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Introduction. 

 § 1. The objects of Introduction. The main objects of this Introduc-
tion are to make clear as far as possible some of the methodological aspects 
of what I am now giving a tentative name of stochastically approximative 
analysis or more simply stochastic analysis. Let us illustrate first the back-

grounds and needs for and secondly the methodological characteristic aspects 
of what we shall call stochastically approximative analysis. 

 § 2. Backgrounds and needs for the stochastically approximative 
analysis. 

   [1] Numerical analysis. In 1951 the author of the present paper [3] 
introduced the notion of random integration by which to make comparisons 
of efficiencies among various mechanical quadratures such as we owe to 
Euler-Maclaurin, Tschebycheff, Gauss and so on. It is our standpoint that 
their relative efficiencies should be referred to certain families of functions 
to which their respective measure of probability should be defined in view 
of the corresponding situation of applications. It is hardly necessary to 
remark that the advent of high-speed sequenced computing machinery is 
not only revolutionizing the art of computation, but also our theoretical 
formulations by which some of theoretical aspects of numerical computa-
tions to be described. In fact the needs for stochastic formulations to 
numerical computations seem to us to become the more important, the more 
speedy machinery becomes available to us which can yield us numerical 
computation in a scale of mass productions. 

   [2] Analytical studies in sample surveys and in designed experiments. 
In some kinds of sample surveys and specially in a sequence of sample 
surveys an accumulation of our information will make it possible and our 

purposes of surveys will make it necessary to enter into discussions of more 
detailed aspects of our populations sampled. The three papers of the author 

[13], [14] and [15] were devoted to such problems as belonging to this 
category of the problems. For instance, mapping problems and interpene-
trating procedures discussed in these papers will suggest us some correspond-
ences to classical problems treated in the realm of calculus such as those 
of finding out the extremal values of the response surf aces . The main
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differences lie in the f act that we should treat these problems not f rom 
deterministic formulations as in the classical calculus but from the stochas-
tically approximative analysis. Consequently some preparations should be 

performed for fundamental formulations before we shall be able to enter 
into any adequate discussion manif esting the characteristic aspects of such 
analytical studies in these fields of statistical activities. 

   [3] Statistical controls. In 1952 the author wrote a paper on succes-
sive processes of statistical controls [8] by which to formulate some cyber-
netical theory of statistical controls. One of our emphasis is to suggest 
the possibilities and needs for giving a risk function formulation which 
should include not only decisions on statistical inferences but also controls 
on our objective worlds themselves. In our formulations controls mean 
transformations of the value of our population parameter to the other value, 
and our process of controlling scheme will sometimes yield us some functional 
equations concerning these transformations.

   § 3, Methodological characteristic aspects of stochastically approxi-
mative analysis. The main idea in giving a frame for developing our 
stochastically approximative analysis is to prepare with ourselves the stand-

points with regards to the three aspects of logics according to which to 
coordinate our detailed investigations, i.e., those of objectivity, practice and 
subjectivity. In our schemes each of these three aspects has its subordinate 

principles on which to be based namely, ( i) the objectivity on the principles 
of factorization and of probabilization, ( ii) the practices on the principles 

of efficiency and of successiveness, and (iii) the subjectivity on the principles 
of valuations and of strategy. Let us illustrate our viewpoints in what 
follows. 

   It is to be noted that the frame of logical aspects for developing our 
stochastically approximative analysis is subject to certain specializations of 
our general frame applicable in formulating our unified viewpoint including 
not only statistical inferences, statistical decision functions, but also stochastic 
analysis, statistical controls and cybernetics as its subordinate fields. 

   However we shall be here content with rather specialized frame suited 
for our stochastic analysis, not entering into the general frame as a whole. 

   In the first place, the two principles belonging to the objectivity aspect 
concern themselves with a formulation by which to describe our objective 
worlds in our concerns. As in almost all schemes in which any stochastic 
approaches may be found to be both necessary and adequate, it is almost 
evident that these two principles are indispensable in formulating our scheme 
of stochastic analysis. It is to be mentioned here that broader concepts of 
stochastic schemes than those which have been actually used in the statistical 
inference theories so far developed in most of current literatures should be 

prepared in order to give us mathematical formulations which may be re-
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cognized to be better suited  for approaching our problems in this field of 
stochastically approximative analysis. For instance a new formulation of 
analysis variance scheme in ref erence to the function space was given by 
the author [5] in 1951 in which the mathematical model appealing to the 
Wiener space of continuous functions was adopted as in CAMERON-MARTIN [1]. 
In the same idea the classical problems allied to the procedure how to define 
empirical functions were discussed in two papers of the author [11] and [13] 

in order to give better descriptions of error terms originating from various 
kinds of samplings and of observations. 

   Secondly let us turn to the aspects of practices. It can be readily ob-
served that a notion of efficiency in some sense will be one of dominating 

principles ruling our procedures of stochastically approximative analysis. 
This is in the first place because of the real situations to be met in our 

practices in which our resources to be used for our investigations are almost 
always limited within certain limits, and secondly because of our allowable 
tolerances within which it suffices us to attain our aims. This is indeed the 
essential reason why we call our analysis as approximative in its adequate 
sense. Now the second subordinate principle, which we have called the 

principle of successiveness, also reflects our real situations of practices 
where multistage approaches may be applicable. In its special f ormulation 
some aspects of feedback principle will be f ound to be useful as in sequential 
or successive processes of statistical inferences and controls. 

