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Chapter VI. Efficiency of a Stochastic Prediction*

  § 6.1. Introduction. In this chapter we shall include the fiducial predic-
tion into the stochastic prediction in the wide sense. A characteristic point 
of our stochastic prediction consists in the expression of possibilities of future 
value in a f orm of distribution function in relation to the finite data observ-
ed in the past which becomes the conditional probability distribution in the 
limit case, while the usual theory of prediction seems to concern exclusively 
with the expected value or the linear least squares prediction value and the 
variance or the mean square error based on the data back to infinite past. 
On the other hand, as for the usual form in the practice of prediction, e. g. 
the weather forecasting, it seems that only the value which is considered to 
be most probable is predicted—let us call provisionally such forecasting the 
decisional prediction. 

   We shall be able to criticize various schemes of prediction from the sta-
nd point of an operations research. The operational efficiencies of a predic-
tion have been discussed by several meteorologists, e.g. J. C. Thompson [37], 
[38], but they are confined to the case of categorical and decisional predic-
tion. In the following paragraph, the efficiency of a prediction will be defined 
in a general and reasonable way. 

   Before proceed to the subject, we shall give some preliminary considera-
tions on the precision of a stochastic prediction. In this chapter we denote 
the stochastic prediction of y by F (y x) where the x stands for an united 
set of fixed condition variates and other sample values of a time series.** 

   On the other hand, we shall denote an estimation of the distribution 
function of unconditional random variable y by F (y), which should be defin-
ed, if possible, by an unconditional stochastic prediction of y such as (4.3.2). 
In general, however, the unconditional stochastic prediction is not always 
obtainable. In that case we use the ordinary estimation, the empirical dist-
ribution function of y instead. Any way, for a large sample, the F (y I x)

* Ogawara [10], [12], [17], [21]. 
** We shall denote by the x both a set of variates and a multidimensional variate . 
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and the F(y) is approximately the conditional and the absolute distribution 
function of y respectively. 

   Definition. Let y be a k dimensional predictand (k>1), let the total 
variance of F(y1x) and F(y) be G2 (x) and a2 respectively, let G(x) be the 

distribution function of x, 62, 02 (x) d G (x) , and suppose that 

                F(y) = f F(y x)dG(x),(6.1.1) 
then 

                 ps_ (a2 020 /a2(6.1.2) 
is said to be the precision of the stochastic prediction F(y' x).* 

   Under the assumption (6.1.1), it is evident that o 02 and 0 < ps _< 1. 
   Now, when a one dimensional time series xt_ (r=0, 1, • -•, L) is given, 

suppose that we can assume, for instance, a normal autoregression scheme 
of order h, then the stochastic prediction of x (t+ s) is given by the distribu-
tion of (4.2.2) and, roughly speaking, the variance a is proportional to N/ 
(N—h-1) (L — h) / (L — (h+1) (h + s+ 1)), neglecting the other factors which 
do not remarkably decrease with N larger than certain value. Consequently, 
if h is too large the precision rather decreases. In general, the model faith-
ful to the nature may be complex. However, if we adopt a model which 
involves too many unknown parameters, we need sufficiently long time series, 
otherwise the precision of the prediction will rather f all. So, for a given 
time series, we should assume preferably simple scheme, so far as it is 
accepted on a significance level. 

  § 6.2. Efficiency of a prediction. Suppose we suffer a loss L(c,y) by 
a realization of a stochastic quantity y, even when we do a protection at 
the cost c, where the function L(c, y) may be negative when the y and the 
protection cost c bring a profit and where we assume that psychological 
damage and cost can be quantitatively measured. In such circumstances, 
we should do a protection c such that the risk 

                  R(c, y)=c+L(c,y)(6.2.1) 

is minimum. However, we can not, in general, deterministically know the 
value of y that will be realized in future. 

