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§1. Summary and introduction

The statistical methods given in this note are based upon the method
of two-sample-theoretical estimations developed by various authors, and
attempt some extension by the consideration of the validity test of observa-
tions supported by certain physical proof or experiential grounds.

In some practical situations an allowable discrepancy between the true
value and its estimates of a population in our concern may be merely assign-
ed a priori. There are, however, other situations where the allowable discre-
pancy should be better determined relatively in view of the difference bet-
ween the estimate of our population and that of other one or more popula-
tions which are chosen for our comparison, as may happen in biological
assay. In this note the estimation of biological standard line and those of
main effects after preliminary analysis of variances are discussed from this
standpoint and are based upon the sample size of sufficiently large number
in securing the power of the validity test after testing the validity of the
observations.

There have been developed two methods of two-sample formulation.
The first one was originated by C. Stein [1] and developed later by Seelbinder
[1], while the second one was due to Kitagawa et al [1], [2]. Their methods
are different, but are common in assigning a constant discrepancy d, and
based on the relation

Pr.{lx—p<d}=Pr.{t,.(a),/ ¢ /n<di=1-5,

for determing the sample size #, which becomes consequently a random va-
riable. They are concerned with one unique population. When we are
concerned with more than one populations, it may not be a realistic formu-
lation to assign an absolute allowable discrepancy a priori. It seems to us
that more realistic formulation may be given in some situations by assigning
a relative allowable discrepancy in view of the first sample and conse-
quently the estimation after the significance test in the analysis of variance
will more or less naturally follow in such a situation.
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52. Two-sample theory of biological standard line estimation

Consider the response metameter obtained from subjects receiving a
dose metameter x and suppose that there exists a linear regression of y on
x as a dose-response curve, i.e., the relationship may be written by E.(y) =
B,+ B.:x and that a value of y about E,(v) is a random variable distributed
normally with zero mean and variance ¢* where x is a fixed variate and
8o, B, and ¢ are the unknown parameters depending upon the homogeneity
of the subject, the control of environment, the history of bred stock of
animals, etc, at that time. In case of an unstabilizing assay, the test pre-
paration is tested in comparison with the experimental results of a standard
preparation at the same time. In standard line assay, a standard line may
be fitted immediately after observing certain # responses on various x; (i==
1,2, ---,n), of standard preparation, without the preliminary test of linearity,
and then an average response, ¥, of test preparation is projected on the x
axis by means of the standard line now obtained. This is an ordinary pro-
cedure.

In our situation of this assay type, we confirm the assumption that

there exists a regression line over certain interval of x. However, there
are many actual cases when a linearity is not certain because of the fluctua-
tions of observations, and hence a preliminary test of linearity is first
required for our careful statistical procedure based upon sample subjects of
sufficiently large number in securing the power of the test, and then we
shall be able to estimate a standard line after the above validity check of
observations.

In such cases a rule may be prescribed in the following modified two-
sample theoretical estimation scheme.

Let us define

@1 w= A=A B0 = 20— At (m-2),
F,;u%/ugr A:*-Fl,m—Z(al)y A::Fl,m—z(a2>,

where #», is the size of the first sample, and F ,,_.(«a)), =1, 2, is an a,-point
of F-distribution with the pair of the degrees of freedom (1,#,—2) for an
assigned value of «; in 0<a,<a,<1.

Then our statistical procedure is defined in the following way:

(1) If F'>>A, we stop the experimentation. Then the estimates of B,
B: and hence B,+ B.x for each assigned x are given by the first sample of
n,, that is, are defined as follows :

(22) £i=310:=) (5 —8) /S (%,~5)*, Bo=y—hx ,
and .;Vv:BAo'f“ﬁhlx .
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(2) If A<F'<<A, then make n, additional observations, where F'=1
and n, is defined by

