-\infty}^{\infty} xf(x)^2 \, dx - \int_{-\infty}^{0} xf(x)^2 \, dx \right]^2
\end{equation}

where $\beta_2 = \int_{-\infty}^{\infty} (x - E(X))^2 dF(X) \left/ \left[\int_{-\infty}^{\infty} (x - E(X))^2 dF(x) \right]^2 \right.$, $f(x) = F'(x)$

In order to obtain the efficacies of tests up to terms of order m^{-1} (or n^{-1}), we must avoid to use the limiting distributions themselves of the test statistics. Accordingly we shall use the approximate distributions of the statistics T and z which have been expandied in the form of Gram-Chailier series or Edgeworth's series.

2. The general expression of efficiency.

Now concider the statistic S as the test statistic of the test for scale parameter and reject the null-hypothesis when the sample value of S is too small. Then the critical region of size α of this test is the domain given by

\[P_r (S \leq S_\alpha) = \alpha. \]

On the other hand, if we wish to reject the hypothesis in the case that S is too large, the above equality is transformed to $P(S \geq S_\alpha) = \alpha$. In the former case, the power function will be given by

\begin{equation}
P(\theta) = P_r (S \leq S_\alpha | \theta)
\end{equation}

or

\begin{equation}
P(\theta) = P \left[|S - E(S)| / \sqrt{\text{var}(S)} \leq x | \theta \right]
\end{equation}

where x is the normalized value of S,

\begin{equation}
x = |S_\alpha - E(S)| / \sqrt{\text{var}(S)}
\end{equation}

When we want continuity correction, we shall add $1/2$ to the numerator
of (5). Then we may expand $P(\theta)$ by the standard normal distribution as follows

$$P(\theta) = \Phi(x) + c_2\phi^{(2)}(x) + c_3\phi^{(3)}(x) + \cdots$$

where

$$\phi(x) = (2\pi)^{-1/2} \exp\left(-\frac{x^2}{2}\right),$$
$$\phi^{(k)}(x) = \frac{d^k}{dx^k} \phi(x), \quad \Phi(x) = \int_{-\infty}^{x} \phi(t) dt.$$

and if we write the k-th moments of S about the mean by $\mu_k(S)$,

$$c_2 = \frac{1}{3!} \frac{\mu_3(S)}{\mu_2(S)^{3/2}}$$
$$c_3 = \frac{1}{4!} \left[\frac{\mu_4(S)}{\mu_2(S)^4} - 3 \right]$$
$$c_4 = \frac{1}{5!} \left[\frac{\mu_5(S)}{\mu_2(S)^{5/2}} - 10 \frac{\mu_3(S)}{\mu_2(S)^{3/2}} \right]$$
$$c_5 = \frac{1}{6!} \left[\frac{\mu_6(S)}{\mu_2(S)^3} - 15 \frac{\mu_4(S)}{\mu_2(S)^{2}} + 30 \right].$$

Then under the null-hypothesis we may express (3) as follows

$$a = \Phi(x_0) + c_2\phi^{(2)}(x_0) + c_3\phi^{(3)}(x_0) + \cdots$$

where x_0 and c_k are respectively the values of x and c_k at $\theta = 1$. Assume that $P(\theta)$ is expanded in the neighbourhood of $\theta = 1$ as follows,

$$P(\theta) = a + (\theta - 1) P'(\theta) + o[(\theta - 1)^2]$$

then we shall define the efficacy E_s by the term $-P'(\theta)_{\theta=1}$ following Mood and Pitman. From (6) we may also easily express E_s in the form

$$E_s = -[x_1\phi(x_0) + c_2\phi^{(2)}(x_0) + c_3\phi^{(3)}(x_0) + \cdots]$$

where x_1 and c_k are respectively the values of the derivatives of x and c_k at $\theta = 1$. We may also define the asymptotic relative efficiency of S test with regard to the certain standard test as the ratio of such sample size that makes the powers equal.