   If we only know the (estimation of) absolute probability distribution of 
the y, F(y), we may take the protection c=ca such that the expected risk 

                 Ra(c) = R(c, y) dF (y)(6.2.2) 

is minimum. Thus, Ra=-Ra(ca) is the unavoidable mean minimum risk** 

  * ps(x)=(a2—a2(x))/a2 will be sometimes called the individual precision of the stochastic 
     prediction.  ** If we denote the mean value of c=c(y) which minimize the R(c,y) by Jc(y)dF(y), 

   then Ra 1R(e,y)dF(y).
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when we do not use any occasional prediction and constantly apply the pro-
tection ca. For instance, in case of weather forecasting,  F(y) may be con-
sistent to the climatic frequency distribution of a predictand y. 

   In order to make the best use of a stochastic prediction F(y j x), we 
may choose the protection c(x) such that Rs (c, x) IR(c, y) dF (y x) is 
minimum on each occasion. The c(x) may be called the effective protection 
cost under the condition x. If we denote the (multivariate) distribution func-
tion of x by G(x), the mean value of Rs (x) Rs (c (x) , x) , 

                  Rs—=1 Rs(x)dG(x),(6.2.3) 
is the mean minimum risk in the case when we use the stochastic predic-
tion on every occasion and, the mean effective protection cost in that case, is 

                   cs= Ic(x) dG(x).(6.2.4) 
   Suppose, as a special case, that we can deterministically foreknow the 

value of y as a function of the preceding condition x,y=m(x)—let us call 
this a deterministic prediction—, then we can choose the protection cost 
c=co(x) such that Ro(c, x) m(x)) is minimum. Even in this case we 
can not avoid a risk Ro= Ro(x)dG(x) in the mean, where Ro(x)=R0 (Co (X), 
x), and the mean effective protection cost is co -= co(x) dG(x). 

   In our usual case, the case when we can not deterministically forek-
now the y, suppose that we can only predict the expected value of y, 
m (x) = Jy dF(yIx), on the knowledge of x and that we do not know the 
stochastic prediction F (y x) itself, then it is the only course open to us to 
proceed depending on the decisional prediction m(x). Thus we choose the 
protection cost c* (x) such that R* (c, x) m (x)) is minimum. However, 
various values of y are virtually possible according to the distribution F(y I x), 
if we have no information other than the x. Therefore, the actually ex-
pected risk for that decisional prediction is given by R* (x) R(c* (x), y) 
dF (y j x) , and the mean minimum risk for the succession of this kind of 
prediction is given by 

              R* R* (x)dG (x)(62.5) 

and the mean effective protection cost is c* = Fc*(x)dG(x). 
 Definition. Let L(c, y) be a loss function integrable with respect to 

any distribution function of y and let R(c, y)=c + L(c, y). Let H(y x) 
be any prediction, based on a set of preceding condition variates x, in the 
form of a distribution function, let F(y x) be a stochastic prediction of y 
or an (estimated) conditional distribution of y given x, let G(x) be the 
(estimated) distribution function of x, and let 

       inf JR (c, y) d H (y x) R(c (x), y)dH (y x),(6.2.6) 

       R(x) R(c (x), y)dF (y I x),(6.2.7)



4 Masami OGAWARA

      R(x)dG (x).(6.2.8) 

Then a number 

   e= (Ra— Ra(6.2.9) 
is said to be the efficiency of the prediction H(y x) with respect to the 
loss function L(c, y), where Ra =int R(c,y) dF(y), F(y) being the estimated 
absolute distribution function of y.. 

   For a deterministic prediction, H(y j x) and F(y x) are the same unit 
distribution, and, for a decisional prediction, H(y x) is only an unit dist-
ribution. 
   The efficiency of a prediction defined above by a sample indicates, when 
the prediction represented in the form of la distribution function is most 
effectively and repeatedly used, how much the mean minimum risk R dec-
reases relatively to the mean minimum risk Ra in the case where only the 
prediction by the estimated absolute distribution is constantly used, provided 
that the same stochastic model is applicable on each occasion. According 
to our definition, the efficiency of a prediction depends on the loss func-
tion L(c, y) as well as the prediction scheme and it may assume values less 
than zero or larger than one, but if we assume without loss of generality 
that L(c, y)>0 for all c and y, then we have 0<e<1 for any stochastic 
prediction, as we see in the next paragraph. 