(2.3) ”zz[f“/l/;_ll‘n{] +1-m,

where the notation | | denoting the Gauss’ symbol. The estimates of B,
B, and hence B+ p.x for each assigned x are given by the amalgamation
of the first and the second samples, that is, the estimates are defined by
the (n,+mn,) observations as follows :

n1+ne m1+ne

2.4) Fi=31 =N @=2) (5 12 B=y-5x,

and §:§0+.§1x-

(3°) If O<<F'<<2, then we make n, afresh, where 1>1 and n, is pres-
crived, and the estimates of B,, 8, and hence B,+p,x for each assigned x
are given by n, samples merely, that is, are given by (2.2) where i—1, 2,
ey

Our statistical procedure is based upon a following practical situation.
That is to say, in case of (1°) we confirm the linearity of the regression
line under a significant level a, prescribed and stop the experimentation with
the firm belief that the observations are obtained under the well-control-
led circumstances, and the regression line is estimated by #, observations,
and in case of (2°) we are afraid that we may be confronted with an insu-
fficiency of sample size because of the observation containing a rather large
fluctuation, and therefore we may and now we shall in this case make the
additional samples of 7, so as to find the trustworthy linearity of the reg-
ression line by sample subjects of sufficiently large number #,+#,, and then
the regression line is estimated by (2.4). And in case of (3°), under our
interpretation that the sample of #, observations are in contradiction to our
trustworthy linearity of the regression line supported by our long experien-
tial or some physical ground, we shall in this case reject the information
given by 7, observations and make the observations of a prescribed size #,.
and the regression line is estimated finally by these #, observations. Some-
times we may put that n,=0, that is, we give up the estimation of the line
at that time and may make the experiment under well-controlled circu-
mstance in another occasion. Under some circumstances of bioassay, we
may have a good reason to put 2 to equal 4.

2.1. Investigation of the sample size

The fact that sample size #, is a random variable is of the crucial
importance in our approach, and our final aim is to decide the first sample
size #, so as to minimize the expected value of # under the assigned 2 and
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A. In some biometrical and pharmaceutical researches, especially, such a
consideration concerning to the sample size and the expectation of the reg-
ression line may be needed because of the individual subjects containing a
large fluctuation.

Now let us consider the expectation of the sample size under the as-
signed n,, 2 and 4. For the sake of convenience, let us put m=#/2 and
my=n;/2, (i=1,2,3), and let 6 be a noncentricity 8iS,/2¢* of F’ defined by
(2.1). For the sake of estimating straight line, we know that the observa-
tion points had better be fixed at two extreme points, x;, and xg,.

Now let us put

(2.5) X=(X10+ %) /2, So=2(x;0—%)"

Hence we have
(2.6) sng. (%,— %)°=m,S,.

The reason why we take n, defined by (2.3) comes rather intutively
from the following consideration.
First, in view of the relation
BiS,

Elul} g, P
= o,

2.7) Eiuz o

the statistic (F'—1)/m, will give us an approximate value of m,iS,/o%.
Secondly, there exists always a positive value m such that
20
(2.8) m P 41,

pe:
The combination of these two facts gives us,

F—1_4-1

m,  m

2.9)

This leads us to the following relationship which is essentially equivalent to
somewhat generalized expression (2.3).

(2.10) n2w2[[f, 1n:\\LZ n, or mz—[F, 1m]+1 m, .

Then the expected sample size E{n|n,}{, namely, E{m |m,} on the basis
of this rule may be written as follows:
(2.11) E{mlm,}

A

= (1, + my) J f(F';ml,6)dF’+J ([p=am.]+1) fF s mi) dF”

0
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+ m, s f(F";m,0)dF’
A
A

=ity | G m, 6)dF’+J (=i 1=m ) fF im0 ap,

]

where
T4
—861\ 1 k=g
(2.12) f(F';my,8)dF =S —— —( F
k=0 kYB( +k ml ) 2(7”1—1))
——’/m1+k—-l~)
PN
(eggmmy) AP
Then
A
2.13 z AR SLAL A
(' ) f(F ,m1,6)dF:§ k! 'Io <7+k,m1—]>
0
and
A oo —551;
2.14) I(X,A)EJ Lo pE s mar =%
x "‘“ka( Tk, m—1)
Af2(ml ~1) P 1* (m1+lc—'1—) PNy -1
. { T (1+T) dZT :i}' 19—561»' mzl—x( 1)( 1i )
J _ — =0 ES =0 kit ]
Aj2(m, ~1) 20m—DT-1 k!B(2+k’m1_1> 2m,—1) )