   Lastly let us discuss with the logical aspects of subjectivity in our 
stochastically approximative analysis. We are placed in the circumstance 

where we have to start with an incomplete information as to our objective 
worlds which will be described by two principles of objectivity. An ac-
cumulation of our knowledges having been provided to us by each step of 

our experiments will gradually manifest the situations of our objective world 
and therefore will become more probable to have better recognition about 
our objective world at the expenses of costs of experimentations. In views 
of these considerations as well as those enunciated with regards to the 

principles of practices it seems to us quite promising to appeal to some 
decision function formulation as our frame work in developing stochastically 
approximative analysis.

 § 4. Decision theoretical approaches and cybernetical formulations 
of successive process of inferences and controls. It is to be noted here 
that, unless our procedures of solving various problems in our stochastically 
approximative analysis are categolized in the objective way, it would be 

impossible for us to establish any scientific approach. For instance it may 
be very practical as well as fairly efficient in some cicumstances to fit 
a curve by free-hand drawing to observed data. However any decision 
theoretical approach may be impossible for us to develop, because our pro-
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cedures of drawing free-hand curves will not be defined objectively in its 
strict sense. Thus the possibility of decision theoretical approaches means 
certain restrictions upon our research attitudes how to evaluate the scopes 
of attainments and how to interpret our observations. It is to be compared 
with purely scientific approaches where it should be completely free for 
research workers how to interpret the data and how to make questions 
in further investigations without any considerations upon our resources for 
investigations. 
   The distinction between decision theoretical approaches and scientific 
experimentations has been clearly described by a recent paper of R . A. 
FISHER  [1]. It is to be noted however that our stochastically approximative 
analysis can be better formulated at least in its starting simpler schemes 
through the frame of decision theoretical approaches . This comes from two 
reasons. In the first place we want to have gradually progressive procedure 
of formulating our more extensive problems , starting therefore with the 
simpler and more clear ones. Secondly even some of the quite common 

problems such as those which will be formulated in the Parts I, II and III 
of this paper have not been well formulated in reference to our frame of 

stochastically approximative analysis in the sense enunciated in the previous 

paragraph. 
   Now the role of decision function approaches in our stochastically ap-

proximative analysis can be observed from the fact that there are three 
fundamental attitudes in adopting our strategies in dealing with our problems , 
namely 

   (i) the strategy appealing to our apriori informations and / or strategic 
variables possibly after obtaining some functional relationships among inter-
related variables 

   (ii) the strategy appealing to randomization principle in dealing with 
unknown situations and unknown effects of various uncontrolled factors 

   (iii) the strategy appealing to game theoretical approach in formulating 
unknown situations and overcoming unknown effects. 

   Indeed the first strategy belongs to current mathematical analysis , as 
we can observe specially in some of functional analysis. The second strategy 
covers the standpoint of stochastic approximations developed by ROBBINS 

and MONRO [1], WOLFOWITZ [1] and others, as well as that of random 
integration developed by the auther [3]. On the other hand the principal 
aspect of the uses of the third strategy, so f ar as stochastically approxima-
tive analysis is concerned with, has not been well pointed out by any other 
author.

 § 5. Summary of this paper. The first purpose of this paper is to 
enunciate our general viewpoints how to f ormulate our stochastically ap-

proximative analysis, as we have given in this Introduction. The second
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purpose of this paper is to give each  formulation to each of some fundamental 

problems associated with numerical analysis from the view points of the 
decision function approches to stochastically approximative analysis. In 

Part I we give two theorems concerning linear estimation formula on the 

basis of the non-sequental minimax procedures, which may be recognized 

to be preparatory to stochastically approximative analysis of more advanced 
and more elaborate types. 

   In Part II we are concerned with the discussions about the uses of 

difference-tables in interpolatory analysis from the standpoints of stochasti-

cally approximative analysis, appealing to the frame of the WIENER space 

and also to successive process of statistical inferences. In Part III our 

emphasis lies also in the formulation of our current procedures in developing 

our concurrence-function in the series of given orthogonal functions and 

in stopping the calculation of the expansion until some adquate terms. We 

shall point out here as well as elsewhere the situation that some of the cur-

rent procedures of numerical analysis can be formulated from the stand-

points of successive process of statistical inferences of ter giving at least 
substantially their respective suitable formulation concerning the three funda-

mental logical schemes. Some of Part II and most of Part III are merely 

giving certain formulations to our problem, and it is open to further develop-
ment to solve various detailed problems suggested by our formulation.

Part I. Preparatory considerations upon risk function 

              approaches to linear estimations.

  § 1. Introductory. Several types of stochastically approximative inte-
grations have been introduced by our previous paper [3J in the name of 
random integrations. This will naturally suggest the possibility and the needs 
for introducing stochastically approximative differentiations. However it will 
be readily observed that some adequate f ormulations of stochastic approxi-
mations should have been introduced before we shall be able to discuss them. 
Moreover it seems to the author that some more fundamental reconsidera-
tion should have been performed bef are we shall be able to obtain some 
adequate formulation for stochastic approximations in general. This means 
that, although stochastic approximations should be concerned with limiting 

process of usually infinite sequence, some preparatory formulations of biassed 
estimations concerning finite sequence should be developed in some scheme 
appealing to some sorts of inequalities giving restrictions to our realm of 

possible estimations. 
   We want to enunciate our idea very briefly rather confining ourselves 

within the simplest linear estimations. Although the two Theorems can be 

enunciated in a fairly general way, the uses of these two Theorems in dis-
cussing stochastic approximation can be observed from what follows.
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   Let us define a sequence of stochastic variables Y, f(Ti) for i = 1, 2, 
3, ... , whose realization will be y, = f(t,) for our partial realization t = (t1, 
t27 . • • 7 tn) of T = (Ti7 71,27 • • • 7 T n • • • ) • 

