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 1. Summary and introduction 

   The statistical methods given in this note are based upon the method 
of two-sample-theoretical estimations developed by various authors, and 
attempt some extension by the consideration of the validity test of observa-
tions supported by certain physical proof or experiential grounds. 

   In some practical situations an allowable discrepancy between the true 
value and its estimates of a population in our concern may be merely assign-
ed a priori. There are, however, other situations where the allowable discre-

pancy should be better determined relatively in view of the difference bet-
ween the estimate of our population and that of other one or more popula-
tions which are chosen f or our comparison, as may happen in biological 
assay. In this note the estimation of biological standard line and those of 

main effects of ter preliminary analysis of variances are discussed from this 
standpoint and are based upon the sample size of sufficiently large number 
in securing the power of the validity test after testing the validity of the 
observations. 

   There have been developed two methods of two-sample formulation. 
The first one was originated by C. Stein [1] and developed later by Seelbinder 

[1], while the second one was due to Kitagawa et al [1], [2]. Their methods 
are different, but are common in assigning a constant discrepancy d, and 
based on the relation 

                     -- ,u <dj=Pr.t „_,(a) &2 / 22<d >1— , 

for determing the sample size n, which becomes consequently a random va-
riable. They are concerned with one unique population. When we are 
concerned with more than one populations, it may not be a realistic formu-
lation to assign an absolute allowable discrepancy a priori. It seems to us 

that more realistic formulation may be given in some situations by assigning 
a relative allowable discrepancy in view of the first sample and conse-

quently the estimation after the significance test in the analysis of variance 
will more or less naturally follow in such a situation. 

                              41
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   The author wishes his hearty thanks to  Prof. T. Kitagawa for his kind 
suggestions and encouragement. 

:; 2. Two-sample theory of biological standard line estimation 

    Consider the response metameter obtained from subjects receiving a 
dose metameter x and suppose that there exists a linear regression of y on 
x as a dose-response curve, i.e., the relationship may be written by Ex(Y) 

i9 + Mx and that a value of y about Ex (y)is a random variable distributed 
normally with zero mean and variance a2 where x is a fixed variate and 

Ro, gi and a2 are the unknown parameters depending upon the homogeneity 
of the subject, the control of environment, the history of bred stock of 
animals, etc, at that time. In case of an unstabilizing assay, the test pre-

paration is tested in comparison with the experimental results of a standard 
preparation at the same time. In standard line assay, a standard line may 
be fitted immediately of ter observing certain n responses on various x, (i = 
1, 2, --, n), of standard preparation, without the preliminary test of linearity, 
and then an average response, YT, of test preparation is projected on the x 
axis by means of the standard line now obtained. This is an ordinary pro-
cedure. 

   In our situation of this assay type, we confirm the assumption that 
there exists a regression line over certain interval of x. However, there 
are many actual cases when a linearity is not certain because of the fluctua-
tions of observations, and hence a preliminary test of linearity is first 
required for our careful statistical procedure based upon sample subjects of 
sufficiently large number in securing the power of the test, and then we 
shall be able to estimate a standard line of ter the above validity check of 
observations. 

   In such cases a rule may be prescribed in the following modified two-
sample theoretical estimation scheme. 

   Let us define 

(2.1) --731) 2 E---x) 2,(y.5--;e0 —ix))2/(ni —2), 
          j.-_-13= 

         Fr —1,11/u, A =F1,71-2(a1), A —Fimi-2(a2), 
where n1 is the size of the first sample, and F1,„1_2(ce,), i=1, 2, is an ce,-point 
of F-distribution with the pair of the degrees of freedom (1, n1-2) for an 
assigned value of a, in 0<ce2<a1<1. 