2k+i=))—1 2k+i~j)—1  (k+i-j)—1

ki 2 2 2
o5 (2m,—1) {6 — 0% ,;/(Zm1 ne—1
{Z 2k ri—j) =1 Hog{), Cm—1)6+1|

(2m1—1)0+1‘}
—1)6—1

where

215 L(g+k,m—1)= Be(1+k m,— 1>’,,‘/B(%f+k,ml—1>,

— A 6— A_,,_.
T 2(m,—1)+2° S 2(m—1)+4

Furthermore we may evaluate the right side of the function (2.11) by
a relation,

(2.16) J(A,}:llml—l)f(pf;ml,a)dpf J[F, me(F m,, 8)dF’
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<i (A= Dymf(F' s m, o).

Hence we have E{m|m,} as follows:

_5 k —8 k
@217)  (mtmy) S LYtk —1) 4 mu {1+ (A= DIQ, 4) -5

83k

Lo k1)) <Eimmi<motm D" LGk, m—1)

+m1{1+(A—1)I(l,A)—Z%?CI@(%Jrk,ml )}+Z ;ml@(ljukml 1).

The mean square error around E{m!m,} of (2.11) is given by
(2.18) E{(mi—E{m|m )"} =E{m* —2E{m'{-E{m m}+ (E{m|m,{)?

where m’ is a value unadjusted to an integer and E{m’} is given by the
function (2.11) removing Gauss’ symbol and 1 from the right side and

(219) B(n™) = (mym)? S aE J (o (i fE my, 0)dF

9 A
A

+mlj f(F"my, 0)dF =mi+m;(2m, + m,) J f(F";m, 8)dF'+m:

A 0

5 K}f 1) 1} f(F';my, 0) dF’.

If we put that

2200 JA, A)zj iy F im0 AP

e—55% (=1) i(”;‘) 2(,%9*71‘/ 02(’54;1),11 Qggi)ﬂ .
Z(27;11_1")k+i+1/2 [(2m1 -1 | o i

=>] ,
\(2m1—1)0—1 (2m,-1)6-1"

CRB(j4kom—1)

2<L+1_]) 1 "(Z+i j)rl
+2,,(kti>f1{2‘+‘((2miL_9> - ,,@’?1;1)9)
2 b= 2(k+i—j)—1
o {,fQ?”,@.;T)@ 1 /7(4’"1:1),,5”1‘}]
N v Cm,—1)6+1 2m,—1) 0 —1

the value of (2.19) can be evaluated as follows:
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2 e*o" /1 e%o*
221)  E(n®) =my@mi+m) S5 Lo bym—1) +mi{ -5 0

1

-\:1@(%+k,m1~1) L5+ R m—1) +(A=1)* J2, D} .

2.2, Precision of estimate

Now let us consider the precision of estimate according to above two-
sample theoretical standard line in current case when 7,=0.

(1) Estimation of y on each assigned x

Let us consider the simple case in which the precision of (=8, + £.%,)
on an assigned x, will be discussed after fitting a standard line. E{%} and
V {9{ for a fixed sample size # are shown by

(2.21) E {3} =58,-+5x
o 20%1  (F—1,)°
(2.22) Vigi=2r(p 4+ Sj‘)—)

because of the facts
(2.23)  E{By} =80 E{Bi}=5y E 6%} =0"

202
nS, °

. 2 1, 2 ~ g2 ~ N
Vgﬂo} :‘;4 'Q’Coé:xﬁ ’ Vgﬂl}:h%o’ COU%ﬂo, .81%_—_

In the consequence under our two-sample-theoretical estimation we will
have

(2.24) E{3=E{yu}Pr.(n=n)) + E{Jpsn} -t 1—Pr.(n—=mn,)} =8+ B.%,,
and

(2.25) Vi3i=VidaPr.n=n) +V{Ip 1} P7.(n=n,-+n,)