   In order to discuss the stochastic behaviours of the sequence of # 
we have to prepare ourselves with two fundamental notions. The first thing 
to do is how to define the meanings of convergence to the limit value f(t„). 
There are various kinds of convergences such as ( i) convergence in law, 
( ii) mean convergence ( iii) convergence in probability and ( iv ) almost 
everywhere convergence. The second thing to be considered is how to choose 
our estimater using our observations {f(tM in order to approximate our 
limit f( mo in its finite step. It is not altogether apparent whether or 
not there is a linear summation formula defined by the sequence 

(1.01)F c, E cn,,f(tt) 

which is a better estimator of f(to) in some sense of efficiency with refer-
ence to some notion of convergence than the sequence lf(ti) (i = 1, 2, ...). 
The situation can be recognized by the following fundamental relations to 
the effect that under the assumptions of existences of means and variances 
of the stochastic variables Y., we have 

                                                                                     7i 

(1.02)E c„,,Y4 E Yi E c„,,m, 
          i=1ti=1i-1 

    2171 

(1.03)a 2 IE=(72yi a;i!• 
                                                    i= 1 

   Hence there may be some possibility of obtaining the means and the vari-
ances such that 

( 1. 04 )E c„.im, — m < mo 
                                       i=1 

                                             7L 

(1.05)E c2,, < (4, 

by a suitable choice of the sequence c„,,#. However, since we are not 
acquainted with the values of these Imt# and 0-`f }, we are placed to be in 
the situation of game player whose strategy is to choose { c„,,# under the 
incomplete informations about the sets of values Inii# and afl.

  § 2. Minimax approaches. 

   [1] Let us assume to adopt the mean square error in order to evaluate 
the degree of approximation to an unknown value mo. Here let us confine 
ourselves with non-sequential approach, and let us denote c„,,= ci, m,— m„ 
AL, = Bt (i = 1, 2, ... , n) for a fixed number n. Then the risk will be 
denoted by 

                             2 n 

(2.01)R((A, B); c) =72 c, Ai) + E /37 , 
                                                                                                                                       i_--- 1
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where A -=- (A„ B=(-131, B2, c (c,, c2, c„) and 

(A, B) denote vectorial notations. 
   Let us assume certain domain of (A, B) in the 2n-dimensional euclidian 

space, and the range C of c in the n-dimenisional space satisfying the 
condition E c, = 1. We shall be concerned with the fact that the relations 
hold true that 

(2.02) Max Min R((A, B); c) = Min Max R((A, B); c) 
   S1 CC 

for suitable choices of the domain 9. The relation (2. 02) shows us the 
existence of minimax solution for their respective domain 9. For the sake 
of simplicity let us introduce 

          n Ai2n Ain 1 
(2.03) 102, r)2,            i=t1=1Di I Di 

   The direct calaulations yield us the following two Lemmas. 

   Lemma 1.1. For each assigned vector (A, B), we have 

                    1+  (2
.04)Min R((A, B); c)=                              gi(1+e) 

and this minimum is attained by c° = (c10, c2", ..., c,;') defined by 

                     ci"=B
i-,T(1+ e)—o21(1 + 8) — A,0 (2.05)—(i=1, 2, ..., n) . 

   Lemma 1.2. We have 

(2.06)R((A, B); c)>j c22B,2(1+ e). 
 1,1 

   Theorem 1.1. Let 9 be the domain defined in the 2n-dimensional 
euclidian space by the relation that 

(2.07) = <B,,240(i)-1 (i = 1, 2. , n) 

for an assigned set of values ou and B02, where co(i) is a given positive 
valued function of i. 

   Then the minimax solution for the non-sequential stochastic approxi-
mation within the class of all the linear combinations of If(ti), i.e. y„= 

   cif(ti) with Eci = 1, with respect to the risk function (2.01) and 91, 
is given by 

(2.08)ci= co(i)} , (i= 1, 2, ..., n) . 
Corrollary 1.1. Specially when co(i)=_, 1 for i = 1, 2, , n, then we have 

(2.09)_                          c,= C2 = . . .Cn—n-'.
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Proof of Theorem 1. 1.: The Schwarz inequality gives us TO > 02, where 
the equality holds when and only when AF 13,2 Bi-2 Ai' are equal to a con-
stant independent of i. Consequently we can observe 

                           +e  (2. 10) Max Min R((A,B); c) = Max 
             cS2/gf( 1 +e)— 02 

                          = 

                                   1+E-B1,2(1e„) 

                                   = 

                                 E co(i) 

which is attained by the point (A, B) such that 

(2.111) = B„'co(i)-' (i = 1, 2, ... , n) 

                                     7/-1- (2.112)A,2 = A22 == A„2 e oBo2[ECo(i)I 
                                                                                                                                         -J 

for which the corresponding values of the minimizing set of are given 
by (2.08) as immediately seen from (2.05). 

