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   1. Introduction 

   In this paper the minimum variance unbiased estimates are discussed 
 from the view-point of efficient estimates and its extensions (see Definition 

3.1). The problem how to obtain the greatest lower bound for the variances 
of unbiased estimates was attacked by H. Cramer, C. R. Rao etc. And they 
obtained what is called as the Cramer-Rao inequality independently. As the 
base of this inequality, an estimate whose variance attains the lower bound 

given by Cramer-Rao inequality is called an efficient estimate, but unfort-
unately this lower bound does not always give the greatest lower bound. So 
restricting the class of distribution functions of the populations, A. Bhatta-
charyya [1] obtained the more exact inequality. F urthermore G. R. Seth [9] 

extended Bhattacharyya's results both to the sequential estimations and to 
the simultaneous estimations. The problem of finding the functions of para-
meters for each of which the lower bound given by Bhattacharyya's ine-

quality is attainable when we take a suitable estimate, has not been solved. 
Y. Washio, H. Morimoto and N. Ikeda [10] solved the problem how to obtain 
the estimate of given parametric functions by making use of the theories 
of sufficient statistics and Laplace transforms and T. Kitagawa [3] discussed 
the problem from the standpoint of linear translatable operations. J. Ney-
man and E. Scott [7] obtained some results on the minimum variance un-
biased estimates of transformed vatiables where the transformation is the 
second order entire function introduced by them and L. Schmetterer [8] 
extended their results. However the actual calculations of estimates in 

[10] are very difficult because of the difficulty of the inverse transforms of 
Laplace transforms. In this point, the calculation of the parametric func-

tions and its estimates which attain the lower bound given by A. Bhatta-
charyya making use of the conditions of the attainment of the lower bound 
by A. Bhattacharyya [1] are easily obtained. 

   The main results in this paper are as follows, 

   (1) Characterization of the class of the parametric functions which have 
the N-th order efficient estimates and of the N-th order efficient estimate 

                             5
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(Theorem  3.2). 
   As the special case of (1), we can state, 

   (2) The class of parametric functions which have the (first order) 
efficient estimates is that of linear functions of expectation (Corollary of 
Theorem 3.2). 

   (3) Two examples of Theorem 3.2 are discussed in § 4. 
   (a) As to the parametric function h2 of the parameter h of the Poisson 

distributions, 

                                           (v=0,1,2, ••.)                    =v)—evhilr       Ph(x 

the (first order) efficient estimate does not exist, but the second order ef-
ficient estimate exists and its explicit form is given. 

   (b) For the parametric function Ok of the parameter 0 in normal dist-
ribution N(0,1) for any assigned natural number k, the k-th order efficient 
estimate exists and its explicit form is given. 

   In the preparation of this paper, the author owed much to the discus-
sion with Professor T. Kitagawa, Mr. T. Seguchi and other members of 
Kyushu Univ. I wish to thank them for their valuable advices. 

   § 2. Notations and known results 

   In this section we shall introduce the notations to be used in this paper 
and the known results, some of which will be either elaborated or extended 
in this paper. 

   Definition 2.1. If a statistic T(xi,x2,••., x.) is an unbiased estimate 
of a parametric function g(0), that is, the expectation of T(xi, x2, ••-, x.) 
is g(0), and we have, for any unbiased estimate U(x1,x2,•••,x71) and any 0 
in D, 

(2.1)V o[T (xi, x2, • •• , x.)]<170[U (xi, x2, ••, x„)] 

then we call the statistic T(x1, x2, ••, x.) is the best estimate of g(0). 
   We use a symbol 

(2.2)fe (xi, x2, ••-, xn) 
as the joint probability density functions with respect to a certain a-finite 
measure At. We do not always assume the independence of random varia-
bles x1, x2, • • • , xn in this section. 

   Definition 2.2. The joint probability density function .fe(x1,x2,••-,x.) 
is said to satisfy the N-th order regularity condition, if the following 
five conditions are satisfied. 

   (1) The domain of 0, D, is an open interval on the real line, which 
may be infinite or semi-infinite interval.



