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 § 1. Introduction. Let P(t, x, • ) be the stationary transition probabili-
ties of a one-dimensional diffusion process X( t ) : 

              P(t, x, E) = P1X(t s) E E/X(s)= x} , t, s_>_0 

   The purpose of this paper is to show the existence of the limit of 
transition probabilities P( t, x, • ) as t---) co. That the limiting distributions 
satisfy certain differential equations was stated by A. KOLMOGOROV [7].') 
S. BERNSTEIN [1] has discussed the existence of the limits for the processes 
determined by the stochastic difference equations under somewhat stronger 
conditions on diffusion coefficients which imply EIX(t);A} < L for all large 
t with some positive constants 2 and L. Theorem 1 asserts that if the 
mean of the first passage time f rom any one point to another is finite, 
then the limiting distribution exists which can be given explicitly as the 
solution of a certain differential equation. We use the strong Markov property 
and then apply a renewal theorem. 

   The author expresses his hearty thanks to Prof. T. KITAGAWA, Prof. 
G. MARUYAMA and Prof. 'I'. ONOYAMA for their kind encouragements and 
advices throughout the preparation of this paper. 

  § 2. Definitions, assumptions and notations. Consider the backward 
diffusion equation 

(1)            a                atu(t, x) = S2u(t, x) , 

                                           —S2=a(x)
x'(00 <r1<x<r2<,,,), 

where a(x)(> 0), a' ,x) and b(x) are continuous in the open interval (r1, 
r2). Following FELLER [6], we say that X(t) is a diffusion process in (r„ 
r2) obeying (1) if it has stationary transition probabilities P(t, x, • ) satis-
fying the following three conditions : 

(A) P(t, x, E) = PPC(t + s) EE/ X(s) =x1 (t, s> 0) 

1) Numbers in brackets refer to references at the end of this paper. 
                                  84
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is defined for all x  (r„ r,), all Borel sets E C (r„ r2) and t > 0, and is for 
fixed E Borel measurable in both t and x, 

(B) P (t + s, x, E) = P(t, x, dy)P(s, y, E) , 

(C) for every function f(x) continuous and bounded in (r,, r2) the Laplace 

transform F(x) r e't dt f(y)P(t, x, dy) (2> 0) satisfies 

                                      

• r, 

              2F(x) S2F(x)= f(x) ri<x<r2. 

   Throughout this paper we consider the above X(t) process in case of 
inaccessible boundaries, and assume that almost all sample functions are 
continuous. 
   The process with initial position a( E (r1,r2)) is denoted by X (t). 
We define the first passage time 7,;') from x to p by 

    (r)inf t ; X(-(t)=p} if X'''(t) reaches p within finite time, 
     P= 

                               otherwise, 

and put .Fp'x'(t) = P rp°9 < } • For a fixed x0 (r1, r2) we put B(x) = 

exp{fs    I b(t)/a(t) dt} 
         xo 

 § 3. Limits of transition probabilities. First we state the conditions 
for E(rx))< CO which are necessary and sufficient in case of inaccessible 
boundaries. These conditions are essential to the existence of the limiting 
distributions. 

   Lemma 1. (Doos [3]). If the following two conditions are satisfied 
        TUI2 

              ()1/B(t)dt =1/B(t)dt= 

(2).r,                                                           1.2 

     ( 

             (ii)B(t)la(t)dt < 

then we have E(7,(x))< CO for any x, p E (r1, r2) and 

         ixr,                   1/B(t)dt B(s)/a(s)ds if p>x, 

                                                                                                                                                . (3)t 

                1/B(t)dt l B(s)/a(s)ds if p<x 
      P t 

   Proof. See DooB [3] (Theorem 9.9, p. 202) or FELLER [6]. 