   On the other hand Lemma 1. 2 gives us that 

                                                                                      92 

(2.12)Max R((A, B); c) = (1 + e)B,,2 E ci2c0(i)-1 

and hence that 

                             (1 + (2. 13)Min MaxR((A,B);c), 

                              E s0(i) 
                                                                             i,1 

which is attained just by the same set of the values Ad, BL and 
as those defined by (2. 111) (2. 112). 

   [2D Another type of minimax approaches will be given by introducing 
a mean risk function under the circumstances that there is a class of a priori 
distribution functions G(A) such that 

(2.14)IANG(A) fAiAidG(A) =0 (i N   j) 
for i, j -= 1, 2, ... , n. We have then 

(2. 15)R((A, B); c) dG(A) =E c' (D2 + B,2) 
                                                                                           La-t 

   It will be our common situations that we do not have any exact in-
formation about the values of Dz + B (i = 1, 2, ... , n) until that we can 
expect that Bz + = 0(co(i)---1), where tends to zero as i tends to 
infinity. In view of our analytical tool to be used in such an approach, 
let us consider the domain S2,(H(,) in the space (B,2, 1322, , D12, D22, 

. . . , D„2) defined such as 

(2.16) + D,2 = Htca(i)-' (i — 1, 2, ... , n) ,
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where 

 (2.17) Hz = Ho, 

with assigned positive value of p and Ho. Let us denote the weighted risk 
(2.15) by K,(H, c). 

   Theoaem 1.2. The minimax solution of the stochastically approxima-
tive limit within the class of all linear combinations of ;f(ti) with respect 
to the risk function (2. 15) and 12,(H„) is given by 

                                                                          7Z 

(2. 18)c1)=Eca(i)1P1('/)/E[cp(i)]"'(i= 1, 2, • • • , n) 
                                                         i=1 

Proof : The direct calculation of the value gives us 

                           1 17?.13,)(1-1-p)/p 
(2. 19)Max Min K.,(H;c)==iii,(E[co(1)](1-     S2,( Ho) CMi

ni11" 
                                         p( v ) 

which is attained by the set of the values of H, } and defined as follows 

                                                                      72 

                                   (2.201)HolIP [c()()]] 101-P) (Em)1p1(1-1-111 P 

(2.202) [co( i )]Plit-t-P),E[co( )]Pl(11-p) 

   On the other hand we can calculate directly 

( 2. 21)Min Max K1(H; c) , 
                                       c S2p(110) 

which turns to be the same as (2. 19), being attained by the set of the 
values defined (2.201) and (2. 202).

Part II. Interpolations viewed from the standpoints of 

            stochastically approximative analysis.

 § 1. Stochastic approaches to interpolation analysis. It is rather 
a common procedure to be observed in most of our applications that we 

shall first look at the difference-table before we shall have determined any 

choice of interpolation formula. In such a situation some informations are 

to be seeked for which will lead us to decide how to answer to various 

problems. The first use of the difference table is to be served in deciding 
what is the suitable degree of polynomial to be used to fit for our data, 

and the second use in detecting any gross error which may be sometimes 

involved. In many cases of practical applications there will be various 

sources of errors which should be treated in probabilistic formulations such 

as those derived from random errors of observations. The relative efficiencies 

and roles of various procedures of interpolations can be discussed from the
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standpoints of stochastically approximative analysis where we are not neces-

sarily interested in each individual function but in a family of functions 

constituting a suitable probability field.

   2. Lagrange formula as a functional in the generalized Wiener space. 
Let f(t) be a function belonging to the function space (C„) of all the con-
tinuous functions which are continuously differentiable to a certain p-th order 
and which can be written as 

                                         (t  — s)P-1y(s)ds , (2.01) f(t) = ao+ att.+a2t2 ++ ap_JP-1 + 
                                   u(p — 1) ! 

having the probability field introduced by the following conditions: 

   Condition (1°). ao, a„ a2, ap_, are mutually independent stochastic 
variables with means 0 and finite variances a02, 612 . . . , 6;,_E respectively. 

   Condition (2°) y(.) belongs to the function space (C) with Wiener 
measure. 

   Condition (3°) y(•) runs through (C) independently with (a1, a, 
an )• 

   Now let us assume that the values of f(t) for a set of values t = t, 
(i = 1, 2, ..., n) are observed and exactly known to us, which yields us the 
Lagrange interpolation formula 

(2. 02)P(t)=Ef(t,)Li(t) , 

with 
                (t — t,)(t — t2) ...(t — tt_,)(t — t1,1) ...(t — t„)  (2.03) L,(t)-_-=-(t

,— t1)(t,- t2) (ti— timi) • • • (ti — t,) • 

   [1] Let it be assumed that p < n. Then we have 
                     tP -' 

(2.04) R(t)=---f(t)P(t) =E Li(t) 
                                  t,(t, — u) y(u)du,                    i=1(p1)! 

                                           • which yields us 
  111               n n —u)P-'

y(u)du (2.05) [R(t)rdtLi(t)Lj(t)ti 
      00•tiCP—1)! 