3. The efficacy of T test.

The efficacy of T test is given by (9) as follows,

$$E_T = -x_1[\phi(x_0) + \frac{c_2}{x_1}\phi^{(2)}(x_0) + \frac{c_3}{x_1}\phi^{(3)}(x_0) + \frac{c_4}{x_1}\phi^{(4)}(x_0) + \cdots]$$

In order to obtain the values of the coefficients, we have to compute the moments of T and their derivatives under the null-hypothesis. Now deno-
ting them by μ_k and β_k respectively, we may derive the following identities after some complicated calculations.

(11)
$$
\begin{align*}
\mu_0 &= 1/4 \\
\mu_1 &= (m+n+7)/48mn \\
\mu_2 &= (m+n+1)/32m^2n^2 \\
\mu_3 &= (m+n)(mn(m+n))/6 - (m^2-mn+n^2)/15 + 11mn/5/128m^3n^3
\end{align*}
$$

(12)
$$
\begin{align*}
\mu_5 &= [(4B-3A)(m-n)+A]/mn \\
\mu_6 &= \left[\left(\frac{13}{4}A-9B+6C\right)(m^2-mn+n^2) - \frac{A}{4}mn\right]/m^2n^2 \\
\mu_4 &= (m-n)(mn(m+n)(4B-3A)/8 + (-3A+13B-18C+8D)/(m^2+mn+n^2)+6(\frac{65}{12}A-\frac{95}{4}B+33C-\frac{44}{3}Dmn)/m^3n^3
\end{align*}
$$

where

$$
A = \int_0^\infty xf(x)dF(x), \quad B = \int_0^\infty xf(x)F(x)dF(x),
$$

$$
C = \int_0^\infty xf(x)F(x)^2dF(x), \quad D = \int_0^\infty xf(x)F(x)^3dF(x).
$$

From these relations we can obtain the following coefficients

(13)
$$
\begin{align*}
c_2 &= O(m^{-3/2}) \\
c_3 &= O(m^{-3/2}) \\
c_5 &= O(m^{-3}) \\
c_6 &= -120(m^2+mn+n^2)/mn(m+n)+O(m^{-2})
\end{align*}
$$

and

(14)
$$
\begin{align*}
\bar{c}_3 &= O(m^{-1}) \\
\bar{c}_4 &= O(m^{-3/2}) \\
\bar{c}_5 &= O(m^{-2}) \\
\bar{c}_6 &= -32\sqrt{3}\left[\left(\frac{13}{4}A-9B+6C\right)(m^2-4mn+n^2) - \frac{A}{4}mn\right]/\sqrt{mn(m+n+7)}^3.
\end{align*}
$$

Next we can compute the derivative x_1 at $\theta=1$, since x is expressed in the form

$$
x = \mu_2^{1/2}(T_2-mnA_1), \quad \text{where} \quad A_1 = \int_0^\infty (1-G)dF + \int^\infty GdF,
$$

i.e.

$$
x_1 = -2A(\mu_0^{1/2} - \frac{1}{2}x_0\bar{\nu}_2(\mu_0^{1/2})^{-1} \quad \text{where} \quad x_1 = O(m^{1/2}).
$$

In order to get the value x_0 of x at $\theta=1$, we shall use the identity (8). Thus let the solution of the equation $\Phi(x) = \alpha$ be $x_{1-\alpha}$, then the value of $x_{1-\alpha}$ gives the α percent point of the standard normal distribution. Setting the solution of (8) in the form $x_0=x_{1-\alpha}+h$ and substituting it into (8), we may determine h as follows,

$$
h = -120(x_{1-\alpha} - 3x_{1-\alpha})(m^2+mn+n^2)/mn(m+n) + o(m^{-1}).
$$

Thus we can give the solution of (8) by
On the efficiency of Sukhatme's test

From the relations (9), (14) and (15), the efficacy E_T of T test is given as follows

$$E = 2A\sqrt{\frac{48m+n}{m+n+7}} \varphi(x_{1-a}) \left[1 + \frac{6}{A} \frac{(4B-3A)(m-n)}{3mn(m+n+1)} x_{1-a} \right]$$

$$\times \left[1 + \frac{1}{20} x_{1-a} x_{1-a}^3 - 3x_{1-a} (m^2 + mn + n^2) / mn(m+n) + o(m^{-1}) \right]$$