   Then our statistical procedure is defined in the following way : 
   (1°) If F'>A, we stop the experimentation. Then the estimates of fl„ 

Ri and hence flo+PiX for each assigned x are given by the first sample of 
n1, that is, are defined as follows: 
(2.2);el (y, —37) (xi (x,--i) 2, )40 =3 , 
and ;=a0+ .
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   (2°) If 2<F'<A, then make n2 additional observations, where F'>1 
and n2 is defined by 

(2.3)n,A-1L F,-1n1i + 1— n„ 

where the notation [ j denoting the Gauss' symbol. The estimates of go, 
/91 and hence go+ gix for each assigned x are given by the amalgamation 
of the first and the second samples, that is, the estimates are defined by 
the (n1+n2) observations as follows : 

           Q1+7/2ini+1/2 (2.4)=E (y(x1—x) /E (xi 2, 

      ' and _37---A,+filx- 
   (3°) If O<F'<2, then we make n3 afresh, where /1>1 and n3 is pres-

crived, and the estimates of go, N1 and hence fio+ g1x for each assigned x 
are given by n3 samples merely, that is, are given by (2.2) where i=1 , 2, 

   Our statistical procedure is based upon a following practical situation. 
That is to say, in case of (1°) we confirm the linearity of the regression 
line under a significant level a, prescribed and stop the experimentation with 
the firm belief that the observations are obtained under the well-control-
led circumstances, and the regression line is estimated by n1 observations, 
and in case of (2°) we are afraid that we may be confronted with an insu-
fficiency of sample size because of the observation containing a rather large 
fluctuation, and therefore we may and now we shall in this case make the 
additional samples of n2 so as to find the trustworthy linearity of the reg-
ression line by sample subjects of sufficiently large number n1+722, and then 
the regression line is estimated by (2.4). And in case of (3°), under our 
interpretation that the sample of n1 observations are in contradiction to our 
trustworthy linearity of the regression line supported by our long experien-
tial or some physical ground, we shall in this case reject the information 
given by n1 observations and make the observations of a prescribed size n3. 
and the regression line is estimated finally by these n3 observations. Some-
times we may put that n3=0, that is, we give up the estimation of the line 
at that time and may make the experiment under well-controlled circu-
mstance in another occasion. Under some circumstances of bioassay, we 
may have a good reason to put 2 to equal A. 

   2.1. Investigation of the sample size 

   The fact that sample size n2 is a random variable is of the crucial 
importance in our approach, and our final aim is to decide the first sample 
size n1 so as to minimize the expected value of n under the assigned 2 and
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A. In some biometrical and pharmaceutical researches, especially, such a 

consideration concerning to the sample size and the expectation of the reg-
ression line may be needed because of the individual subjects containing a 
large fluctuation. 

   Now let us consider the expectation of the sample size under the as-
signed n1, d and A. For the sake of convenience, let us put m—n/2 and 
m,=n,/2, 2, 3), and let o be a noncentricity MS,./202 of F' defined by 

(2.1). For the sake of estimating straight line, we know that the observa-
tion points had better be fixed at two extreme points, x10 and x20. 
Now let us put 

(2.5) (x10+ x20)/2 , S0-2(x10—X) 2. 

Hence we have 

                                         2rni 

(2.6) (x,—x) 2 MPS°. 
                                          =1 

   The reason why we take n2 defined by (2.3) comes rather intutively 
from the following consideration. 

   First, in view of the relation 

               Et,e#i9;So  (2
.7)1 = nil2             Elti‘

220 

the statistic (F'-1)/m1 will give us an approximate value of m1diS0/a2. 
   Secondly, there exists always a positive value m such that 

                              S, (2.8)Q6—=A-1 . 
   The combination of these two f acts gives us, 

(2.9)F'-1A-1                                  m1 

This leads us to the following relationship which is essentially equivalent to 
somewhat generalized expression (2.3). 