   We did not take the cost required for the preparation of a prediction, 
say c', into our consideration. If we introduce it in our theory, the predic-
tion and the risk function may be written as H(y x, c') and R(c, c', 
+ c' + L(c, y) respectively, and we should minimize the function J R(c, c', y) 
dF(y x, c') with respect to c and c', and the generalized effective protection 
cost and the minimum risk may be written as C (x) = c (x) + c' (x) and R (x) 
= J R(c (x), c' (x) ; y)dF (y I x) respectively. 

  § 6.3. Comparison of efficiencies. Assume that a loss function L(c, 
y, t) which depends on the time t has a finite expectation for all c>.0 and 
t, let xi=x,(t) and x2= x2(t) be two subsequences, corresponding to time t, 
of a stationary time series, and let the minimum risk functions of two 
predictions (which may not be necessarily stochastic) F1(y ;xi) and F 2(y I x2) 
(y = (t + s), s>0) be Ri(x„ t) and R2 (-X 2, t), and let us define the mean 
minimum risks by 

                                        T 

              lim2Tt)dG (xi) (i=1, 2) 

                     respectively, where G (x1) is the (estimated) distribution function of x1. If 
then R1(x1, <R2 (x2, t) for all t, we say that F1(y j x1) is individually more 
effective than F2(y x2) with respect to the loss function L(c, y, t), and if 
R1<R2, F1(y I x1) is said to be more effective in the mean than F 2(y x2)
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with respect to the loss function. If  F1  (y I x1) is individually more effective 
than F2 (y I x2) , the former is more effective in the mean than the latter 
(with respect to L(c, y, t)). 

   In the following, we assume that the loss function is independent of t 
as was in the last paragraph, and we shall consider the relations in mag-
nitude between efficiencies which hold for any loss function. The following 
lemma will be useful for the comparison of efficiencies. 

   Lemma 6. If a function yo(c,y) (0 < c < oo) and inf. co (c, y) are in-

tegrable with respect to a distribution function 0(y), then 

           {inf co (c, y)} d0 (y) <inf (c, y) d0 (y),(6.3.1) 

                                              D where D is the entire space of y. 
 Theorem 21. Using the notations in the preceding paragraph, the 

following propositions hold for the same predictand and for any loss func-
tion. 

   i) Rs < Ra, 
consequently, for the efficiency e, of an arbitrary stochastic prediction, we 
have 0<e„ and, if L(c, y)>0 for all c and y, 

                0 < e, < 1.(6.3.2) 

   ii) Stochastic prediction is individually most efficient among the pre-
dictions based on the same set of preceding condition variates. 

   iii) The case of R*>R1 is possible ; that is, the efficiency of a deci-
sional prediction may be negative in certain circumstances. 

   iv) The deterministic prediction has the largest efficiency in the mean. 
 Proof. i) follows from (6.3.1) by putting 

           co (c, x) ===.- f R(c, y) dF (y i x) and 0 (x) G (x) . 
   ii) Let F(y j x) be a stochastic prediction and H(y x) be any predic-

tion. From (6.2.6) and (6.2.7) we have 

            R,(x) =inf f R(c, y) dF (y!x) 
               < f R(c(x) , y) dF (y x) R(x). 

   iii) is proved by an example which will be given in the later part of 
this paragraph. 

   iv) It will be sufficient to compare with an arbitrary stochastic predic-
tion. For a deterministic prediction y-----m(x), we have 

            R, (x) R(c, m(x)) = R (co (x) y). 

