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 § 1. Introduction. There are various topics in the theory of life test. 
The purpose of this paper is to treat the problem from the standpoint of 
" test of fit ." In life test we start with M items and stop the test at a certain 

preassigned time T or stop when the s-th death has occurred, because if we 
wait till all the death occur we have to wait for a long time, c.f. B. Epstein 

[2], [3], G. Ishii [5] . In a previous paper, we had treated the test of fit in 
life test in the case that we stop when the s-th death has occurred, G. Ishii [4] . 
In the present paper we treat the case when we stop the life test at a certain 

preassigned time T. 
   Let X be a random variable having the continuous distribution function. 

In order to test the hypothesis Ho that the distribution function is a known 
function F(x), F. N. David [1] and M. Okamoto [6] have proposed the fol-
lowing non-parametric test : 

   Let xi (i =1, 2, , M) be M independent observation of a random 
variable X. There are real numbers i =1, 2, ••• , m— 1 such that F(a,) 
—F(at _i) —1/m, i = 1, 2, --- , m where ao= — co, am= + (ai_i, ai] will be 
called " part." Let v be the number of parts which contain no x's. If v 
is too large, we reject Ho. 

   Now we shall apply the above non-parametric test to life test. 

 § 2. Distribution of v in life test. In the following, we shall treat 
the life test in the case that we stop the test at a certain preassigned time T, 
where F(T)=t. We call T ' stop time.' We take the stop time T as is 
equal to a divided point an such that F(T) =F(an) =t =n/m. We start the 

life test with M items and stop at time T. Suppose that there are N deaths. 
Then N is a random variable which follows the binomial distribution. 

(1)P(9 = N) = (N)e(1 — t)M-N 
N observations are situated in some (— cc, al], (a1, ad, (a. --1, 71. Let v 
be the number of parts which contain no x's in the above n parts. 

   For fixed N, we have 

 (2)P(v=v19"1=N) =n-N n(-1)n-v-k(n — 
                  k=1kK • 

                                73



74 CorO isirn

Then we have 

(3)P (v = , N) = P(v 97=N) • P(T= N) . 

We put v(s) v (v — 1) (v — s + 1). 
   Then the s-th f actorial moment is written as 

        !m 

                                 1_  s \ (4)E(v(s))n                        (n— s)!( m) • 
Putting s 1, 2, 

(5)E(v) = n (1— 1 /m)M, 

 (6)E(v(v — 1)) = n (n — 1)(1 — 2/m)m. 

If M 00, m-3 00, , n CO under the restriction of M = m r (r is a constant) 
and n=mt (t is a constant), 

(7)E (v/ n) = (1 — r/2m) + 0(m-2) , 

 (8) D2 (v / n) e-2r (er — 1 t r) /n + 0 (m-2) . 

Under the above conditions we have next theorem. 

   Theorem 1. v / n is asymptotically normally distributed with mean e' 
and variance e-2r (er —1—  tr) /n, where M = mr, n= ynt, (r and t are 
constants). 

   Proof. It is sufficient to prove that the moments of (n/c)1/2(v/n—e-r) 
Lend to the moments of the standard normal distribution, where c = e-2r (er 
—1—  tr) . The proof is almost parallel to that of theorem 1 of M. Oka-
moto [6], and theorem 2 of B. Sherman [7]. 

   Denoting by Br(n) the Bernoulli's number of order n and degree r. 

 (9) Ej( nc\1/2/ Vn_ell, (nc\1121\-r)1-k E(V )k 
   tk)k10_ke 

             4./2   _•-1n-k (k) _k                                E (IP') 
        c k0=--kq 

 /21kM 
     ( n \'t(—1)  

                                               1-k e-r(1-k) 

        ck0--=k!(l— k)! q! (k— q)!Bn! (m — k + q)                                              (n — k +m" nk                                         q)! 

         (— 1)' n1121!  j al a,ac,  
        (er — 1 — tr)1/2 ka° n n2+ • •• 

We have to evaluate these a,. In the above expansion 

(10) !(mk+q)k—k—qn(n — 1)•-• (n — k + q + 1)      (n —k +q)! m"nnk— 

             = n(1k mq(1n) (1 —n)(1 — 
                                                      k —q—  1 

                                                           n
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 =  1  — (k — q) t fj(1 — j x) 
                                                                   j=1 

                         --= Xq • G (x) , 

where 

               x = 1/n 
                                                                        r k—q-1 

               G (x) = 1— (k — q) t x) Fx-t (1 — j x) . 
                                                                       j=1 

Expanding this, we have 

                   G (x) = ako + a„ix + akox2 + • , 

where 

(11) a„o= e—(k—q)r 

        1 .1dP G (x)       a4,=Pp!d 
xP 

         1 p-i p — 1\ dP-1 G (x) ds+1 log G (x)  

      p! s dxP-1dxs'x=0 

                 k—q-142 x243,c34.s+lxs+1    logG(x)—x ±24_3+ s + 1 +-.) 
                             (k—q)2 t2 x2(k_q) s+2           — r(k — q) t x ++••+ +-.) . 

     xt\2s + 2 

Therefore 

         d8+1 log G (x) _s! is+1(S + 1)(k — g)s+2 r ts+1 (12)
d xs+1x=0j=1s + 2 

                    = S! b (say) 

                      11k,, = — is+1 _ 
Ss ++ 1_2 r ts+T (k _ 03-1-2 

Then kg, is a polynomial in k of degree s + 2. 