(2.10) n2 =2 A-1 ni]+2—n,or m2=rA—1-mil+1m1 •        LF' —1 2LF' 1J 

   Then the expected sample size En n1}, namely, Elm m1 on the basis 
of this rule may be written as follows : 

(2.11) 

   XA 

          (MI + m3) f (F' ,m1, 6)dF' + CFA f(F' ; m1,6) dF' 
    -0X
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       +  m,- f (F' ; m„ o)dF' 

                  A 

   AA        =M1+ M3 I. f (Ft ; m„ 5) dF' + f ([FA,_11 mil+ 1— mi) f (F' ; m„ 6) dF' , 
   0A 

where 

                                                                       1 

                                                        2+k , 

                 (A-2 (2.12) f (F' ; m1,e-36k 15) dF' = F'                       1                    R---° k!B(
2-+ k ,m, -1) (m1-1)) 

                                                                                 -(mil-k- -12) 

                                      '  

                                -(1 +2(mF,-1)) dF'. 
   Then 

                   A (2.13),e--ak( 1           ff(F' ; m„5) dF=N /el.492 4- k, m, —1) 
                  0 and 

                        A 

     1e--05k (2.14) I(2, A)-----F' —1 f (F' ; m„O)dF' =E1                                =k!13(
2+ k ,m, —1) 

 A/2(M1 -1) k4 -(nt 1+ k - -12-) n1:1(—1)L("1111)   •f  T (1+T) dT-i -e--'5k  2              2j      )2(m1-1) T-1'MB1 (2+k, m,—lr°(2mi1k)."4-    A/2(mi-1) 

                      2(k-Fi--))-1 2(k+i-j)-1 2(k+i-j)-1 

  21`±i(2m, —1) 2 e 2— 0 2 iog ill/  (2m, —1) e--1,/ (2m, —1) 0 +1 

{ 

   i=02(k + i — j) ---1tj, (2m1-1)e+1 V(2,211-1)61-1) 

where 

                                 1 (2.15)La+ k , m,— 1) = B6( 2+ k , m1-1)/B(2+ k , m,— 1), 
    2A                  6,--2 (
m, — 1) +2 ' e=2(m1-1)+ A 

   Furthermore we may evaluate the right side of the function (2.11) by 
a relation, 

 AA 
                            —-1 (2.16)(F,-1m,—1)f(F' ; m1,F' -16)dF'<fLAmif(F' • m„5) dF'     111--,' 

 AA
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 <  i)mif(F,; 

                                            X 

   Hence we have E* m1 as follows: 

                           7.1 (2.17) (m1+ m3)e5k19(2+k ,m, -1)+m,{1+ (A 1)1(2, A)e-'6' 

     • 71      Io(2+k,m1-1)} ‹Emm1}<(m1+m3-1)e--8kT0 Ie(2+k , m, -1) 

    +m111+ (A-1)1(2, A) - ekSk/421+k,m1-1)} +Ee le:6k 421+ k,m,-- 1). 

   The mean square error around Errz of (2.11) is given by 

(2.18) .Ei(m-Emlmd)2=Elm"-2Em' + (Emm1)2, 

where m' is a value unadjusted to an integer and Enz' S is given by the 
function (2.10 removing Gauss' symbol and 1 from the right side and 

    XA 

(2.19) E (m") = (m1+7113)2 f (F' mi, 6) dF' + (F,1)2mlf (F' m1, 6) dF' 

            +mi f (F';m„6)dF' =m7+ m3(2mi+ m3) f (F' ; m„ 5)dF' + 
 A0 

                   A 

           /(F,—1)2                      1f (F' ; m„6) dF' 

                       X If we put that 

                      A (2.20) J(2, A)(F'1 1)2f (F' ; mi, a) dF' 

                                                                                     2(k+i)-1-1201-0-1-1 

     e'5k (-1)1')2(k+i)+122                                   0\ - 1(2 1n \k-i-t-F1/2 [(2m, 1)-    kk!B(
2-1- k, m,- 1)1 )(2m1-1) 0-1 (2m1-1)8-1 

                                                      2(k+i-j)--1 

      22 

        2 (k + i) -1f2k.fiC2m-Le)((2m, -1)o) 
          21 0 2(k + z -1) -1 

                           1/ (2m, -1)0-ii1/(2m1-1) 0 +1Iti                           + log
Izrnit__,                               z1) 0 +1(2m1-1) 0 -1jJJ ' 

the value of (2.19) can be evaluated as follows:
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(2.21) E(m'2)=m3(2m1+ m3)Ee-86A10(-k—1)+ m2,11—Ee--86k                  kk!2"m 

                             (1               •/.+k ,nii-1)—1-(*2+k,n11-1) +  (A-1)2 J(2, A)} . 

