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  § 1. Introduction. The statistical inference theory based on the assump-
tion that the binomial probability P is a known function of the level, say x, 

with unknown parameters, say 0„ 02, is called the probit analysis and has 

special importance in bioassays depending upon quantal responses. Usually 

the function is expressed as the probability integral of the form 

                                                                                a-1-0,-.1                      1
2    I (1.1)P/             =

1e du. 

Other types of the function are adopted very rarely. 
   The practical meaning of the probit analysis in bioassay is as follows . 

Suppose some billogical subject, such as an insect, a plant etc, is applied 
a stimulus, such as a drug, X-ray etc, at a specified intensity, measured in 
a way. Then the subject makes response such as death, excitment etc , as 
its results. If the response is not quantative and is composed of only two, 
"response " or " non -response ," then the minimum intensity of the stimulus 
to result in " response " is called the tolerance of the subject under applica-
tion of the stimulus. Now the tolerance should vary from one individual 
to another, and if a subject is sampled from a population, the tolerance 
should be a random variable. If a subject is sampled f rom a population, 
and a stimulus is applied, then it should give " response," in case the intensity 
of stimulus is higher than the tolerance of this particular individual, and it 
should give " non-response " in the reverse case. 

   As a conclusion we can say that if a sample of some size is drawn from 
a population, and the stimulus at a specified intensity is given to each of 
the individuals then the number of individuals giving " response " should be 
distributed in binomial distribution whose probability is a function of the 
intensity. 
   The inference theory of this type has been developed by Finney [1] . 

   The problem, which we shall discuss in this paper and does not appear 
to have been very fully discussed, is what happens when the number of 
subjects under application is not known. 

   In section 2, we shall discuss such a problem in case the average number 
of individuals is very large and an existing method due to K . Mather will be 
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valid under certain conditions, and in section 3 we shall discuss the problem 
when the number of observation subjects to Poisson distribution. 

 § 2. The case when the number of individuals is very large and the 
method of analysis due to Mather. At first we shall state the following 
theorem. (c. f . [4] ) 

   THEOREM 1. Let F(x; a, fi) be the distribution of the tolerance, and let 
x„ x2, , x_, be the value of the tolerance of each of the individuals drawn 
from a population, then the probability that the tolerances of all the individuals 
are less than xo will tends to a function of the type as N tends to 
co, where A is positive, and both A and B are the constants depending on 

the parameter a and fl and also the distribution function F itself. 
   PROOF. Proof is immediate as this probability is nothing but the proba-

bility of the maximum of independent random variables and we can make 
use of the theorem of the limit of the maximum of independent random 
variables due to R. A. Fisher [3].Q. E. D. 

   This theorem enables us to formulate and analyse the problem of the 
following type. 

   Suppose we want to study the effect of the intensity of stimulus over 
the response, whatever it may be called, of a group of subjects whose number 
is unknown but supposed to be very large, and the group is assumed to give 
response when every individual gives response to the stimulus and to give 
non-response when even one of them gives non-response. The event that 

the group gives response means that the tolerance of each individuals is less 
than the intensity of stimulus applied, and hence the tolerance of the group 
is the maximum of the tolerances of all the individuals in our concern. As 

the number of individuals in the group is supposed to be very large, the 
distribution of the tolerance of the group should be of the type exp[— exp 

[— (Ax + B)]]. 
   The disinfection of bacteria will be the most standard example of it, 

and the arguments above are the mathematical justification of the model and 
the analysis of disinfection time data proposed by Mather [5], whose justifica 
tion such as above is not given by him. 

   It should be emphasized especially to the practical statisticians that the 
number of individuals should be enough large so that the limit distribution 
will be valid, and also that the experiments are so controled well that the 
variation of the number of individuals f rom one experiment to another will 

be negligibly small and the effects of its variation of both' A and B may 
be neglected. Otherwise the experiments can not be analysed by the method 
due to Mather.

    The case when the number of individuals is not large. In case 

the number of the individual in an experiment is not very large, we can not
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make use of the limit theorem as in § 2, and the natural assumption will 

be that the number of individuals in each experiment is distributed in Poisson 

distribution. 