Putting s = 0, 

                boo= —                   (k — q) (k q — 1 )1                        2—2rt(k—q)2 

                             k2 
               = — (1 + r t)—2 + A k + B (say) . 

From (11), 

(13) akpqE                1P-1 (p— 1) !                                       (p—s— 1)!s! bkqs                 p! s=o s! (p — s— 1) !akq(P-1-8) 

            1 
                      = js2-Jakq(p—l—s) bkqs •                    p 2=0
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Then we have next equations 

        ako = 

         akq0 bkq0 akql = 0 

       a ko bko + akai bkq0 2ak02= 0 

          ak.40 bkq(i-q-1) akql bkq(i-q-2) akc(i-q-1) bkq0 (i q) akq(j-q)= 0 . 

Hence we have 

(14)a kg(i-q) e-(")r B kgi , 

where 

                            ic,o)                 B 
kg, =                  (b+ (terms of lower degree in k)                 (i — q)! 

                                                                                                 -q)-1                        1 (1 + rt)i-gk2(2(tEAsk' . 
            (i — q)!2j=-0 

In (9) we put 

(15)1(— 1)k erk B(n! (m — k + q)m   E               k=q q! (1 — k)! (k — q)! g (n — k + q)! 

            ala2ac,                                                 + ••• .           = ao +++ •+
n—"            nn 

If we denote by aiq the coefficient of n-i in the expansion in the power of 
n' of 

             (—1)k erkB_(m —k+ q) M 
         (1 — k)! (k — q)!(n — k + q)! 

  (-1)krk 

                    e 

     =EB (q-k) Xq a ko + ako x + + a kg(i-o q " '          (1 — k)! (k — q)! 

we have 

(16)a= Ea ,q 
                                                              q=0 

and 

                             (— 1)kerk               a 1q =E  Brk)a, q(I)                     (1 — k)! (k — q)!q 

              7(-1)k  
                           = eqr 

                       k=q(1 — k) ! (k — q) !Bqk-5) B kqi • 

    B ,(q-k) is the coefficient of the expansion of (q/ (et — 1))q-k, then 13 ,(q-k) is 
the polynomial in k of degree q with 2' as the coefficient of the term of 
highest degree. Therefore
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                 (— 1)k (  ,( et-')(1+ t r\' (17) a= e"E1•2 +E Aik 
           k=q (1 — k)! (k — q)!2(z— q)! 

        e'  1+ t r \'-`1 Z (— 1)k   Jk21--q
+terms of lowerL      2g(i —2 ) (1 — k)! (k — q)!degree in k.f• 

As 

                     (— 1)1k1' 0 l' <1 — q 
               k=q (1 k)! (k — q)! 1 l' = 1 —q 

we obtain 

                1 
        a„= 0 i <—2 

              1            eqr(—+ rt2) 

                         1 

         ajLqi =—2= h (when 1 is even).    — q 

             2(h — q)! 

Thus from (16) 

            a -= 0 when i <                         2 

              2h ahq2h1 ((1+ t rn          a
, ==E                   q!(1=0q! (h — q)!`2) 2I 

                   1 (er —  1 i r)'L 
           h!2h 

Then we have 

      lim E {(n )' 72               12 (1)= 0 (when 1 is odd) 
             22h,a ,(2h) !         limEi(cn)11(I)n= (e—1 — t r)h 

                  (2 h)!(when 1 is evens) 
                            2"h!/ =2h) 

This completes the proof. 

 § 3 . The power function. The power function of the test with respect 
to the alternative hypothesis H1 is 

                      P=P(v>1;111) . 

Under H,: distribution function is F1(x), and the range of distribution is 
equal to that of F (x) , where F (T) = 

                              ihn 

                    dH(x) = p„ i = 1, 2, n 

                                                                                       . 

          where H (x) = F (F-1 (x))E pi = 
                                                                              1=1
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We put Pi/r =qi, then E7=,q,= 1 

                              / 

     P(VZ=1\1111,) =(NM) rN (1N 
                                                      n– k      P(v = kW= N1H1) =E ( — (nkj)+ ••• +eq,j)N , 

where denotes the summation over all combinations (t1,••-,t1) drawn 
from (1, 2,•, j). 

        P(v= k, = NA) = P(v k;W=NiHi) • P(-=N Hi) 

                                        (E (v(s)1H1)E s! E (1— q11— •••N) r (1—1-) r,—.-N 
                 =s! E (1 — p11 ••• — pis)m . 

Putting s = 1, 2, we get 

                E(v =E(1 — pi)m 

                E(v(v-1)(111)=E(1— Pt— pi)3 

If F1(x) is absolutely continuous with respect to F (x) and its relative density 
is differentiable, putting H' (x) =h(x), 

             i        pi= 1h(—m)—2m1 /2'-)+ 0(m-s) 
       rla mm 

      (1 —AY'=[1 +2mh' (m— h2 (i+ 0 (m-2)1 

       E(v/kHi) —1(e-rit(x)dx-2mt                                                     h22                                          cdx +0(m-2) . 
    0 0 

   The power function 

                 P=E E P(v = k, s..)/ =N Hi) 
                                             k>lN=-0 

satisfies the next condition when T < t 

                                                                                                                                  . This inequality can be proved by the same method in theorem 3 of Oka-
moto [6]. 

   Thus we have the next theorem. 

   Theorem 2. The test based on v is unbiased against the class of 
alternative hypotheses, r < t.
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