   2.2. Precision of estimate 

   Now let us consider the precision of estimate according to above two-
sample theoretical standard line in current case when n3=0. 

   (1) Estimation of y on each assigned x 

   Let us consider the simple case in which the precision of j, ( =ijo + ;41,Co) 
on an assigned xo will be discussed after fitting a standard line. ELi, and 
V 1.5,# for a fixed sample size n are shown by 

(2.21)Eij/L----flo+Pixo 

(2.22)z202(1(x—xo)2             v'= nS o 

because of the facts 

(2.23) Eli4.} =do, E;i =i31, E/62 =a% 

                (4+ xL) ,V-Ia1=2°2 ,C00=2a2     7.10} =-12S onSo—nSo • 

In the consequence under our two-sample-theoretical estimation we will 
have 

(2.24) E.37=E5,(7,1)}Pr.(n=n1)+E.3"(ni+7,2)• 11—Pr.(n=ni)i = Ro + fliXo, 

and 

(2.25) V5', =T7.#5'(n1) Pr.(n=n1) + VLP(ni+.2)Pr.(n—n1 +n2) 

                                  A 

     ja2 

   m 
  =f(F')dF' + A_1(F-1) f(F')dF', 

          , 

 AA 

    ZIG2i
+ (       rm1-1)e-'5'(1+ 2k) {3                            m—2(3    mlLA-1 k!km2 —2e2+k"K'ml —2)1 

   11 

       e-861c (A .142+k,m,— 1)— I9(-2+k,m,— 1) 
  k!A-1
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where 

                           1 (xo—i)2 (2
.26)+               2S o • 

   (2) Estimation of x corresponding to observed 

   In case of current standard line assay, a standard line y= Ro+ gix is 

obtained as a regression relationship between a dose of standard prepara-
tion (its potency is known a priori) and the correspondent response obser-
ved, and then an unknown potency xo of test preparation is estimated by 

using this standard line 3,-=-0+ Q 1x and the observed average response 3), of 
test preparation, The maximum likelihood estimate of the xo is given by 

(2.27)13= 
where ijo and ai are given by (2.2). Now in case when the two-sample 
theoretical standard line 1,—;e0+ix and 3,, of test preparation resulting from 
1 observations are obtained, the estimate of xo is also expressed by the same 

(2.27), where ;jo and N 1 are given by (2.2) and (2.4), and further the predic-
tion limits for xo are given by using a following statistic z, 

(2.28)z=yt-7913—fi1X0p 
where z follows a normal distribution with 

(2.29)EzL=0, 

(2.30)V{z#=-0-211+  1                     1mi 

and where is a coefficient of Ja2/m1 of (2.25), namely, a bracketed ex-

pressions. 
   Furthermore a maximum likelihood estimate of a2 is obtained as follows, 

(2.31)'c3•2IE(Yi,2 + (Y,—Yu)) 2II(mir' +1), 
       i=1j=1 

where a2(m1r' +1) is known to a V-distribution with the (m,r' +1) degrees 
of freedom. 

   These relations show us that the statistic t defined by 

(2.32)            t= -  (1+ m —3)                       1+A(1+m1)'")a2 
                       1mlr' 

is distributed in the t-distribution with the (l+mir'— 3) degrees of freedom, 
that is, 

(2.33)Pr. } =1 —a,
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for each assigned a in  0<a<1. 
    Therefore when the a/2-point value from the t-table is substituted for 

      (a/2), the numerator and denominator and the whole expression 
in the bracket of (2.33) remain a quadratic of xo. The solutions of this 

quadratic equation of xo give us two fiducial limits, 54 and in the following 
way : 

(2.34) 
where we put 

(2.35) (xO,i6.)= 

   (i0-X)±(1/1+l+3,r1/(11+ 1mir,){1- 2,no- SoCt)2(1+ 3l+mir,)} -1- n2(i°,-xSo                         )2) 
    m":8,o. 