Generalized Efficient Estimates And Its Attainable Parametric Functions7

    (2) For any  0  E  D and almost all (x1, x2, •-•, x„) with respect to m 
measure 

                      0' 
(2.3)79—vfo(xi, x2, •••,x„) i=1, 2, •-•, N 

exist. 

              di       (3) 
de' ie(xi, x2,x„)dP(x1, x2,x„) 

 R 

                    a,   (2
.4)(xx2,•••xn) dp(x„x2,---,xn) i = 1, 2, •••, N 

                nae,•11 
         ,

- 

for all 0 E D, where Rn denotes the n dimensional Euclidean space. 

                                   L 

           5„                        [0,Jel,X19 x2, • • •9 xn)  ae;•••, xn)] 
   (4)L—E,                                   e(x1,x2,x2                                   „)) 

exist for i,j=1, 2, •••, N and for all 0 E D and further 

(2.5) JO 0 
for all 0 E D, where Jot denotes the N x N determinante whose i—j com-
ponent is J,. 

   (5) If the expectations of T (x1,x2,•••,xn) exist for all 0 E D, then 

       d'  (2.6) T (xi, x2, •-• , x„) f, (x x2, .. •,x7) dtt (x1, x2, • •', x„) 
                   R" 

                                                                  4.   =fT(Xi,xn) 06„(x1,x2, • • *, xn) dix n) 
                     R" 

         (i = 1, 2, • • •, n) for all 0 E D. 
   Our N-th order regularity condition just given amounts to the assump-

tions given Bhattacharyya [1] under which he obtained the lower bound, 
although he did not given them explicitly. 

   Inverse matrix of (I)) is denoted by (J"), that is 

                                  (J11,.--TN) (2.7)                                                kjN1...JNINTI                         J N1•JIVN 
The following theorem which gives a lower bound of variances of estimates 
is well known. 

   Theorem 2.1. (Cramer-Rao) If T(xi, x2, •-• ,x„) is an unbiased estimate 
of g(0) and the class of distributions satisfies the first order regularity 
condition, then 

                                                                2 

               C1                    L do go)i  (2.8)Vo[T(xi,x2,•xn)i>a 
                         E01  00fo(xi, x2, •••,x,,) -12 

                            Lmx i., x2, ••., x„)•
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The equality in (2.8) holds if and only if the equality 

                                   a 
j4. 

                                                    — 

                                       au8(X19 x2,•9 xn) (2.9) T (x,, x2, •••, xn) = g (0) +j11                                    f
0(x1, x2, •-•xn) 

holds in probability one, that is, the equality holds almost everywhere in 
Rri with respect to measure L (x1, x2, •••, xn) dit (x1, x2, •••, xn) for all 0. (see 

[2] and [4]). 
   A generalization of this Theorem is given by 

   Theorem 2.2. (A. Bhattacharyya T(xi,x2,• ,xn) is an unbiased 
estimate of g(0) and the class of distributions satisfies the N-th order 
regularity condition, then 

                                 di  
                                                                     i (2.10) Ve[T (xi, x2, • • • , xn)]>_deg (0)dOi g(0) Jo. 

The equality in (2.10) holds if and only if the equality 
                                    a'  

                    1 

                                 N ao,0(xix2•••, xn)  di g(6) 
(2.11) T (xl, x2, •--, xn)= g(0+E                                         L(x i, x2, • •• xn) 
holds in probability one. 

   Definition 2.3. When a parametric function g(0) and an unbiased 
estimate T(xi, x2, •••, x„) of g(0) which attains the lower bound given by 
the Cramer-Rao inequality, exist, the estimate T(x1, x2, •••, xn) is called an 
efficient estimate of g(0). 

   Theorem 2.3. (A. Bhattacharyya [1]) If the efficient estimate exist, 
then the probability density function is the form of next type. 

(2.12)xo=eA(9)Tc.i,x2,••,.70+ B(0)1-X (xi,x2, • ,xn)                  fO(X 19 -X2, 

where A(0), B(0) are functions of 0 and independent of x1,x2,•••, xn, and 
X(x„ x2,••-, xn) is a function of x1, x2, x„ only. 