= {Jf<F>dF’+ 51 jA(F’~1)f(F’)dF’},

21 OBD S (L (1S bm~) 1 ko)

. {A I®<1+k m,— )—Ig<;+k,m1—1)”
= a-1 ’
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where

2.26) A=+

(2) Estimation of x corresponding to observed v,

In case of current standard line assay, a standard line y =8, + 8% is
obtained as a regression relationship between a dose of standard prepara-
tion (its potency is known a priori) and the correspondent response obser-
ved, and then an unknown potency x, of test preparation is estimated by
using this standard line 31:30+ﬁlx and the observed average response ¥, of
test preparation. The maximum likelihood estimate of the x, is given by

(2.27) Xo= (yt"én)/.éu

where f, and §, are given by (2.2). Now in case when the two-sample
theoretical standard line 5':/;’0+[§1x and ¥, of test preparation resulting from
] observations are obtained, the estimate of x, is also expressed by the same
(2.27), where B3, and él are given by (2.2) and (2.4), and further the predic-
tion limits for %, are given by using a following statistic z,

(2-28) z:yz_:éo_@hxo;
where z follows a normal distribution with
(2.29) E{z{=0,

1 4 1
(2.30) Vigi=o*{p+ -}

and where 1/7" is a coefficient of do®*/m, of (2.25), namely, a bracketed ex-
pressions.
Furthermore a maximum likelihood estimate of ¢* is obtained as follows,

(2:31) =3 b br) 2 0,-30) | '+ D),

where 52(m,7’+1) is known to a ¥*-distribution with the (m,»’+/) degrees
of freedom.
These relations show us that the statistic ¢ defined by

_ (I+mr)e®
(232) t l _7+7 l/ (I+m7r—=3)
I myr

is distributed in the #-distribution with the (I +m,7’—3) degrees of freedom,
that is,

(2.33) Pr. it <timms(a/2) i =1—a,
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for each assigned « in 0<<a<<1.

Therefore when the «/2-point value from the #-table is substituted for
tiommes (@/2), the numerator and denominator and the whole expression
in the bracket of (2.33) remain a quadratic of x,. The solutions of this
quadratic equation of x, give us two fiducial limits, xf and ¥, in the following

way :
(2.34) Prixi<x,<ixfi=1-—a,
where we put

(235) (&L, 5c3’)=
1 N 3 2% %)
(’? FoH) ‘/1 l+m r l+m r>{1 r'S (Uﬁi) (1+ﬁ’ﬁ ”7>}+ ”ZO"E’

2 3
mlr’S()(g) (1 *7 +my7 )

2.3. Power of test

Let us summarize here the power of test for the linearity derived from
our two-sample formulation of biological standard line estimation in current
case when 7,=0.

That is to say, the power of our test is defined on the basis of test-
ing a hypothesis ,=0 against an alternative hypothesis #,2<0, and is ex-
pressed by the sum of two probabilities Pr.{D,}+ Pr.{D,}, where

(2.36) Pr.{D,} =Pr {F 4, >F - (a)i,

(2'37) PrJDZ% :Pr-gF(/m)<F1,m—2(a)vF£m+729)->—F1,m+ng—2(a); ’

and Fy,_.(x) is the a-point value of F-distribution with the pair of the
degrees of freedom (1,7—2).
(2.36) is obtained by

o -85k —
(2.38) PriDj=1-31" I, (3+ 5,5 %).
=0
and (2.37) is obtained by

(2.40) Pr.iD,}— J j { jJ fu, v, w, n,) dvdw}dudF’

A D1 p(e,w)

in terms of

r 1 - ; "12—‘,’ =2 _n1tna—2
ny+-n,— 2 B
(m,+m,—1) % v w (A+w+wv+won) ,

(241)  f(u,v,w, n,) = —9 —
()t )
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where
D,: 0<u<<0, -F, ,_o(a)/(n,—
D, w): Ouo Finng-2 (a)/(n+0,—
(242) — +Blsx(2) o _.nl(F_L 1)
S.my= Jg(xj—i) 5 S,eo= E (x,— %)%,

Chooichiro Asano

021:1+§%§?§ ’
2) < ”j_“rl < oo for fixed #,

2.4. Numerical table for the routine standard line assay

In case of a routine work (n;=0) of biological standard line estimation
using an arbitary universe, let us consider the following decision procedure
in deciding the first sample size for the application of this scheme.