                                                                                                                                                                                                                                                                                                                    • 

                   1—  2(at\2(1+  3  \ 
                                   l+m,r') 

    2.3. Power of test 

   Let us summarize here the power of test for the linearity derived from 
our two-sample formulation of biological standard line estimation in current 
case when n3 = 0. 

   That is to say, the power of our test is defined on the basis of test-
ing a hypothesis R1=0 against an alternative hypothesis fliO, and is ex-

pressed by the sum of two probabilities Pr.D,}+Pr.ID,, where 

(2.36) Pr.ID,-----Pr.IP(ni)__>__FL.,-2(a), 

(2.37) Pr.D2=Pr.F„1,<Fi,ni_2(a),-Ff,                                              _on+n2)>Fhni+n2-2(a) 

and F1,„_2 (,x) is the a-point value of F-distribution with the pair of the 
degrees of freedom (1, n-2). 

   (2.36) is obtained by 

(2.38)e--sok(1ni2              Pr.{D11 =1—E I.2+k ,2 
                                 k=0K: 

and (2.37) is obtained by 

                            A (2.40) Pr. D2 10.1 AU, v, w, n2) dvdw}dudF' 
                                A Di 

in terms of 

                                                          1 ni-3 
                          __ 

                       222_ ni+2n2-2 

(2.41)f(u,v,w, n2) = -(ni+n2-1) uvw(1+ w+wv+ wvu) 
                     7,r(n1-2\r(n2-2\                   2))
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where 

 (  D1: 0<u<021.F1,.1-2(a)/(n1 —2), 021=1+ , 

                                        uv+ 1  < 0. for fixed u,       D(v, w) :(a) / (ni+ n2-2) 

(2.42)v+ w 
              _t_191S(2)xA—1         13,24= o 2 1 02n2 —n,(F,  

   ntnz 

         S,(1) = E —X) 2, Sx(2) = E (x3 -- 2. 
     2=1i=1 

   2.4. Numerical table for the routine standard line assay 

   In case of a routine work (n3=0) of biological standard line estimation 

using an arbitary universe, let us consider the following decision procedure 
in deciding the first sample size for the application of this scheme. 

   Let us put 

(2.43)6*=MSo/6 

and prepare the following table of Enz for various m1 and a1 in case 
when we now put 2=1.01 for any m1. The limit value of Ell*mii for m1 
are given by IF1 ,,,o(a1)-1V.3*.

                   Table of Etm!mil 

                          (ai=-0.01) 

    Sic       0
.05 0.1 0.15 0.25 0.4 0.5 0.75 1 2 4 

  3 

 6 169 86 53 41 26 15 9 6 
 12 150 73 48 34 15 12 12 

 20 137 61 42 25 22 20 

limit 113 56 38 23 14 11 8 6 3 2 

                          (ai=-0.05) 

      0.05 0.1 0.15 0.25 0.4 0.5 0.75 1 2 4 

37 5 3 
 6 80 41 28 15 7 6 

 12 72 36 24 12 12 

 20 64 31 21 20 

limit 57 28 19 7 6 4 3
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 (ai=0.10) 

      0.05 0.1 0.15 0.25 0.4 0.5 0.75 1 2 4 

3 — — — — 5 3 

 6 33 26 9 7 6 
 12 30 23 12 

20 26 20 20 

limit 24 17 11 7 4 3

   From a general view of the table, it may be said that if 8*>2, the 
assay in the routine work is most desirable and is completed with a small . 
number of subjects and that if 6*<0.2, the assay is not so suitable for the 
restriction of subjects and the control of assay circumstances. 