    § 3. N-th order efficient estimates 

   Definition 3.1. If a parametric function g(0) and the statistic T(x1, 
x2, --,x„) achieve the N-th order lower bound given by Bhattacharyya's 
inequality (2.10) but not the k-th lower bound in (2.10) for at least one 
0, in D, for each k in 1<k<N, then the statistic T (xi, x2, •••, xn) is called 
an N-th order efficient estimate of g(0). 

   Theorem 3.1. If a statistic T(x1, x2, •••, x„) has the expectation, the 
class of distributions satisfies the N-th order regularity condition and 
further more
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    Nat 

(3.1) E a (6')fe(x 1, x2,, xn)=(xi, x2,xn) -g(0)]fo(x 1, x2, xn) 
                 z-i 

then T (xi, x2, • - , x„) is an unique best estimate of g(0) where the uni-
queness means that if two best estimate exist, then they are equal in pro-
bability one. 

   Proof. First let us prove the unbiasedness of T (xi, x2, xn). Integrat-
ing the both side of (3.1) with respect to p-measure on Rn , we have 

          Na'  
(3.2)Ea(0)ae, f9(x1, x2, • •., xn)clit(xi, x2, • •., xn) 

                       Rn 

             = f[T (x„ x2, xn) - g(0)].fe(xi, x2, x„)ciP(xi, x2, •••,xn) 
                          Rn 

According to the regularity condition, the differentiation with respect to 0 
and the integration with respect to ,e/ measure can be exchanged, and hence 
the left hand side of (3.2) equals zero, consequently we have 

(3.3) T(xi, x2, xn)fo(xi, x2, xn)dp (xi, x2, •, xn) = g (0 ) 
                    Rn 

The equation 3.3 means T (xi, x2, • -, xn) is an unbiased estimate of g (0). 
   Secondly the minimum variance property will be proved. Let U (x1, x2, 

•••, xn) be any other unbiased estimate of g(0), then 

(3.4) .1[T (x1, x2, • • • , xn) -U (xi, x2,..., xn)ii-0(x 1, x2,•-, xn)d p (x1, x2,-, x„) =0.            hn 

According to (5) of the regularity condition and (3.1) 

           di  (3
.5)Ea• (0)[T (x1, x2, •••,xn)-U(xi, X2, • • •PXnAfe(Xl, X2, • • •,-Tit)     i=ldel Rn 

     dtt (xi, x2, n) 

                                        at  

       f[T (x„x2, •••, xn) -U (xl, x2,, xn)Mae                                              ai (0)fe(xi, x2, ---,xn) 
 Rn1=1 

           d, (x1, x2, • • •9 n) 

    = 

           [T (x1, x2, x„) - U(xi, x2, •••, xn)][T(xi, x2, •-, x„)- g(61)] 

        L (xi, x2, xn)clit (xi, x2, xn) 
       =0. 

Here using the relation of the variance and the covariance, each of which 
we can write V and Coy respectively, 

(3.6) V[U (x1, x2, xn)
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      =V[U(x„x„ •-, x„) -T (x„ x2, •-, x,) +T(x„ x2, --,x,)] 
       -V[U(Xi, x2, •••, xn) T(X19 x2, •••, xn)]+2Cov[U (x1, x2, •••, xn) 

         -T (x1, x2, .•., xn),T (x1, x2, • xn)]+V[T (x1, x2, xn)] 

we obtain a relation 

(3.7) V[U(x„ x2, •••,x„)] 
     =V[U(x„ x2, xn) -T(xi, x2, x„)] + V[T (x„ x2, xn)] 

     >V [T (xi, x2, •-, x„)]. 