Let us put
(243)

when we now put 1=1.01 for any m,.

o* Tﬂ%so/(jz’

and prepare the following table of E{m|m,}

are given by {F, .(a,)—1}/0*,

Table of E{mim;}

for various m, and «, in case
The limit value of E{m|m,} for m,

(C{IZO.OI)

6*

N 005 01 015 025 04 05 075 1 2 4

1

3 —_ — J— —_ J— —_— —_— J— _ —_

6 169 8 53 41 26 15 9 6

12| 150 73 48 34 15 12 12

20 137 61 42 25 22 20

limit | 113 56 38 23 14 11 g8 6 3 2
(ot1=0.05)

5%

}f’ 005 01 015 025 04 05 075 1 2 4

1

3 - - - - —~ 7 5 3

6 80 41 28 15 7 6

12 72 36 24 12 12

20 64 31 21 20

limit 57 28 19 7 6 4 3
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(1==0.10)
%
\6 . 0.05 0.1 015 0.25 0.4 0.5 0.75 1 2 4
LOWING
3 ' — e — —_— 5 3
6 33 26 9 7 6
12 30 23 12

20 | 2 20 20
lmit | 24 1 11 7 4 3

From a general view of the table, it may be said that if 6*>2, the
assay in the routine work is most desirable and is completed with a small
number of subjects and that if §*<<0.2, the assay is not so suitable for the
restriction of subjects and the control of assay circumstances.

Now while we do not know the true value 4%, of the present assay, we
may and we shall assume two extreme (lower and upper) values (3% and
d%) to be considered among possible values §*’s in the above table. Then the
principle of a choice criterion of the first size may be a minimax procedure
that minimizes the maximul number of the difference between E{mjm,} and
lim E'{m|m,} corresponding to each 6*(8¥<(6*<(6¥*). That is, if we have the

mi—rce

information on &%, throughout the trials of sufficiently large #n, (=), we
must have taken lim E{m|m,} as a sample size at one time. We, however,

mp—oo
cannot know such a &}, and therefore, as a second best plan, our decision
procedure may have good reason to choose E {m|m,} which gives us a minimul
loss in the maximul value of the sample-size loss, E{m|m,} — lim E{m|m,},
mi->oco

among 6F and 0¥. For example, when we consider the first sample size in
a range from 0.5 to 2 of * at that table, we calculate the difference as
following form,

~ 8
my S 0.5 0.75 1 2 max.
3 * 3 1 0 * (>4)
6 4 3 4
12 1 4 6 9 9
20 8 12 14 17 17

and the right column shows the maximul value of each row. Then we may
choose m; corresponding to the minimul value between them. In this ex-
ample, #,=6 is chosen.

§ 3. Further discussion of two-sample-theoretical estimation of the
effects in analysis of variance test

Our considerations applied earlier at'§ 2 have also a similar meaning
generally in case of estimating certain main effects or interaction-effects
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after the preliminary test of analysis of variances.

In our situation of the present estimation problem, we confirm the
assumption that there exists some differences among their mean effects from
a proof with physical grounds. However, there are many actual cases when
a non-centricity among them is not certain by the fluctuations of observa-
tions and at that time it seems inadequately to us that the effects are esti-
mated immediately by that observations. Hence a preliminary test of non-
centricity is first required for our careful statistical procedure which should
be based upon observations of sufficiently large numbers in securing the
power of test and secondly we shall estimate the effects after the above

« validity test of observations.