   Now while we do not know the true value atl'ue of the present assay, we 

may and we shall assume two extreme (lower and upper) values (at and 
a) to be considered among possible values P's in the above table. Then the 

principle of a choice criterion of the first size may be a minimax procedure 
that minimizes the maximul number of the difference between and 
lim Elmlm,} corresponding to each 6* (at <6* <ap). That is, if we have the 

  --- 

information on 6,'1e throughout the trials of sufficiently large n1 (= 00), we 
must have taken lim Elm m1 I as a sample size at one time. We, however, 

                                 mi-. 

cannot know such a at., and therefore, as a second best plan, our decision 

procedure may have good reason to choose Elm m1 I which gives us a minimul 
loss in the maximul value of the sample-size loss, Elm m1 — lim Elm 

among at and öt. For example, when we consider the first sample size in 
a range from 0.5 to 2 of a* at that table, we calculate the difference as 
following form,

 V 1      0
.5 0.7512max. 

ml -- ' 

3*310* (>4) 

641034 

1214699 

20812141717

and the right column shows the maximul value of each row. Then we may 

choose m1 corresponding to the minimul value between them. In this ex-

ample, n1=6 is chosen. 

§ 3. Further discussion of two-sample-theoretical estimation of the 
    effects in analysis of variance test 

   Our considerations applied earlier at § 2 have also a similar meaning 

generally in case of estimating certain main effects or interaction-effects
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 after the preliminary test of analysis of variances. 
    In our situation of the present estimation problem, we confirm the 

 assumption that there exists some differences among their mean effects from 
 a proof with physical grounds. However, there are many actual cases when 
 a non-centricity among them is not certain by the fluctuations of observa-

 tions and at that time it seems inadequately to us that the effects are esti-
 mated immediately by that observations. Hence a preliminary test of non-
 centricity is first required for our careful statistical procedure which should 

be based upon observations of sufficiently large numbers in securing the 
 power of test and secondly we shall estimate the effects after the above 

validity test of observations. 
    Now let us consider the randomized block design having 1 factors and 

m replications as a fundamental example of analysis of variance test without 
 loss of generality. Let x1., be a random sample drawn from N (0.. + 01. + 

 0.j, (12), (i =1, 2, ••• , 1 and j=1, 2, •-•, m), where 0i. and 0.; denote a treatment 
effect and a block effect respectively and where we put EOi., Then 
the treatment effects are tested by the ratio F' defined by 

(3.1)F' =d1/ 

where u7=m1E(ii.—i..)2/ (1-1) and 74= E E(xi; -zi. -x.; + X..)2/(l — 1) 
                   i=1i j 

 X (M - 1) , and let o be a noncentricity m1Etn./2a2 of F' defined by (3.1) where 
m1 denotes the first number of replications and of course 

 (3.2)E 62 + miE 01., E f u2 = 62-

                                                     i 

    Then the procedure of our modified two-sample scheme is defined in 
the following way : 

    (a) At first we make lxm, observations and test analysis of variance 
for treatment effects given by (3.1) 

    (b-1) If F'>A, we stop the experimentation and estimate the treat-
ment effects because of that it shows a significant discrepancy among the 
treatment effects and therefore the sample size may be already sufficient 

 large. 
    (b-2) If A<F'<A, then make m2 additional replications all over the 

treatments, which are defined by the result of analysis of variance, because 
of that the first sample size is insufficiently large, and after making the 
additional observations the treatment effects are estimated by pooling of 
data. 

    (b-3) If O<F' <2, then we make afresh m3 replications all over the 
treatments, where 2>1 and m3 is prescribed a priori, and estimate the 
treatment effects by lxm, observations because of the same reasoning as 

 (3°) in § 2, where we define that A = F(1-1) (1-1)(7711-1) ("1) 9 2 = F(1-1),(1-1) (7711-1) 
 (a2)• 

    The inference rule proposed by us is practised as a routine work very
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often and intuitively and it seems to us that the procedure has some reason 
to apply. Sometimes we are used to put that  m3=0, that is , we give up 
the estimation of the treatment effects at that time by the reason that 
the difference of their effects is beneath our notice or that we make the 
experiment in good circumstances at another day. In some circumstances 
of bioassay, we may have a good reason to put 2 equal to A. 