The equation (3.7) means T x2, •••, xn) is a best estimate of g (0) 
   Finally the proof of the uniqueness is evident because (3.7) comes an 

equality if and only if 

(3.8)U(x„ x2, •••, xn) =T(xi, x2, ••-, x.) 

in probability one, which completes the proof. 
   Now the main theorem of this paper is given by 

   Theorem 3.2. Let us assume that x1, x2, x„ are independent random 
variables, each having the same probability density function e°"0")+u(x) and 

further more that dx v(x), dde  fl (0) , each of which are differentiation of 
x and 0 respectively, are well defined. If we put 

(3.9) g0(0) =1 

              g,+, (0) e-nPo) -dO g(0) e-"I3(e) (k= 0, 1, 2, ...) 

then the necessary and sufficient condition that the parametric function 
g(0) have the N-th order efficient estimate is 

(3.10)g(0) = Eitg,( 0) (AN1=0) 
                                              k =0 

and the N-th order efficient estimate of (3.10) is given by 

(3.11)T(x„ x„ •-, x„) =E Ak(Exz)k 
                                  k=02=1 

   Proof. According to (2.11) if T x2, • • •, xn) is an N-th order efficient 
estimate of g(0) then 

(3.12) [T (x1, x2, •-•,x„)-g(0)1f0(x„ x2, xn) 

                ddoi g (0) Pi] ae1 fo(xi, x2, x„) 

 Considering E d' g (0) Jii = ai (0) , we obtain (3.1). This means that the class 
            =i dei 

of all statistics satisfying (3.1) contains the class of N-th order efficient 
estimates of g (0).
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                                  o 
1E1xi+ni9(0)+,Eiv(xi) (3

.13)  fe  (Xi,  X2, •.•, xn) = e 

                                e E xi + E v(xi) 

                                               i 

                          =b(0) e=1 i=1 

whereb(0) = ego) 

        a (3.14)a6;i- fo(xi, x2, ••*, xn) 

              0 Xi+ti(Xi) 
       =e i=1[1(1-k)(x )                      nk 

                   EC7,(0)E1=1,2,N                k=0i=1 

                  01 (3
.15) 

iEa, (0) aoix2,xn) 

        nn 

              E xi+ E V(Xi) N 
               ,(i-k) n         =e2=1 i=1(E (11(0) iCk b(0) ) (Exi)k +Ea,(0)bo)(0)1 

              k=1 i=k1=11=1 

                    nn 

                                                   Eixi+i =1 

Consequently,=[Tx2, •—, xn) — g (0)] b(0) e Consequently, we obtain 

(3.16) T(x„•.., xn) —g(0) 

     =L(±T0bc-k)  (0)V) (0)             kaL(),C, b(e))(ntx,b(0) 
and further 

                 N b(i) (0) 
(3.17) g(0) = — Na,(0) b (0) +A0 

                            N 

                           P-k) (0 ))/ (3.18) T (xi, • • • , xn) = E(a, (0) iCkb(0)�_j•Xi)+A0                 1± 

must be established. According to the independence of 0 in the right hand 
side of (3.18), we have 

(3.19) ai(0),C,b(j-k)b(0)(0) =Ak, (k =1, 2, •••, N) 

           Nn 

(3.20) T (xi, xn) = E Ak(EXi)k • 
                        k=0 i=1 

Thus we obtain that the statistic satisfying (3.1) is written in the form 

(3.20). 
   Conversely, it will be proved that if AN-\-0 in (3.20) then the statistic
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defined (3.20) is the N-th order efficient estimate and if AN=AN_,=•••--- 
A,1=0 and AmNO, then (3.20) gives an M-th order efficient estimate. 
According to [1] it is the sufficient condition for (2.10) comes an equality 
that 

                                       at 
                                     ae, ..•9 'CO (3

.21) T(xi, •••, x„) — g(0)= 2,(e)                                     t=1fe(xi,••.,x.) 

for some suitable 2,(e), i=1, 2, •••, N. 
So we calculate the (3.21) according to (3.14) and (3.20) thus 

  Nk                                 b(t-k)(0)�i)k (3.22) E A,x,)—g(0)—EAt (0) E ,C, in,xi=0 
    k--=0i=1i=1k=0 i=1 

   Nn k 

      E A, (E x,) —g(0)—A (0)C1)(1-k)(0))xj)kNb(i) (61)    k=0k=1 i=kb(0)/10) 

         = 0 

Thus if 

                            i-)(0)  
(3.23) A kE 2,0),C,b(b(0)(k= 1, 2,N) 

                                  i=k 

then, (3.20) is the N-th order efficient estimate of g(0) and (3.23) is easily 
verified at(e) as 2,(e) i =1, 2, •••, N. 