   Lemma 2. Let F(t) be a distribution function of non-lattice type such 

that F(+ 0) = 0 and p = tdF(t) < cc, and let y(t) be a continuous func-

2) For the classification of boundaries, see FELLER [5] and [6] .
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tion defined in [0,  00 ) with ca(t) = O(t-') (t—>co) for some positive con-
stant a. Put 

             M(t) F(t) + F*F(t) F*F*F(t) ••• .3) 

   Then we have 

            lim co(t — u) dM(u) =(1/g) • ( co(u) du .4) 
    0. 0 

   Proof. Put 0(u, t) = M(t) — M(t u). Then by BLACKWELL'S theorem 
([2], p. 145) we have for any fixed u> 0 

(4)lim 0(u, t) =u/ g .4) 

   Since M(t) M(t) is the expected number of occurrences of a recurrent event 
with the distribution of recurrence time F(• ) before time t, we have 

                M(t + s)<M(t)+ M(s)+ 1, t, s>0 
   Therefore 

(5)0(u+ 1, t) — 0(u, t)<c, for any < t —1 , 
with some constant c,. 

   Next let us write 

         so(t — u)dM(u)--- I so(u)d„0(u, t) 

                                                 no 

                     = T(U)d „(D(U, t) + c9(u)cluO(u, t) 

                                                               

. "0 

                              II+ 12, 

and for E >0, take an integer n„ such that 

            E 1/WTh&<6,             9
);(n(u)) <c2/u"' for all u_>_n„ (c2: constant). 

   Then by (5) we have 

                        ct,_/ in-I-1 
(6)= Eco(u)d,40(u,t)+ 40(u)d„O(u, t) 

                                     72,72ti                                                           [(3 

               < cl • E c2/ n1" <c, • c, • efor all t> 
                                          0 =no 

   On the other hand by (5) and the continuity of co(u) 
                                                                no 

(7)lim(1/A1)1co(u) du for fixed no . 
                                    0 By (6) and (7), the lemma is proved. 

3) * means convolution. 
4) When It is infinite, we interprete this as 0.
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   Using the above lemmas we prove the following 

   Theorem 1. Let X(t) be a diffusion process obeying (1) and P(t, x, • ) 
be its transition probabilities. Then if the condition (2) is satisfied, 
P(t, x, • ) has the limit distribution as t—> co independent of x, with density 

        r2—1 

            P(Y) =I  B(t)/a(t)dtr • B(y)/a(y) , 

which is a solution of the differential equation 

              1 dp(y)                           --= b(y) — (Y) AO) , 
            P(Y) 

                   r2 

satisfyingP(y)dy= 1. 
                    rt 

   Proof. Take p1 PC p2 and p; such that ri.< 401‹ P!,‹ p2< r2, and 
let E be a Borel subset of the open interval 4,0,). In the following argu-
ments, E and p's are arbitrary but fixed under the above conditions. 

   We say that the " event Ai " occurs at the moment when a path starting 
from p; returns for the first time to p; after reaching pi (i = 1, 2), and 

define 13,,(t, x, E) ; P„(t, p E) as follows (i =1, 2) : 

( i) P0(t, x, E) is the probability that X')(t) E E neither reaching p, nor 
     P2 up to time t (x E (p1, 102)), 

(ii) P„(t, p:, E) is the probability that up to time t exactly n Ai's occur 
     and X-P'')(t) E E neither reaching p1 nor P2 after the n-th occurrence 

     of Ai (n=--1, 2, ••• ). Also put 

(iii) F i(t) * F (t) . 
   Then by the strong Markov property ( [8], p. 457) of the X(t) process, 

we have 

     Pfl(t, p;, E) = I P„-,(t — u, p;, E)dFi(u) 

                              0 

               = Pu(t —u, E)dFi*"(u)5' (i = 1, 2 ; n= 1, 2, ...) , 

and P(t, E) can be written in the form 

                                                        t 

     P(t, E) = E Pn(t,p„E) +IE P„(tE)}dFpP!'(u) 
             tt,.0 .„ n=1 

(8) P1(t, E) + j .130(t E)dM1(u) 
              tru 

                +13,,(t — u— s,E)dM2(s)l-dFrpfP(u) ,           s 

where Mi(u) = F,(u) + Fr (u) + F2 3(u) + • • • , (i = 1, 2). 