After some simple calculation we can get E_T.

$$E_T = 2A \sqrt{\frac{48}{p}} \varphi(x_a) \left[1 + \sqrt{\frac{48}{2A}} \frac{4B-3A}{A} \frac{q}{p} + (\frac{x_a^2-1}{A}) \frac{13A - 36B + 24C q^2 - p^2}{2p} \right]$$

where $1 - \varphi(x_a) = \alpha$; $x_{1-a} = -x_a$; $\frac{1}{m} + \frac{1}{n} = p$, $\frac{1}{m} - \frac{1}{n} = q$.

The first term in (16) is the same efficacy as Sukhatme [3] and the remaining terms is the finite correction terms.

4. The efficacy of the z test.

In this section we shall discuss about the expansion of z distribution in the same method as in the previous section. Let $S_1 = \sum X_1^2$ and $S_2 = \sum Y_1^2$, then z test is usually performed in the normal case by using $z = \frac{1}{2} \log \left[\frac{S_1}{m} / \frac{S_2}{n} \right]$ as a test statistic. Thus

$$2z = \log(1+S^+_1) - \log(1+S^+_2) + \log|E(S_1)/m| - \log|E(S_2)/n|$$

where $S^+_1 = |S_1 - E(S)| / E(S_1), E(S_1) = m\mu_2(X), E(S_2) = n\mu_2(X)^{\theta^2}$.

Accordingly the following expression is possible.

$$2(z+\log \theta) = (S^*_1 - S^*_2) - \frac{1}{2} (S^{*^2}_1 - S^{*^2}_2) + \frac{1}{3} (S^{*^3}_1 - S^{*^3}_2) - \cdots$$

From (17) we can calculate the moments of z as follows.

$$E(z) = -\frac{1}{4} \lambda_1 q + \frac{1}{6} \lambda_2 pq - \frac{3}{8} \lambda_1^2 pq + o(m^{-2})$$

$$\mu_3(z) = \frac{1}{4} \lambda_1 p + \frac{1}{2} \left(\frac{5}{8} \lambda_1^2 - \frac{1}{4} \lambda_2 \right) (p^2 + q^2) + o(m^{-2})$$
\[\mu_3(z) = \frac{1}{8} \left(\lambda_1^3 - 3 \lambda_1 \lambda_2^2 \right) p^2 q + o(m^{-1}) \]

\[\mu_4(z) = \mu_2(z)^2 - 3 = \lambda_2 \lambda_3 - \lambda_1 \left(\lambda_2 - 2 \lambda_1 + 20 \lambda_1^2 \right) \frac{1}{4p} \left(p^2 + 3 q^2 \right) \]

\[\mu_5(z) / \mu_2(z)^{3/2} = -10 \mu_3(z) / \mu_2(z)^{3/2} + o(m^{-1}) \]

\[\mu_6(z) / \mu_2(z)^{3} - 15 \mu_4(z) / \mu_2(z)^{2} + 30 = 10 \lambda_2^2 (\lambda_2 - 3 \lambda_1^2) q^2 / p + o(m^{-1}) \]

where

\[\lambda_1 = \mu_4(x) / \mu_2(x)^2 - 1, \quad \lambda_2 = \mu_6(x) / \mu_2(x)^3 - 3 \mu_4(x) / \mu_2(x)^2 + 2 \]

\[\lambda_3 = \mu_8(x) / \mu_2(x)^4 - 4 \mu_6(x) / \mu_2(x)^3 + 3 \mu_4(x) / \mu_2(x)^2 + 12 \mu_4(x) / \mu_2(x)^2 - 6 \]