On the other hand, for a stochastic prediction F(y x1) , we get
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               Rs(xi)=inf fR(c, y) dF (Y xi) 
                   = f R(c(xi), y) dF(y I x1), 

whereas 

        Ro (x) R (co (x) R(c(x1) y) R (c (x 1), m(x)) 

for every value of x and x1. Taking the mean of both sides of the last 
inequality with respect to x and x1, we have Ro<Rs. 

   In the last part of the theorem, it may be natural to assume that xi=x. 
Then, from Ro(x)<R(c(xi),Y) we get R, (x1)<_Rs(x1), where Ro (x1) is the 
mean value of Ro(x) with respect to the x such that x=xi, in this meaning, 
the deterministic prediction is individually more effective than any other 
predictions. 
 Theorem 22. Let xix, and suppose that two stochastic predictions 

F(y' .x1) and F(y x2) are convergent to the corresponding conditional 
distribution functions with probability 1 at each point of y when the size 
of sample series tends to infinity. Then the precision of F(y1x2) is not 
smaller than that of F(y x1) asymptotically and the asymptotic efficency 
of F(yl x2) is not smaller than that of F(y x1). 

 Proof. The first part of this theorem is obvious. The second part is 
proved as follows. If we denote the conditional distribution function of x2 
given x1 by G (x2 x1), then the following relation holds asymptotically : 

              F(y' xi) = SF(Y x2) dG(x2 x1). 
Therefore, if we denote the minimum risks for the predictions F(y x1) and 
F (y1 x2) by R1(x1) and R2 (x2) respectively and if we put, in (6.3.1), 

               (c, x2) f R (c, y) dF (Y x2) 
                0(x2) G(x2( xi) (for a fixed x1), 

then we get 

          R2(x 1) = R2 (X2) dG (x2! x1) 

              = inf c7 (c, x2) } dG(x2 x1) 

 inf (c, x2) dG(x2 x1) 

            =inf f fR (c, y) dF (y x2) dG (x2 j xi) 
               =inf R(c, y) dF(y x1) } =R1(x1) (asymptotically). 

Consequently, taking the mean with respect to x1, we get R2<R1 which was
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to be proved. 
   According to the above theorems, we see that, so  far as based on the 

same predictors (the set of condition variates) x, the stochastic prediction 
has the largest efficiency and that, among the stochastic predictions for the 
same predictand, the prediction with broader set of condition variates has 
a larger precision and a larger efficiency at least for a large sample under 
some weak conditions. 

   It should be noticed that, for a time series with small size, even if x1=x2 
the precision of F(y x2) is not always larger than that of F(yx1), as we 
have mentioned in § 6.1. (Ogawara [15], [20]) 

 Example. Suppose that the weather (y) is classified into two ca-
tegories no rain (y,) and rain (y2) and that we have got the following stoc-
hastic prediction scheme. 

 Preceding conditionProbability of theStochastic prediction                                                                 D
ecisional prediction                       YlY2 

             P1PllP12Y2 (Rain) 
   X2P2P21P22 Y2 (Rain) 
   x3P3P31P32 •i (No Rain) 

         Absolute probabilityq1R2 

                                                              3 
In this table EA=1,pi2(i =1, 2, 3), q; (i=1 , 2) and we may 

                                                                                          z=1 

assume that p82 32 ----eh Pll<P12 and P31>P32 ; the other cases will be 
similar to this case. 

   Next, we assume that 

          L(c, y,)for all c 

                L—crfor 0<c<rL             L(
c, Y2) = 

0for rL < c , 

where L and r are positive constants. 

   Then, according to the definitions, we get the following table after some 
calculations. 