 5) F" means the n-th iterated convolution of F.
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Next, let f(x) be any continuous function with the support entirely contained 
in the interior of (p, io,) and put 

                                       (1,2' 

           COi(t) = f(y)P,,(t, [4, dy) , t >0, (i = 1, 2). 
                                      PI' 

Then by (8) we have 

             P2' 

(9) .A.Y)P(t, pi, dy) --- Cot(t) 
             PI' 

   + 1ttt—u              C a1(1- — u) dA 1L(u) + dFp' !/)(u) co,(t — u — s)dM2(s) . 
   . 00 . 0 

Here, coi(t) (i = 1, 2) are continuous"' in (0, cc ) and co,( t) = 0(e")") as t —÷ cc 
with some positive constant c. For, we have for any x ,- (p„ p2) P,,(to, x, 

(1)1, i02))‹c'‹ 1 with some positive constant c' and to> 0. Therefore, 
we have P(nt0, x, (pt, P2))<C'n, hence Po(t, x, (p1, p2)) = 0(e') (t---› 00) 
for some positive constant c and so is coi(t). 

   Moreover, FL (t) (i = 1, 2) are obviously of non-lattice type with FL( + 0) 

= 0 and gi = C t dFL(t) < co by Lemma 1. Hence by Lemma 2 we have 

                    0 

          lim It                 co,(t — u)d1VIL(u)----(11g1) 1 yL(u)dit. 

                                                       

. 0 

Inserting this into (9) 

    P2.00 

(10)lim f(y) P(t, pC, dy) ----E(1/ Pi) i coi(u)du . 
                                                                                1=1, '2                                  t-''s' 

P1' 

                                                                                                                 fP2

'                                                                                                                                 r' 
   To calculate the right hand side of (10), first we note that1dtf(y) 

                                                                                 

•0 • Pi 

X P„(t, x, dy)=---- y(x) is the solution of — 9 y — 1 with the boundary condi-
tions y(p,)= y(p2) = 0, thus having 

(11)  co,(u)du 

   P,PCP2'P2        -1/B(t)dtl.Ii 1/B(t)dt} f(y)B(y)/a(y) I 1/B(t)dtdy 
     .Pi.Pt.' P1' 

    r2 F        1 / B(t) dti.11r21/ B(t) dtl.2'f( y) B( y) / a( y)r 1/ B(t) dt dy     PI• P2. Pr. PI 

                                                      for i =2, 

and secondly by Lemma 1, 

             r.,Pi 

(12)'11= (•1)1 i-B( t)/a(t)dt 1 1/B(t)dt (i = 1, 2) . 
                . ri. PC 

6) P1(t, x, •) are the transition probabilities of the process with 191 and p• as absorbing barriers 
   which correspond to the strongly continuous and norm decreasing semi-group ([6]).
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Combinig (10), (11) and (12) we finally obtain 

                                                                                        -1 1)!' 

   1Bimf(y)P(t,dy)(t)/a(t)dtl.f(y)B(y)/a(y)dy 
 t-- . . Pt' 

   The above formula holds for any initial position x c (r„ r,), for, putting 

   x, E) = P X(')(t) E E without reaching p before t we have 

                     P2' 

      lim f(y)P(t, x, dy) 
                     P1' 

                           "tP2' 

     = lim[f(y)P;t — u, dy)dFc;',','(u) + f(y)P(t, x, dy )1 

   

• 0. P.. 

      /2-1 P2'       -(( B(t)/a(t)dt} .f(Y)B(Y)/a(Y)d. Y 
 .. 

   Since p's are arbitrary, this is true for any continuous function f(x) 
with the support entirely contained in the open interval (r1, r2). This 
means that P(t, x, E) has the limit distribution independent of x, as t DC, 
as was to be proved. 

   Remark 1. If E(r))--_-_- co, then applying Lemma 2 to (9) we have 
lim P(t, x, E) =0 for any Sorel set E with the closure contained in the 
t— 

open interval (r1, r2). 