                                    (t,— v)'y(v) dv .                             ) (p —1)! 
                                                      tj 

   In order to simplify our notations, let us introduce 

                      L.(t)(t — u)'` < u <t (2
.06)Mt, (p 1)1 

                   0elsewhere 

for i = 1, 2, , n in the two-dimensional square 0 < t, u < 1.
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Then we can rewrite  (2.04) by 

(2.07)R(t) = E coi(t, u)y(u)du 

   For each fixed value of t in 0 < t < 1, R(t) is a functional defined 
over the Wiener space (C). It will be more convienient to write (2. 07) as 

(2.08)R(t)= — y(u)clo(t, u) , 

                                                     0 with 

                                                                        71 

(2.09)Ik(t,E v)dv. 
                                                           J=1 

   In view of the general theory of the Wiener space by PALEY-WIENER [1] 
and CAMERON-MARTIN [1], the distribution of the functional R(t) is normal 
with the mean zero and the variance alit), where 

                             21'1 (2. 10)01(t).=flif(tu)12 du • 

   [2] Now let it be assumed that p> n + 1. Then we have 
                                                                                            21 

(2. 11)R(t) f(t) P(t) = E a,[ti E "Li(t)] 
                                     j=nt-Ii.1 

                  + E Lt( t )[(ti— u)v-ty(u)du . 
             i=, 1)! 

   In this case the distribution of the functional R(t) in the generalized 
WIENER space (Cp) is normal with the mean zero and the variance 

                             1 (2
. 12) a2;„(,) _ a7a,.2p,(t)p,(t)+[iji-(t, u)rdu , 

            j=n1-1 k=n-1-12 

                                                                      0 where Vf(t, u) is that defined in (2.09) and 

(2.13) —E ti Li(t) (j n + 1, ..., p) 

   Now let it be assumed that our observations involve errors Ei giving us 
f(ti) + e instead of f(ti) at each point ti, and let it be assumed that 
(i = 1, 2, ... , n) is a realization of n independent stochastic variables with 
the mean 0 and the common variance 02 satisfying the condition similar 
to the condition (3°). It can be now readily observed 

   Theorem 2. 1. Under the general formulation of the concurrence-func-
tions and our observation errors enunciated in this paragraph, the remainder
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term R(t) for each assigned t can be considered as a functional defined over 
the generelized Wiener space (C„) with the addition of observation errors 
which has the mean value 0 and the variance 

             -72 

(2. 14)aL(t)+62 E [Li(t)r.                    2 

   This Theorem implies in particular that, so far as p < n holds true, 
the Lagrange interpolation is an unbiassed estimater with the variance (2.10), 
for any sample value of a„ ap_, and ap _1. For each assigned set of 

   we can evaluate directly the value (2. 14) for any t, and furthermore 
we can discuss the problem how to choose a set of observation points ti} in 
order to minimize the averaged variance such as 

               1 (2
. 15)-62tdtE [L,(t)rdt .            2R" 

i=1 

          

• 0• 0 

   [31 Risk function approach. The following formulation in dealing with 
our problem may be of some interests. Let us consider the situation where 
our concurrence-function f(t) can be assumed to be a polynomial of at most 

p-th degree, where p> n +1,a, being here unknown constants. Then 
under our hypothesis (2°) to this paragraph, we have, in view of Ee[y(u)] 
= 0, 

                             .P-1 

(2.16) R(t)2 = (f(t)— P(t))2=-.1E a.;(tj — E 
                      rc=li 

              7
y(u)du((ti—v)            + Li(t)L.5(t)            7=1(P1)1(P1)1y(v)dv ,                                                                                      •tj 

         + 2?tLi(t)) • E L,(t)1y(u)du 
              i=1i=1(P1)1 

                                                                       ti                    

1 

(2.17). Ell[R(t)]-dt]-=1 a jai 1 3.e) 

                                                 

;=.-I? 1=72 

          7? 7 ti(t—v) 
                 +EL,(t)4(t)\-(p —1)!("p-1)! 

                                   J.1                            • ti•t; 

                  • .E,[y(u) y(v)]dudv , 

where 
                                                          72 (2.18)B;;IJ =1 (ti — E t/Li(t))(ti — E t.L,(t))dt 

            i=1i=1                                            • 0 

Notice that 

(2. 19).-E,[y(u) y(v)] - 0.2 Min (u, v)
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and put 
                                                                   .t                        '(t(t

,— v)"Min (u
, v)dudv (2.20) Ail')L,(t)L,(t)C'P —1)!I(P —1)! 

                  • ti•t
, 

Then we have 
                                        .1 

( 2. 21 ) [R(t)]' dt] aia,13_6) + a' A,'"' 
                           3-= 21 1 =11i =1 j= 

   The left-hand side is the averageloss of using p(t)as an estimate for 
f(t), and is a functional dependent upon the choice of the set of division-
points (t„ , t„) and also naturally upon the concurrence-function of 
f(t) since it is a quadratic form of the coefficients (an, • . • , In 
view of the right-hand side it is possible to make a risk function approach 
if we shall restrict ourselves with some partial problem such as to determine 
the number of division-points provided that the sequence (t,("), , t,`,") 

    1, 2, 3, ...) is assigned. 

  § 3. The variate-defference procedure in interpolation analysis. One 
of our main concerns in applying a Lagrange interpolation formula is how to 
find out the degree p- 1 of the polynomial. The use of the variate-difference 
procedure lies among others in contributing some informations in answering 
to this question. It is usually recommended to stop a continuation of con-
structing higher-difference just when we have reached the differences with 
some degrees which can be recognized to be a random sequence. This will 
natuarally serve to decide the degree of an interpolation polynomial. 

   From the standpoint of our stochastically approximative analysis we 
may formulate accurately and precisely in the mathematical expressions 
this procedure of fitting a polynomial in view of sequences of differences. 