   Then our present consideration of the necessary size of additional sam-

ple comes after the analysis of variance of the first observations. 
   First in view of the relation 

                E kin.\-10,2 (3.3)1 = ml •         EA#
a2 

the statistic (F' —1)/m, may give us an approximate value of 0.)./ 02 as 
an information drawn from the first observations . 

   Secondly, we may employ a sufficiently large m and there exists always 
a positive value m such that 

                        mO                         Ei. (3.4)-= A-1. 

   Thus the combination of these two f acts gives us 

(3.5)(F' —1) / m1= (A-1)/ in, 

which leads us the following relationship 

                          r A-1 (3.6)m2 =F' —1 m1]+ 1—ml, 
where the notation ] denoting Gauss' symbol. Hence the crucial importance 
is that the additional number of replications in, is a random variable . 

   As the ratio F' is distributed in the noncentral F-distribution with the 

pair of the degrees of freedom (/ —1, (/— 1)(m1 —1)) and with the non-centri-
city parameter 8 = mEOL/2a2 under our situation O.  NO for some i, the whole 
expected number of replications Emm,} is given as follows : 

    XA 

(3.7)Emlm1= (mi+ m3) f (F' ;+A imii+ 1) 

                                    0 

                             (F'; m1, O)dF' + m11- f (F' ; m1, 5) dF' , 
                                                                A where 

                                                       /-11-37n1(1-1)  
                            2 2+k--k                                                                                            2 

                                I  f (F' ;m„O)dF'-=EZ -1e--'6                     (—1) (m, — 1)(m11) 1) F' (1+mi1 1)dF'. 
              klB (+ k,      22
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   Then 

(3.8)_f_°.--W11()(—1)) ,          if (F' ; m1, 6) dF' =.>_je.10(± k,1-1m'''''           A=0k!                       -0 

and 

              1 (3.9) I(/1,A)=F,if (F' ;  mi, O)d-F 

                      

. X 

                                                                            (1-1),(;nt-1)  
                   e--86k(1-1)(m1-1)/2 ( — 1)'(i26-     =kE---°k!B(1-

21+k,(i-1) (mi  —1)m,                  )i=0_i 
                                                                                                                       -

,--1-1,1-i 

                  2 

                                                  1-            -17331-31-31-31-3 

               

•~
©2--"i-i2j}/           -24."4-1-j-2---1{

1-3-22--I21 

      2 

         k" ___7?2_,___._0+k+i- 
 .1,j=0             2( k+i—j)+1 —3  +224m1e—19                                 j 

      + log{/mle-1-j/n21e9 +14(1 : even),             (1/m ie+1li/m, 0 — i.) 

                                                                      (1-1)(mi—i) 

          e-'6k(-1)2(.2)                                 \1   
   =E      k-o klB(1—

21+k,(1-1) (2m,-1)nil-)/-1 
                                                                                      -Fki-1                                                                                                                            -,-)-- 

               1-3 1-31-3 1-3 7-3                  1-f2 ±k+i-i 2 +k+i-il,1-5 2-jf2--j2-ft                               -Fk+i-j 

     2k-i m1 t e — 0)2                                        09  — 0 1          =C02(k+i— j) +l-3+2)-0E Z-3-2; 

      + logIm,0 — 1i , (1 : odd), 
            mi 0 —1 

where 0 =2/ (m1-1+2) and 0 = A/ (m,-1- i - A). 
   Furthermore we may evaluate the right side of the function (3.7) by 

the same relation as (2.17) formally. Hence we have E mpti 1 as follows: 

(3.10) (m3+ m1-1) Ek!e-'5k49(1-21+k,(1—1) (n11-1))+m,1+(A-1)1(A, A) 
  k2 

        —Ee-'6' I(1-1+ k(1-1) (m,— 1))}<Emmi} <(ms+ m, —1) 
       k!®2' 2
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       ( 
           eksak11(1-1)(mi -1))+m1-11+ (A -1)I(2,A'E'D-861c      •

,,!I®2+-k,2)- k! 