Now let us consider the randomized block design having [ factors and
m replications as a fundamental example of analysis of variance test without
loss of generality. Let x, be a random sample drawn from N (6.. + 0;.+
0,,¢%, (=1,2,--,1 and j=1,2,---,m), where 0,. and 6., denote a treatment
effect and a block effect respectively and where we put >6,.=>10.,=0. Then
the treatment effects are tested by the ratio F’ defined by

(3.1 Fr=ui/us,

where #i=m 12 (%,.—x..)%/(—1) and ug_Z}E (Xy—%.—x.,; + %)%/ —1)

x (m—1), and let & be a noncentricity m, >3, ’Zo of F’ deﬁned by (3.1) where
m, denotes the first number of replications and of course

(3.2) E{uli=0"+m, 305, E{ul} =02

Then the procedure of our modified two-sample scheme is defined in
the following way:

(a) At first we make | xm, observations and test analysis of variance
for treatment effects given by (3.1)

(b=1) If F'>A, we stop the experimentation and estimate the treat-
ment effects because of that it shows a significant discrepancy among the
treatment effects and therefore the sample size may be already sufficient
large.

(b-2) If 2<F'<<A, then make m, additional replications all over the
treatments, which are defined by the result of analysis of variance, because
of that the first sample size is insufficiently large, and after making the
additional observations the treatment effects are estimated by pooling of
data.

(b-3) If 0<CF'<<Z, then we make afresh m; replications all over the
treatments, where 2>>1 and m, is prescrvibed a priori, and estimate the
treatment effects by I xm, observations because of the same reasoning as
(3) in § 2, where we define that A=F . -yom-1, (A1), 2=F o5 01 m-n
(as).

The inference rule proposed by us is practised as a routine work very
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often and intuitively and it seems to us that the procedure has some reason
to apply. Sometimes we are used to put that m,=0, that is, we give up
the estimation of the treatment effects at that time by the reason that
the difference of their effects is beneath our notice or that we make the
experiment in good circumstances at another day. In some circumstances
of bioassay, we may have a good reason to put 2 equal to A.

Then our present consideration of the necessary size of additional sam-
ple comes after the analysis of variance of the first observations.

First in view of the relation

(3.3) Eiu S

the statistic (F'—1)/m, may give us an approximate value of 20 /0% as

an information drawn from the first observations.
Secondly, we may employ a sufficiently large m and there exists always
a positive value m such that

(3.4) LY SRR

02
Thus the combination of these two facts gives us
(3.5) (F'—1)/m,=(4-1)/m,
which leads us the following relationship

r A_]_

(3.6) m: =| m_1

ml] + 1—m,,
where the notation | ] denoting Gauss’ symbol. Hence the crucial importance
is that the additional number of replications ., is a random variable.

As the ratio F’ is distributed in the noncentral F-distribution with the
pair of the degrees of freedom (/—1, (I—1)m,—1)) and with the non-centri-
city parameter 6=m3>0;./20% under our situation f,.2<0 for some 7, the whole
expected number of replications E{mm,} is given as follows:

BT Ejmm| = (nem) | S m, 0)dF j ([ =im,]+1)
S (B, 0)dF + m, | (s m, 0)dF,
where

1—1 -3 my(l1—1
5tk *2*+Ic L 1'(* — )—-k

/. r__ -Sak 1 \ ! F, !
f(F' ;my, 0)dF —Zka(l s (1= D(zml—l)/\< ) F <1+¢E—i)dF'
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Then
A
( . , ”6“5" -1 , (=1 (m—-1)
(3.8) .’Of(F,ml,ﬁ)dF R =
and
"1
B9) I, 4) = | g fF 3 my, 0)aF
A
) (f:l)gL
5 rp (H)(ﬁ v/ (—1)L( i )
— =l
k= 0k'B<l 5 k, (l 1) (m1 l)) m, 2 +
lq 3+A+L-J{ I’;*+k+t-j Z-:T}+k+i—j 4 12—3»_] ’21~j ey
.[2k+t m, _,,,T,,ﬂ‘,, } 9 27 . e — 8 }
= 20k+i=j)+1-3 LD S
¥ m18 1 V mla "1‘1‘ .
+log{’/—*m1@+1‘ ‘;/m10 1 ], (l: even),
(G l)(ml 1)
5 e~ Z(_D( )
L_ok,B(l 1.2 (1—1>(m1 l))x . =5
-3, 12;3 i 3hktieg " =8, =8 18,
TSR R S DS bl P
[ pH 2k+i—j)+I—3 RED Yy T S

m6—1 .
+logv—nl[9—:1] , (/: odd),

where 6=2/(m;—1+2) and ©=4/(m,—1+4 1),
Furthermore we may evaluate the right side of the function (3.7) by
the same relation as (2.17) formally. Hence we have E{mm,} as follows:

(3.10) (m3+m1~1)2~%?—h19(1 o, D ))Tmlinm I, A)

_Ze:!ak I, (l;1+k’,(g—1):(zm1“,1_)) }SEﬁm,ml} < (mytm,~1)
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-8k _ _ _ PRt L

-gek! I, <121+k, U 1)(2m‘ 1>>+m1 1+(A=1)I(2, A)— Zk'
. —851.

e 1>(m11>)}+kzk‘19(1_,1ﬁ<l Dom=Dy

The mean square error around E{m|m,} of (3.7) is given by the same
expression as (2.18), where E{m'?{ is also that of (2.19).
Then if we put that

A

I TGty = | lgyed (7 im0) aF

(=1 (mi—1) i ((;-1)—2(;1”—71)“ 2 +i3+l—l
s 35" D (;11( i >[{(m10)
- 1. .. T T T T
k'B <l 1 k (l 1)‘m1*1)) i=0 mllfgﬁ‘”““ mla—l
( @)(_;i 1 2(kt+i) +1—3 (& 2 L S
m, +1)+ +i 2
m18_1 } 2 {] 2(k+i—7) +1— 3((”’11@) - (m,0)
-4 1—3-2j 1—-3-2j
&2 = S Vm6—1 Wm0+ 1
=gz (me) = oy~ ) tem{T I ) b even,
m i U= 1)(7n1 n, 2k+1)+ 11
—s e " B 1)(2 P -1 (% Dromey
k kYB(l 1 + kb, (= 1 1)> =0 7 ;n7+k+£ - [{;l?(fzi
2ﬂf+t;+z;1 - ; 2(k+i—j)+1-3 2(k+i—j)+1-8
S,,nllv@,,)A, 7 ( +Z) 4] —3 ket 2 ( o 2_ p 2
m6—1 e 2 Zrhri—p =3 ™®) (m0) )

I—

o

1-8-2j 1~8—2j

w[

2 2 2
—3=z; ((m6) = (m0) )Jrlogl

1
-+
J

© =1 i}] (I: odd),

i
o

the value of E(m’*) can be evaluated as follows:

(3.12)  E(m"®) =my( Zm,—}-ms)Z—;“ (%er,&l)#—ﬁl))

+mi[1— 2—55{ e(l;1+k,(l_1)éml_1)> Ig(l PR G) 1)(m1~1)>}

+ (A=1)2J(2, A) ] .
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Furthermore the power of test is defined on the basis of testing the hypo-
thesis =0 against an alternative hypothesis é=<0 and according to our esti-
mation procedure in the current case of m;=0 is given by

(:{.13) Pr.%F’}_Fz_l,(l._n (7n1—1)( al) ;

A

-+ J Pr.%F’<F1—1,(L—1)(m1—I)(al)’ FN2FL—I,(L—1) (m1+ma-1) (al) § g(F/)dF,’

A

where the first term is equal to

e g=%F -1 (I-1)(m,—-1)
(3.14) I ad s SR
and the second term is
A
(3.15) j j { H fu, v, w, F’)dvdw}dudF’,
A ° D(v, )
in which we put
flu,v,w, F")
=3 4w, mi=b
r+m,—1) o R
= : LU v w
ml_]. mlg—ml-l 1—1 2
s e ey
(3.16) | c(I+w+wv+wva) = e
m1z:m1(A_1)/(F/”‘1‘) s 621:-;163-/02:
Ds: 0<u<F(L~1),(L—-1)(m1—-1) (ay) 03/ (m;—1),
D@, w): F(L—I).(L—I)rv112 (ay)/my. <vu_iz_%_11<00 for fixed # .
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