       CaseStochastic predictionDecisional prediction       esce* 

 1 � r00Pi(P12—r)/rq2                                                                  (1—p3)TL                                                         +
P2(P22-7-)hq2 
 P12 .� r<100 

  P22T <P12PK/312—r )/q2pirL131(1312-7 )/q2                                                   H-P2(P22—r )/q2(1 P3)L 

   R27<P22                     Pi (P12 — r)/q2+P
2 (P22 r)/q2pirLd-p2rL 

  P32 7<q2Pa(r —P32)/1" TL-FP2r L 
                                                  P3(7 —P32)/T(1 —p3)L  0 < 

r:<p320rL 

                        e=efficiency, c-,--mean effective protection cost .
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We see, in this table, that in the case where r is too large, that is, too much 

protection cost is necessary in order to lighten the damage to be caused by 
a rain, it is preferable to do nothing ; on the contrary, in the case where r 
is very small relatively to the probability of rain and we can diminish the 
damage with a small protection cost, it is desirable to provide a protection 
constantly, and in both cases the efficiency of our stochastic prediction is 
zero. We see also that, in the case of 17- or r<p32, the efficiency of 
the decisional prediction is negative. 

   By the way, if we put babbb                            1—r20—r19r12 —P31= 1 in the above 
tables, we then get the results for the case of a deterministic prediction.* 

   In conclusion, the stochastic prediction informs us of an effective protec-
tion cost which minimizes the expected risk, and it gives a guide to human 
behaviour and social activities on each occasion of prediction, and when it 
is repeatedly used the effect will be displayed in the mean. Although, as 
mentioned by Thompson [38], there may be several practical difficulties for 
its general public use in the weather forecasting, they will and should be 
overcome in the near future. 

   In order to apply our theory to practice, however, it is the first and the 
most important problem to estimate the form of loss function by means of 
a damage survey or some experiments. Of course, the loss function de-

pends upon the protection techniques. If the function is concretely given, 
the comparison of efficiencies will be done in detail further, as was shown 
in the above example. 

  § 6.4. Amount of information of a stochastic prediction.** 

   Let us use the notations F(yx), F(y) and G(x) in the same meaning 
as in § 6.1. 

 Definition. For an r dimensional predictand (Y11 Y2, •, Y r) 9 

            H s(x) = — f (log 6,F (y I x)) dF x)(6.4.1) 
is called the entropy of an individual stochastic prediction F(y x), where 
OF(y x) denotes the r th order finite difference of F(y', x) corresponding 
to the increment 6=. ay„ •••,530 of the y. (6.4.1) depends on the 5„, 
butas we are interested in the difference between two such quantities, it 
will be out of the question. 

 Definition. Let 

               Ha = — f (log OyF (y)) dF (y),(6.4.2) 
then 

                 Is(x)=11a—Hs(x)(6.4.3) 

 * Ogawara [12] ; Some other examples are seen in Ogawara [10], [12], [21]. 
** Ogawara [17]



Time Series and Stochastic Prediction  (III)9

is called the amount of information brought by the stochastic prediction 
F(y x), and 

                Is = is (x) dG(x)(6.4.4) 

is said to be the mean amount of information of the stochastic prediction. 
   The I, (x) and the Is are related to the precision of the stochastic predic-

tion. If, for instance, F(y;x) and F(y) are normal distribution, we have 

                      I5(x)--- log (a /a (x) ) ,(6.4.5) 

where a' is the variance of F(y) and a" (x) is the conditional variance of 
F(y;x). In general, so far as the individual precision is positive, Is (x) 
>0; otherwise the prediction is worthless as a rule. However, we sometim-
es need the prediction with negative amount of information. For instance, 
the absolute probability p of great earthquake for 24 hours at a city is very 
small, say p = 0.0001. If then the probability increased to p (x) = 0.1 by 
some premonitory symptoms x, a warning may be necessary, according to 
the loss function. In such case, however, the amount of information of the 
stochastic prediction is negative. On the other hand, we have 

 Theorem 23. If F(y) = f F(ylx) dG(x), the mean amount of infor-
mation of stochastic prediction is always non-negative. 

 Proof. Since z log z is a convex function of z, we have 

          (log ay F(y)) dF(y) 

       = [log oy SF (y I x)dG (x) l,d f F(y i x)dG (x) 

          [f log 6,F(y x) dF(y x)1 dG(x). 
Consequently, /�0.
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