   The probability that the group under an experiment will contain exactly 

n individuals and all the tolerances of the individuals will not exceed the 

intensity x of the stimulus applied on the group will be

                                         _x 2n 
                         e—1
1 (F(x 0)n, 

where 2 is the average number of individuals and F(x 0) is the tolerance 
distribution of the individuals in our concern. Summing up these probabilities 
for all n, the tolerance distribution will be given by e-x(1-1'1'. 

   Before we proceed to the analysis of the data of the experiments accord-
ing to this model, we shall discuss the comparison of these models. 

   In the first model given in § 2, the parameters A and B represents only 
the relation between the group of a given number of individuals and the 
stimulus, but not the one between the individual and the stimulus, where 

  in the model in this section represents the relation between each one of 
the individual and the stimulus. This is the main point in the difference of 
meanings of two models. 

   For instance, if we want to study the effect of a medicine on a sort of 
bacteria, our main interest will not be confined to the effect of a medicine on 
the solution of bacteria at a given density, but also the effect of the medicine 
on individual bacteria, namely the tolerance distribution of the individual 
bacteria, from which the tolerance distribution of the solution should be 

resulted. In this case the model due to Mather will not be valid, and the 
model in this section will be useful, as we can separate the parameters 
expressing the effect and the one expressing the characteristics of the group, 
the practical namely the average numbers in the solution. 

   For the calculation of the maximum likelihood estimates of these para-
meters, we need a provisional values of them, as the likelihood equations 
are very much complicated. After obtaining a provisional value in some way , 
we shall show, we can calculate the approximations of maximum likelihood 
estimates recursively, and the general theory of numerical calculus states 
that if the series of approximations converges we can say the limit should 
be the maximum likelihood estimates. 

   For the calculation of the approximations from the provisional values , 
or from the approximations of previous stage we may employ the following 
method. 
   Let P(x, a, g, =e—P-('—''''x'c''P') be the binomial probability, with con-

trolable variable x and unknown parameters a, fi and g, and suppose experi-
ments were carried out at the level of controlable variables x1, x2, •-•,xk, 
with the sample sizes n„ n2, •••,nie. In our case x represents the intensity
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of stimulus, and • is the average number of individuals in the group, and 
F(x; a, 43) is the tolerance distribution of individuals. 

   Let r„ r2, ••-, r, he the number of success in each experiment, then 

the likelihood function is given by 

(3. 1) II(rtn,!                    11) !(P(xi, a,'a, ,a))7.' (1— P(xi; a,tt))n'r' ,             !(n,— 

which we shall write as eL, and the maximum likelihood estimates will be 

given by solving the equations 

                    old aL aL                == 0 . (3. 2)                  a
sagag 

   Let (a1, gi, tti) be the provisional value of the maximum likelihood 
estimates, and let (a0, go, Po) be their true values, and f urther let us write 

                      6a = — 

(3.3)Og = go — gi 
                                 5/1 = o — Pi , 

      aL aL aL 
expanding aa,a              ag—and--garound (a1, gi,,u1) and taking the terms up till 
the second order, we have the f ollowing equations 

           Li, (al , /91, gi) gi, /11) + OaLp.,‘(ai,gi,g1) 
                                              OgLo(ai,Ri, sat)==, 

(34)          La(a,,gi)gi)daLam(cei,)31, dal)                                       + agL
.0(ai,gi, iti) =0 , 

                gi, /al) 5/240(a1, gi, it]) + 6aL„p(a1, gi, 
                                          6,843(a1, gi, 1,0-0 . 

   The solution of the equations above may be taken as its approximates 
to (Oa, 5,3,5g). 

   And also we have 

           n(p        L
c, = E             PQP) 

               PQ (-- nP,„n                   )(p—P)(1 — 2P)n(P—P)  (3. 5) L„=EPc,Ep         (pQ)2QP 

            PQ (— nPo) — n (p— P) Po(1 —2P)(P —P)   L
oo =_EPc,+ E -P                          (PQ)2pcep 

          etc.. 

For the purpose of approximation we may take p P in the second order 
derivatives and thus we have
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                   —  E pQ 
(3.6) 

                        L„f, — E PQP„Pi,, 

                            etc. 