Thus the power of z test is generally expressed as follows

\[P \left(\frac{(x - E(z))}{\sqrt{\mu_2(z)}} \right) > z_0 \]

\[= 1 - \Phi(x) - \frac{1}{6} \lambda_1^3 (x_2 - 1) \frac{q}{p} \phi(\zeta) (x) + \frac{1}{24} \lambda_1^3 (\lambda_3 - 12 \lambda_1^2 \lambda_2 + 20 \lambda_1^4) \]

\[\times \left(\frac{p^2 + 3 q^2}{\phi(\zeta)} \right) \phi(\zeta) (x) + o(m^{-1}) \]

\[\alpha = 1 - \{ \Phi(x_0) + c_2 \phi(\zeta) (x_0) + c_3 \phi(\zeta) (x_0) + c_4 \phi(\zeta) (x_0) \} \]

where \(x_0 \) is the value of \(x \) at \(\theta = 1 \).

The solution \(x_0 \) of the equation (21) is given by the following form,

\[x_0 = \frac{1}{6} \lambda_1^3 (x_2 - 1) \frac{q}{p} + \frac{1}{24} \lambda_1^3 \lambda_3 (x_2 - 3 x_2) \frac{p^2 + 3 q^2}{4 p} - \frac{1}{36} \frac{(\lambda_2 - 3 \lambda_1^2)^2}{\lambda_1^2} \frac{q^2}{p} (2 x_2 - 5 x_2) + o(m^{-1}) \]

Especially in the normal case the value of \(z \) which is obtained from the relations (20) and (22) consists with the following Fisher-Cornish’s result

\[z_a = \sqrt{\frac{p}{2}} x_a - \frac{1}{6} q (x_a^2 + 2) + \sqrt{\frac{p}{2}} \left(\frac{x_a^3 + 3 x_a p + x_a^2 + 11 x_a q^2}{72} \right) \]

Moreover we get from (20)

\[x_a = \frac{2}{\sqrt{\lambda_1 p}} \left[1 - \frac{5 \lambda_1^2 - \lambda_2}{4 \lambda_1} \left(p + \frac{q^2}{p} \right) \right] \]

Thus the efficacy of z test may be expressed by the following form
5. The asymptotic relative efficiency of T test with regard to z test.

Since we have obtained the efficacy of T and z test in the previous sections, we may calculate the asymptotic efficiency of T test with regard to z test against the uniform, normal, and exponential distributions.

Now suppose that a test T_1 uses m_1 observations to attain the level α of significance and power $p(m_1, \alpha, \theta)$ and a test T_2 of level α requires m_2 observations to produce the same power for the same value of θ. Then the efficiency of T_1 with respect to T_2 may be defined as the ratio m_2/m_1. We shall consider the efficiency in the case that two sample size is equal, i.e. $m=n$, only for the sake of simplicity of computation. Let the power of test S be $p_s(m, \alpha, \theta)$. Then from the relation

$$p_T(m, \alpha, \theta) = p_s(m^*, \alpha, \theta)$$

we can obtain m^*/m as follows

$$(25) \quad \frac{m^*}{m} = e_s \left(1 + \frac{k_2 - e_s k_1}{m^*}\right)$$

where e_s denotes Sukhatme's efficiency and

$$k_1 = 2(x^2_{a1} - 1) (13A - 36B + 24C)/A + \frac{7}{2} - \frac{9}{20} (x^2_{a1} - 1)$$

$$k_2 = (5\lambda_1^2 - 2\lambda_2)/2\lambda_1 + \frac{1}{8} (x^2_{a1} - 1) (\lambda_3 - 12\lambda_1\lambda_2 + 20\lambda_4)/\lambda_1^2.$$
References

SHIMANE UNIVERSITY.