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 § 1. Introduction. The first purpose of this paper is to give a formu-
lation upon which the operational calculus will be established in obtaining 
the unbiased minimum variance estimate of a function 0(r) of parameter r 
when there exists a sufficient statistic U whose probability element can be 
written in the form 

(1. 01)dF(u ; r) = A(r)e-Tu±v(") d,u(u) , 

where g(u) is a measure for every finite range of the u space. Recently 
my colleagues Y. WASHIO, H. MORIMOTO and N. IKEDA DJ gave a detailed 
discussion about this problem concerning (1. 01) including the various funda-
mental distributions as their examples. During their preparations I f ound 
out that the essential aspects of their results can be reviewed in virtue of 
the operational formulations connected with the linear translatable operations 
for which the present author contributed some general theory by the previous 
papers KITAGAWA [1] ^^, [4], while T. ONOYAMA [1] discussed their general-
izations to stochastic functional equations. For our present purpose some 
fundamental observations upon the bounded linear translatable operations 
will be given in § 2, and an introduction of some linear translatable opera-
tions which may not necessarily be bounded will be enunciated with reference 
to a sequence of bounded linear translatable operations. After these pre-
parations a certain correspondence between a function 0(7) and a linear 
translatable operation A can be established which yields us the relation 

(1. 02) (r)e" 

for every r belonging to a certain strip S depending upon A. Furthermore 
this correspondence shows us that under some fairly general conditions the 
unique unbiased minimum variance estimate W (u) for the function 0 (r) 
can be obtained by 

(1. 03)W (u) e-v'u) Azi[eu)] , 

whose exact enunciation will be given in Theorem 3. 1. Thus some of the 
conditions given in Theorem 1 in WASHIO, MORIMOTO and IKEDA [1] can 
be proved, and our correspondence enunciated just now will be seen to be 
more transparent and more convenient in some sense. Several Lemmas 
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given in § 2 are also useful for deriving some of the operational calculus 
used in obtaining such estimates, as may be verified in the detailed discussions 
by WASHIO, MORIMOTO and IKEDA [i]. 

   The second purpose of this paper is to discuss how to estimate a func-
tion 0(7) of the unknown parameter r under the mentioned conditions. Even 
when the functional form of 0(7) may be known to us, it does not necessarily 
follow that the estimater W (u) given in (1. 03) should be used, because there 
are various problems of cost considerations in calculating W (u) and also of 
the comparisons of the variances of the estimaters. 

   It is true that among the unbiased estimates the estimate with the 
minimum variance is given by the statistic W (u). But there is a possibility 
of obtaining an estimate which may be a biased estimate for 0(r) and which 
may have the smallest mean square error in some sense. In § 4 a notion 
of the mean loss function is introduced, and Theorem 4. 1 is established 
which determines the estimate yielding us the minimum mean loss among 

all the estimates of the form g ,(u) akW k(u), N = 1, 2, 3, ... , co , when 
                                                                   k=() 

0 (2) akei" and u is the unbiased sufficient statistic for 2 with the 
            k=1) 

minimum variance having the distribution of the form (4. 07). The case 
when the statistic u is distributed in a discrete distribution such as Poisson 
and binomial ones can be treated quite similarly, although any detailed f or-
mulation will not be given here. 

 § 2. Bounded linear translatable operations. Let (E) be a set of 
all measurable functions f(u) defined over E = ( — co, CO) such that, for 
a certain p in 1 < p < , f (u) is integrable in the sense of Lebesque 
in any finite range of u. For each assigned bounded measurable set M 
belonging to the line E, let us define 

(2.01)f Hit= i(u) du }" • 

   In what follows we shall denote by 3(E) the system of all bounded 
measurable sets of real numbers in E with the positive finite Lebesque 
measure. A mapping a of 0(E) is defined as a correspondence of each 
element M out of 3(E) into a uniquely determined a M in the following 
manner : (1°) M1= M2 implies and is implied by a M, a M2, (2°) for any 
assigned M out of 0(E) we can find M1 such that M1= 6 M. A fundamental 
system denoted by S = Mk (k = 1, 2, 3, ...) is a subsystem of 8(E) having 
the following two properties : (1°) the system is monotone : Mk Mk-V1 
(k = 1, 2, 3, ...) ; (2°) to any given N out of 0(E) there corresponds 
a positive integer k such that Mk= N. 