   Then it will turn out that this sort of procedure can be recognized as 
one of successive process of statistical inf erences discussed specially in Parts I 
and III of the paper of the author [1] on this topics. 

  § 4. Stochastical aspects associated with difference-variate analysis. 
Let our concurrence-function f(t) be of the form 

(4.01)f(t)= air , 

which is regular and analytic in the interval 0 < t <L. Let our observation 
at each point t, with equal intervals be 

(4.02) E aitii + e , (j — 1, 2, ... , n) 
                                                                              1,-11 

where is a realization of the n independent stochastic variables distri-

buted in NID (0, a2), 02 being unknown to us.
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   Now let the differences of the v-th order be denoted by 

(4.03)x„, z'f( t,) aizP t + e + S' 
say (j = 1, 2, ... n — 

   In view of our difference formula we have 

(4.04)E( d'd ek) = 62 . 

   Consequently the simultaneous probability density function of y, (x,,, 
x„, . . . , x„,„_,) is now given by 

    1  
                                 Vn-1ii (4.05)2 7r 62("-V)12expl2— 1, (y,— m„)' Vci (y,— m„)} ,       ()d2•-• 

where the matrix (pP) is known to us, while the vector m,= (mo, mid2, 
. . . , m„,„_,) and the constant a' are unknown to us. 

   The general aspects of our situations to be considered in deciding a pro-
cedure how to choose a suitable order v of the differences can be illustrated 
as follows : 

   (1°) For the concurrence-function f(t) which reduces to a polynomial 
whose degree is less than v we have m„ = 0 for j = 1, 2, ... , n — v. Broadly 
speaking there is a general tendency that the magnitude of m, becomes 
smaller as v becomes greater. 

   (2°) The sequence of the variance matrices 02 Vv l has a general tendency 
that 1' Vv 11 becomes greater as v becomes greater. 

   (3°) Let us consider the null hypothesis H„(v):m„,= m2, = . . • = 
= 0. A choice of the degree v should take into considerations the two 
fundamental aspects (1°) and (2'). One of the simplest procedures will be 
to introduce the generalised mean square error defined as 

(4.06)m,' V ,--1 m, + a21' , 

where the first term corresponds to the square of the bias, while the second 
one to the variance. The quantity (4. 06) is a function of v and a (ao, 
a1, a2, .), and consequently will be denoted by W (v, a). We have, putting 

             (j, k= 1, 2, ... , n—v), 
         it -1 it 

(4.07) W(v, a)-7-=E E (E ai /iv t.;) bLvA). (E a, + 021' V „-' 1 
                               J=t k =1 7=0 

                                                                                          ??- 

                 _E E atai E b,(k"),Pt1 dvt,' + 021' V,--tl 
                                                       .7=1 k.1 

                                             71- - 

               _= E E ata,B,(i, 1) + a2 E E b.;;;') 
             1=10j=1 k=1 

   (4°) It is our common principle in choosing a suitable degree v of the 
interpolation polynomial to find out the least order v for which HO„ v' cannot 
be rejected. In some cases it can be performed in sequential procedure.
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 § 5. Game theoretic approaches in deciding the degree of the inter-
polation formula. The considerations given in (3°) and (4°) in § 4 will 
now suggest us to formulate the following stochastic analysis. 

   In view of the  formula (4.07) our risk function R(v, a) can be defined 
as the sum of the loss W (v, a) and the cost c(v), which is here assumed 
simply to be a function of v 

(5.01)R(v, a) (v, a) + c(v) . 

   The nature will choose his strategy a, while the statistician his strategy v. 
In this case we shall be concerned with mixed strategies: let (v) and 72(a) 
be the probability distribution functions of v and a respectively , and let us 
consider the problem how to find out the minimax strategy . That is to say, 
defining the weighted risk 

(5.02)R(5, 77) 1 R(v,a)d5(v)c177(a) , 
we want to find out the solution (5, 77) satisfying 

(5. 03)inf sup R(5, 77) = sup inf R(5, 7)) . 
        t '7n t 

  § 6. Difference variate method and successive process of statistical 
inferences. Let s' be an independent estimate of 02 such that rs2I62 is 
distributed inchi-square distribution with the d.f.r. and let F,!'-v(a,) be the 
level of the significance of the statistic F associated to the probability a, 

of the error of the first kind. In what follows let us assume a (al, . • • , 
an_1) be an assigned sequence of the values such that 0 < at< 1 for i = 1, 

2, ... , n — 1. 
   Our statistical procedure is defined to proceed in the following manner : 

   (1°) Accept the null hypothesis How if 

(6.01)y,' V ,-1 y, <  

and decide to use the interpolation polynomial of the degree 0, that is, 
a constant. 

   (2°) Accept the null hypothesis How if 

( 6. 021) V Yi> F;.2-'(a,) s' 

(6.022)Y2172-572‹ F1,!'(ce2)s2 

and decide to use the interpolation polynomial of the degree 1. 

   (v°) Accept the null hypothesis .11„<v' if 

(6.031) I 1-1 yi> F''(a,)s2 (i = 1, 2, ... , v — 1) 

(6.032)Yv'17,71 y, <F;!'(a,)s2 

and decide to use on interpolation polynomial of the degree v — 1, for v 1, 
2, 3, ... , n — 1.
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   (n°) Decide to use the interpolation polynomial of the degree n — 1, if 

(6.04)Yi' V i--1 yi> Frn-i(a,)s2  (i = 1, 2, ... , n — 1) . 