    When An=24,_,=-•••=.-A,r+i=0 and AmN.0, we can similarly prove (3.20) 
is an M-th order efficient estimate. 

g,(0) defined by (3.9) is also written 

                                  n 

                            Oxi+n3(0)+E y(xi) 

       g,(0)=f(Exi)kei=1                                           dp(xi)-•dtt(xn) 
                       le L=1 

as easily verified. Thus the only parametric functions of type 

              g(0)=Ezelkg„(0) (AN7g)) 
                                          k=0 

have the N-th order efficient estimate. 

   Corollary. Under the assumptions to Theorem 3.2 the necessary and 
sufficient condition for the parametric function g(0) have the (first order) 
efficient estimate, is that g(0) is a linear function of the expectation of 
the distribution, that is 

                 g (0) = a de g (e) +b 
where a, b are any given real numbers.
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§ 4. Applications 

   In this section we see two examples as applications of the result of 
this paper. 

   Example 1. (Poisson distribution) 

(4.1)ph(x=v! (v=0,  1,  2, •••) 

Notice that if we consider 0=logh then (4.1) are one of the exponential 
type of distributions that are defined in § 3. We consider the best estimate 
of h2 in (4.1). We can not obtain the gratest lower bound by the Cramer-
Rao inequality (2.8) according to the Corollary of Theorem 3.2. The lower 

bound of Cramer-Rao inequalityinequality is  [4]. 

(4.2)g,(0) =1 

                          g,(0)_=nh 

                         g2(0) =n2h2+nh 

Therefore if we take a suitable linear combination of g 0(8) , g1(0) and g2 

(0), then h2 is expressed by the form (3.10), that is 

                    1 (4
.3)/22=Ogo(0) — n2 g1(0) + 12 g2(0). 

According to the Theorem 3.2, the best estimate of h2 is given by the second 
order effinient estimate as follow 

                       n )
E2 n                            Ex,—x, 

(4.4)T (x1, •••, xn) =z-1 n2 L-1 - 

   In this case the second order Bhattacharyya's inequality is used, that is 

              dd2  
                (do +                      g(0))2(dog(e) j12c102g(e)J11)2 (4.5) Vo[T(xi, •••,x.)]--                                        J

ii (Jii•J22 —122) 

see [1]. The variance of (4.4) and the right hand side of (4.5) are equal 
and these are 

                       21224/23  
                                                                                                                                  - (4.6)                       n2+22 

   Example 2. (Normal distribution N(0, 1)) 

   Assume that x1, • • xr, are independent random variables each having
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the same probability density  function7-1r(x                                       e-2-602with respect to Lebesgue 

measure. 

Statistic U= Ex, obeys the distribution N (ne , n) 
                         t=i 

                           [102](1/14°)k-21 
(4.7)kE 8[U 1 =nki2 k! (=0, 1,2,—).                        i=0 2'1! (k —2z)! 

Thus for k=1, 2, •-•, 0' is expressed as a linear combination of E0[U-1 j=0, 
1, • • •, k, that is 

                   (— 1)                                 Ee[Ukk-2t2]                1Cki23(
1/14) (4

.8) Ok=k!E.  (k= 1, 2, • • •).               )2'122'1! (k —2i)! 

According to the Theorem 3.2 

                                   Ex„k-2t 

                  1 [k12] — 1)1 ( 17i1-1 
(4.9)k!E                n'''2' i!(k —2i)! 

                                                  n 

             ( 1
3/n)Nkn)E x, 

                              N 

                                            (k= 1, 2, •-•) 

is the k-th order efficient estimate of Ok, where .1-1,(x) is Hermite polynomial, 
that is 

          1-1,(x) = (-1)k ex2/2 d
xk k e -x2/2 

                       [k/2](1)Iick-2i 
             =k1E `. 

                  i=l2iz!(k2i)!(k = 0,1,2, ••-) 

and the variance of (4.9) is given 

             EkCiV(k-1)! 
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