   Remrak 2. If a boundary is accesible, we can let a path jump into 
the interior of (r1, r„) when it reaches the boundary. For this process, 
the same problem can be treated by a similar method. In connection with 
the statistical quality control problems, this will be discussed by a joint 
paper of T. KITAGAWA and the author. 

   Example 1.7) For ri finite put a(x) -1=2 1, and b(x) kl(x — r1) 
— l/(r,— x) with k > 1 and 1> 1. In this case the condition (2) is satis-
fied, so that the limiting distribution exists. The density p(y) is given by 

                   P(Y) A(x —r,)k (r,— x)1 

with the normalizing constant A. 

   Example 2.7) Put a(x) = A'x2 + B'x + C', b(x) Dx + E and let 
(r„ r2) be the interval in which A'x2 + B'x + C'> 0. Under the condition 
(2), the limit distribution exists and the density p(y) is a Pearsonian curve 
(A. KOLMOGOROV [7] and S. BERNSTEIN [1]) : 

              1 dp(y) (D — 2A') y + (E  B') 
               p;y)A' y2+ B'yC'• 

7) For the preparation of these examples the author owes to the suggestion of Prof. T. KITAGAWA.
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The following table illustrates the condition (2) more intuitively. 

,1 

               a(x)(r 1, r2)the condition (2)p(y) 

            —A(x— AI)(A2— x)22DA[+ E__A(, 1t—22) 1 (I) 

                                        , 

   (i)(A < 0 , Al < A2) I''''''''  DA2+ E---A(A.,— AI) i 

   (ii),A(x — AO(A > 0, AI < A2)( x — A2)I DA,+ E�A(A9— Ai)(II)                                (A2,c.)'-'D—< A- 

  (iii)A (x — B)2D B + E > 0             B,Do)(III)       (A > 0) (D < A  

   (iv)A (x — B)2 + CI (              (A> 0,  C > 0)---.'''''x)  D < A(IV) 

  (v)B (x — C)                                (C,         (B > 0)1.0)1DC+E�B(V)           D<0  

(I) ---, (V) in the table correspond to the followings:
                                 DX11-E

AO)-1DX21-/'                                                       .WA-1-                                        .1.0l 

( I) • p(y) = const. (y - 21)-(22— y),h,X0-, 2i<31 <22, 
                                                           DA.t-I-EDX2-I-P 

                                                               - (II) : p(y)=const. (y__).i)A0,-x2,-1(y —22)A(A12-X1)9 4.< y < co 9 

                                    D 

                                                -2 

(III): P(y) = const. (y — B)A exp {—DBA1-E .  1 1B<y<cc,                                       yB' 

                                              D  

 const. A(x —B)2+ Cr_1 
                                      11/A(x — B) 

(IV): p(y)--- 
        const. exp'exp{DB,+E-tan_-1-                        .Hx2..,+Exi, 

          2CCI/ACC                                                 for A> 0 ,                                                  for A = 0 , 
                              — oo < y <co , 

                                                               DC-I-B__, 

(V) : p(y)=const. (x — C) 1.-exp-IBD xl., C < y <°°• 
   In case (i) we have b(r,) > 0 and b(r2) <0. Therefore if a path of 

the particle approaches a boundary, it is more likely to move towards the 
center, and hence to imply the existence of the limiting distribution. 

   In case (iii) we can construct the diffusion process X(t) in (-00, 00 ) 

by solving Ito's stochastic integral equation ([4], p. 273). For this process, 
a path starting from x E (— co, B) enter the interval (B, 00) and thereafter 
never returns to B with probability one because B is an isolated zero of 
a(x) and b(B)> 0 (DooB [3], Theorem 9.10). Hence we have also 

                 (F                     p(y)  
                 Ep(y) dy for E = (B, CO )           lim13 .X-)E'----{ 

     ,--0 for E =(— 09, B) . 

with P(y) given by (III). 

KYUSHU UNIVERSITY.
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