   It is not easy to give numerical calculations yielding us the power 
function of this statistical procedure. However it is to be noted that, under 
our formulation given in the previous paragraph, the theoretical aspects of 
this procedure are rather simple. Indeed we can enunciate the probability 
function associated with this procedure in the following way. Let us write 

(6.05) E( JP 6, ziq = a' 4), (ti = 1, 2, ... , n — p ; j = 1, 2, n q) 

(6.06)V„ = (4q,'")) 

which are (n p) x (n q) rectangular matrices in general and coincide 
with V, when p = q. 

   Then the probability that we shall have the case ( (v + 1)°) is equal to 

            1Ei:,(xi — mi )2 
                       exp 1—  (6.07) p(v ; a)(27r a2 )n(711-1)12 M1/2 . . .2 62dx,.dx„ 

                                                My(a) 

                                            • g(s' ; 0-2)ds2 

where the domain of the integration is defined by 

                        Yt' VC-1 yi> F;'-i(cei)s2 ( 6
. 8 ) 

                         yi' y, < F,-''(a„)s2 

and gr(s" ; 62) is the probability density function of the statistic s' where 
rs2/a2 is distributed in the chi-square distribution with the r degrees of 
freedom.

Part III. Successive process of fitting a sequence 

                of orthogonal functions.

 § 1. Introductory. The use of orthogonal function systems in fitting 
empirical functions is particularly recommended in virtue of their property 

such that the coefficients of the fitted orthogonal expansions are determined 

irrespective of the degrees of the approximate formula. Therefore there 

have been suggested some sort of successive fittings of sections of orthogonal 

expansions. However any rigorous formulation of statistical procedure and 

any evaluation of their merits have not yet been well discussed in any 

literature. It is our purpose in this Part III to formulate the problems 

from the standpoints of the decision function approach under the general 

schemes of stochastically approximative analysis.
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  § 2. General formulation of a successive procedure in fitting ortho-
gonal  functions. Let ca.(t; n)} (v = 0, 1, 2, ... , n — 1) be a system of 
the normalized orthogonal functions associated with an assigned system of 

points where m independent observations on our unknown function k(t) 
were performed which yielded us the sets of observed values 0„: (y„ , y,,, 

    yi„,) for i = 1, 2, ..., n. Let us define 

                                                 >2 

(2.01) y, co,(ti; n) (v = 0, 1, 2, ... , n-- 1) 
                                          i=1 

by 

(2. 92).Y1.= (yit ..yim)Im (i= 1, 2, ... , n). 

   Let us also define 

(2.03) "c,c0,(t n) (k = 0, 1, 2, ..., n— 1) 

                            )2 nt 

(2.04)s2 E(Yu —.-Yi.)2,/n(m —1) 

(2.05)r, 2 rk( t if,(t) 2 
                  n r n—I2—I                      = ELE"e,c0,(ti;n)]= 

                           i=1•,=A-1-11,=k-t-t 

   The current procedures recommended in some literatures seem to 

proceed in the following way, if it be formulated more accurately . Let 
a sequence of fractions a= (a0, al, ..., an_ 1) with the conditions 0 < at <1 
(i = 0, 1, 2, , n — 1) be assigned. 

   (0°)„ Test the null hypothesis H00, : c1= c2— = c„_1= 0. For this 
purpose we appeal to the statistic 

(2.06)Fo= r0Ns2 , 

which, under the null hypothesis Hr , is distributed according to the F-
distribution with the pair of the degrees of the freedom [n 1, n(m — 1)]. 
That is, if F0> F z-i-,1_0(a1,), we say that the test for H„'" is significant , and 
if otherwise, we say non-significant. 

   (0°), If the test Ho(") is non-significant in the step (0'),, then we adopt 

(2.07)g(t)----4-0(t). 

   (1°)„ If the test H00) is significant in the step (0°)„, then we shall now 
test the null hypothesis HP) c2= c3 = = c„_, = 0. 

   For this purpose we appeal to the statistic 

(2.08)F1= r12Is2, 

which, under the null hypothesis H0"), is distributed according to the F-
distribution with the pair of the degrees of the freedom [n — 2, n(m — 1)] .
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   That is, Fi> F7W-1)(cf1), we say that the test for Ho") is significant, 

and if otherwise, we say non-significant. 

   (1°), If the test for HP is non-significant in the step (1°),,, then we 
adopt 

(2.09)k(t)= 

   (2°), If the test for HP is significant in the step (1°),, then we shall 
proceed to test the null hypothesis H,(2) : c3 = c,= = c„_1= 0. 

   For this purpose we shall appeal to the statistic 

(2.10)F2=r22 Is' , 

which, under the null hypothesis Ho"), is distributed according to the F-
distribution with the pair of the degrees of the freedom [n — 3, n(nz —1)]. 

   (2°), Similarly we shall proceed on. 
   This procedure seems to be very natural in some respects. In more 

accurate considerations some preassumptions seem to have been set out 

beforehand without which the procedure described above would lack their 
validities and their effectiveness. 

   For instance, let m ------10, n=10 and a2 = 1, and let our concurrence 
function be given by 

(2.11)g(t) =1 + 0.01 ; 10) . 