         .14  1 -1  (/-1) (m, -1)1..___,e--'5',(1-1,(/-1) (m,- 1)) . 
            2 + k'2}±,.-'k!-''''2-' 2 

    The mean square error around E # m I mii of (3.7) is given by the same 
 expression as (2.18), where E#m'21 is also that of (2.19). 

    Then if we put that 

                      A 

 (3.11).1.(2,A)---j (F'1-1)2f (F' ; m1, 6) dF' 

                         A 

                                                       i (1-1)(mi---1)_,20+0+1-1 

              e-se(1--nri-l) +1 ( _ 1)(2-)cm0) _ ----E /-1 (/-1);m,--1)NL„-l+k+i[{mi10 — 1  kk!B( 2 +k, 2)m,- 
        2(1c +0+1-1 

   22(--Fi—))+1-32(k+i—j)+1-3 

(Me) 2(k+ i) +1-3  fl+1 22 
  m, e-11+2 11-12(k+i-j) +1_3((m1e)—(me)2 

  1-41-3-2j1-3-2j       22li/m1e—i ^ri/m0 +id1-1,(/:even),                                                   .1 i    +E((m,e) - (m,0) )+ logt,  
  i=0 (1-3-2i)-/mle+1 'I m,0 -11 

                                                       i (1-1)(mi-1)+ i2(k+I)+ 1—i                     (1-1) (mi-1) +1 —2l2       e--Mk2 
                               irf(ni,e) --E1) (i/-1(/-1) (mi —1))N

mvm.                                    +k+, p° -1  k k!B( 
2+ k,2i 

            2(k+i+/-1 
     22(k+i—j)-1-1-32(k+1— j)+1-3 

_ 

 (mie)+ 
22(k + i) +1 -3(k-_,-''22     m10-1                           1,...,,,2(k+i-j)+1-3((mie)-(m10)                        ) 

  ) 

   1-51-3-2j1-3-2j 
  2222,e—i 

             d 

  +E1-3-2 j ((Mem) - (ml°)')+ logm, 0 -11'(1.'                                              odd), 
       j=0 

 the value of E (m'2) can be evaluated as follows: 

        -Mk( 
  (3.12) E(m'2)-----m3(2m1+ m3)e-kr le(/-12+ k,(/-1)2m1-1)) 

                e--'5k .(,/1-1,(/-1)(mi-1))_(/-1 ,k(/-1)(mi-1)      ±/nEl —E k!lie2 +R'2_1                                  92-1--' 2)} 

       + (A -1)2J (2, A) 1 .
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   Furthermore the power of test is defined on the basis of testing the hypo-
thesis 6=0 against an alternative hypothesis 6  NO and according to our esti-
mation procedure in the current case of ni, =0 is given by 

( q3) Pr. .F'>F‘ Oni-0( CX1) 

               A 

               Pr $F' /-1,(/-mmi-i)(a1),1,(l(mi-Fma-I) (al) f g (F')dF' 

where the first term is equal to 

  (1-1 (1 —1)  (m1-1)) 
(3.14)k!2 +1‘, - 2 

and the second term is 

(3.15) fiFif (u, v, w, F')dvdw}dudF', 
                    DC15(V:10 

in which we put      

( f (u, v, w,F' ) 
                                                                                             /-3 

                  (1+ mi2-1)2 2 -2 1+2 
           M1— 1m12 —m,— 1l_12 

                                   U V 

       (2)r(1r( 2 )1 
(3.16)• (1+ w+ wv+ wvu)--(/-"'12-0 

        n212 — (A —1)/(F'----1)0 21= E 0'77029 
                                                                                       2=1 

             0<u-F(/-l),(/-l)(7/11-n ((II) • °21/(7221-- 1) 

        D (v, w): F (1-1),(1-1),L1, ("1)/M12<vU±V+zoli<00 for fixed u . 
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