   Therefore the solutions of the following equations 

  n(/)P)     -+ a EagE 
    PQ-13" PQPQPQ 

                        nn (P —P) (3
. 7) 512 E PQOa E PQ13:,+ 6,9EPQPQ                        _ Ep„, 

                              n -n (P — P) 

                                                                                                                                                   ' 

         EPQP,,P0+ aceEPQP„P+ ag EPQ13',E                                       PQ(3 

may be taken as the approximations of the solutions of (3. 4) and also 

(al Oa, Pi+ 6,8, At,--1- bp) may be taken as the approximations of the maxi-
mum likelihood estimates. 

   Then we have the following 

   THEOREM 2. In case F(x; a, g) is assumed to be of the form 

(3.8)F(x; a, ,(3) = z(x)dx , 

where Z(x) is some known function, the solution of (3. 7) minimizes 

 3.9)Q(x,i;                        al, gi, PI)p,      M =EYi +G(x,al, gi) —ofiZ (a, + glxt) ((, 
                                            — g Pix,Z (a, + ix) 

where y, is defined by 

              Pi—P(xi ;al,Ri,tti)  (3
.10) y, =+ gi(a1+ gixi) Z (a, +                 P(

xi; a], 

                                  — ,1-1,G (x; al, /9) 

and G(x g) is defined by 

(3.11)G(x; a, () 1 —F(x, a, g) . 

   PROOF. Inserting each derivative in (3. 7) the value calculated from 

the relation P(x; a, 9, —e-'1-P`'")) and (3. 8), we have the following 
equations
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                                            n (PP)G 
,       — OP EPG2 ± 5a EnPG PIZ -1-EnPGpfZx = 

      PnPP 2n(p — P) (3
.12) — Op E GZ + Oa E + 5)3 E p,Z x=Z , 

     -EnPGZnPx+ 5a Eit1z-0nPx + ag E0x 

                                 = En  (P— P) Z x . 

By making use of the definition of y, we have the f ollowing equations, 

       -E22PG2+ a EnPGplZ +QEnPGpiZx—E
QnPGy, 

(3.13) — EnPGZ+ a EnPp1Z2+nPE,a1Z2xnP, 

      —EnPGZ x + a EnPpiZx + g EnPpiZ2x2= EnPZxY 

where u = gi OP, a = a1 + Oa, Q = gi+ 5,3 and value of G, Z, y are the ones 
when it = it 1, a = al, Q= Q1.Q. E. D. 

  § 4. Further discussion. 
   The authors understand that data of this type can be analysed in the 

same method as was proposed by Finney [2], and there is some similarity 

between our problem and Wadley's problem. The method proposed by Finney 
makes approximation on both the first and the second derivatives in (3.4), 
whereas ours makes the same on the second ones only, and our method 
appears to be more natural way of analysis along the usual method of probit 
analysis. Moreover there are essential differences between our problem and 
Wadley's one, as in the later one the number of individuals giving non-response 
is assumed to be possible to be counted, and also the analysis of Wadley's 
model enables us to study only the effects of the stimulus on each individuals 
but not the effect on, so to say, the group itself. Therefore in the example 

giving in the paper [2] repeated experimentations at the same intensity of 
stimulus were not required. Theref are the authors dare to present their 
result here. 

   There remains an important problem unsolved as to finding out the first 

provisional value of (a, 13, . There do exist situations when we cannot 
count the number of individuals under aplication of stimulus. For instance 
the data presented by Mather is produced through the experiments of such 
nature. 
   The authors regret that they cannot give any example of the analysis. 
The data so f ar available to them is only the one given in the paper of 
Mather [5]. As our model assumes P= we have F = 1 —1/p • logP,
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we first calculated  1  —  1/g• logr/n, for various value of p, and then, assum-
ing that F(x, a, 3) be log-normal distribution function, we calculated the 

probit transformation of 1 —1//2 • logr/n. The graphical representation shows 
,u = 150 gives the closest fit to the straight line with a = 1.3 and 3=5.2. 
Taking them as the first approximates, we calculated the approximations 
to the maximum likelihood estimates which, however, f ailed to converge. 
We tried to analize the same according to the method due to Finney [3], 
which resulted in the same. Therefore further investigations concerning 
the tolerance distribution of individual bacterium cell would be necessary. 

   The method above would be suitable for finding out the provisional 
value.

 § 5. Acknowledgements. The authors are gratefull to professor T. 
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