   In such a situation, the procedure will have a relatively large chance 
of adopting some polynomial of very low degree. This is due to the one 

characteristic aspect of our statstical procedure, which gives the predeter-
mined ascending order of testing the sequence of the null hypotheses. Such 

preferences on the lower degrees do not necessarily hold adequate. In the 
case when no information abciut the coefficients I c,1 is provided for us, 
a more efficient approach may be possible which will test the significance 
of the coefficients in the order of the descending values of the statistics 

  § 3. Successive process of statistical inferences associated with a se-

quence of fitting orthogonal fnnctions. In this paragraph let our con-
currence-function g(t) be denoted by 

                                                                     72 —1 

(3.01) c,y0,(t; n) , 
                                                         v=0 

which can be characterized by the vector c (co, c„ 
   Under this circumstance rki 1 s' introduced in § 2 is distributed in the 

non-central F-distribution 
                                                                                     n — I 

(3.02)F(n — 1 — k ; n(nt — 1) ; 1, E c,'2/a2) ,
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where the pair of the degrees of freedom is  1n — 1 — k, n(m — 1)] and the 
parameter of non-centrality is 

   The procedure indicated in § 2 gives us the estimate g(t) for an unknown 
function k(t) which is defined as follows : 

   ( i ) If 14,1:" is non-significant, kW,— g„(t). 
   (ii) If HO is significant and I-1J') is non-significant, g(t) = 1(t). 

   (I)) If each of 1-/-„'" is significant for i = 0, 1, 2, ... , v —1 and 1-1„'") is 
non-significant, g(t) 0). (I, = 2, 3, ... , n— 2). 

   (n — 1)- If each of How is significant for i 0, 1, 2, ... , n— 1, then 
k(t) = 

   Let us denote by d(y) = (do(Y), di(Y), d„_1(y)) the decision function 
defined by our statistical procedure just enunciated, where cl,(y) is equal 
to one, when and only when we decide to employ g,(1) in our statistical 
procedure, and is equal to zero, if otherwise. In virtue of this function, 
we can write 

                                                            n-1 

(3.03)i'(t)-=E d,(Y)k,(t). 

   Now let us calculate 
                                            xx 

(3.04) Hk(t) — k(t) -=E[k(t k(t 
                                             =1 

                                               rit-                                                                                             n-1 

                

.=E[ECY) En) — cicoi(t• n)] 
             t=11/=0i=0i= 

          n rn-1n-1n-12               =ELE ei(Cy))TO; ; n) — ETO• n) 
         3.1i=01=0               n-1rn-12 

                = Ec, E cl,(y)  
                                                  v=i 

   Writing 
                                                             n-1 

(3.05)ei(y) E d,(y) (i = 0, 1, 2, n —1), 

we have 
                   2 n- 1 

(3. 06) I(t) — (t)I = Ece, — ci)2 e,2 (y) 
                                          n-1 

                 + 2 E ciCC1 — c,)e,(y)(e,(y) — 1) 
                                        i=0 

                                          n-1 

                 + E c,2(e,(y)— 1)2 

                                                    n--1n-1 

                =ci)2e?(Y) +E c22(ei(Y) — 1)2, 
                                                                     i=0 

since e,(y)(e,(y) —1) = 0 for almost all y. 
   It will be interesting to determine our decision function d(y) under 

some adequate restrictions. However Iet us restrict ourselves with the 
calculation of the mean value of (3. 06) when we appeal to the statistical 

procedure in § 2.
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   In view of the relation (3.05) the statistical procedure in § 2 gives us 
the following assertions: 

   (0°) eo(y) is always equal to 1. 

   (1°) e,(y) is equal to 1, provided that y belongs to the domain D, 
defined by 

(3.07) r1, 2 I s2> Fi;,'-i)(cf,,) • 

And e,(y) is equal to zero, if y belongs to elsewhere. 

   (2°) e2(y) is equal to 1, provided that y belongs to the domain D, 
defined by 

(3.08)ro 2 /S2> FZ,rr!-1)( ao) 

                          r12/.92>F7T--1)(cti) 

And e,(y) is equal to zero, if y belongs to elsewhere. 

   (v°) In general e,(y) is equal to 1, provided that y belongs to the 
domain D, defined by 

(3.09)r012 I s2> FZ,1-0(ao) 

                        riVs2> 

                             r,_i „2 s2> 

And e,(y) is equal to zero, if y belongs to elsewhere (v = 3, 4, .. , n — 1). 
   Now the mean distance between our concurrence-function k(t) and 

the estimated function -g(t) introduced in this paragraph will be defined 
by the formula 

(3.10) k"(t)— ,k(t) 

                 = k(t) — (t) 2 p(y1c)dy , 

where y —(y11 v              -11 ,Y12,• • • 9 )7 ,Y • • • Y2n1 • • • Yn1 Yi/2 , • • • , ?art) and 

                                                                          n (3. 11) p(y/c) = ( 2 Tra )--(11"1)/2 expi — E E(Y,J —5',)2/20.1 , 
                                                                         1=1 .2=1 

where we denote c = (c0, c1, , c„_1) because of the relation 

(3.12) n) (1, =0, 1, 2,..., n —1) . 
                                                    1,1 

   In our present case we have 

(3.13) Eel k(t) k--(t)H 

       = E (6,— c,)2p(y1c)dy + c,2(1— p(y1c))dy) . 
   v=0v.0    • D.•D . 

   Although the formula (3. 13) is too complicated to observe directly 
any consequence which will depend upon a choice of a— (a,,, a„ , a„_,),
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it may be still worth while to give this exact formula to which any ap-

proximation may  be applied.
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