   We shall now introduce 

   Definition 2.1." An operation A, which transforms each element f (u) of 

 1) Cf. Definition 3.1 in KITAGAWA C2J.
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 2'  (E) into an element A,,[f(u)] of ,VP(E) as a function of u in — co <u< CO 
is said to be a bounded linear translatable operation if the following condi-
tions are satisfied: 

    Condition (1°) It is additive in the sense that, for any assigned com-
plex numbers c, and c2, we have 

(2.02) Au[c, f i(u) c,f,(u.)] = c, A fl(u)] + c, Au{ f2(u)] 

for all u in — co < u <0 0, except perhaps for a set of measure zero in u. 
    Condition (2°) It is commutative with all translations, that is, denoting 

by T: the translation Tua[f(u)]= f(u+ a), we have, for almost all u in 
 — 00 < u < 00

, 

(2.03)11.[T,4 f(u)]]=Tua[Au[f(u)]] • 

   Condition (3°) It is bounded, which means : (a) there is a mapping 
a" associated with A; (b) to each given M out of 0(E) there corresponds 
a positive C];, such that the relation holds 

(2.04) A[f];I„ < CmA if ,Am 

for all f out of Vi'(E), where C,, may depend upon A, M, but is indepen-
dent of f. 

   Example V') Let so( t) be D-integrable over the finite interval (a, ,g), 
where p- + q-1= 1. Then the additive operation defined over VP(E) by 

(2.05) f(u+ t)co(t)dt 

is a bounded linear translatable operation. 
   The following four lemmas will be observed to be of use for our argu-

ments in the sequel. 

   Lemma 2.1. ( KITAGAWA [2] Lemma 3.2) To each bounded linear 
translatable operation A defined in ,2P(E) there corresponds an integral 
function G(2) defined in the complex 2-plane such that A2je1'u]:=G(2)e" 
in — <u<oc, . 

   Lemma 2.2. Any two bounded linear translatable operations A(.2) and 
A(> defined in VP(E) are commutative with each other, that is, we have, 

for any f out of VP(E ), 

(2.06)if„`)[An.f.(u)li A(.2)[AV)[f(u)]l 

for almost all u in — cc <u <cc . 

   Proof : Let M be any assigned set out of 0(E). Let us define aA(1). A(2) 1V 

  2) For other examples, see Examples 3. 1 and 3. 2 in KITAGAWA 112). These examples can be 
reduced to our present deterministic formulation.
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  6A(1)(a Al2) M)  U CJA(2)( a Aa) M). Since f belongs to  ,VP(E), we can find, for 
any assigned positive e, an integer N(E, GAM • I\.2)M ) and s,(u) 

such that 

(2.07) f(u) — a,e Ai • A2.3f < E . 
                                                                  — n 

for all n> N (E, a-N(1) • A(2)111). 
   Since we may and we shall assume without any loss of generality that 

                               A0)A(2) 

(2.08)a(a6A(1)(i=1, 2) 
                                () 

(2.09)GA(aA(1)M)aAO) (i=1, 2), 

we have 

(2. 10) A(I)[A(.2)[f(u)]]— AT[A(uAS„(u)]] lf 
                  < CA3(11) A (//2)[f(u)] itn) [Sn ( )] if N(1)3/ 

                               ,(1) A(2) 

                  < CA(1))/(U) S„(u) 1 GuA(2)(,A0//) 

                    <C1I1) Co.AA(2()DmfSn(u)!cAo).A(2),, 
and similarly 

(2.11) 421/1„(1)[f( u )]] — 42) [4" [S „(u)]li m 

                < CA),(:CA.Au'                           c2)„11f(u) — Sii(u)1 0A(1) A(2)4f 
   On the other hand Lemma 2.1 gives us 

(2. 12)A24)[A(,:)[S,,( u )]] = 421E 
                                                                      1,=—n 

            =Ea,G2(iv)G1(iv)e =Ea„G,(iv)G„(iv)ei".z 
                                         1)=-7'1 

           = Auw[42)[Sn(u)]] 
   The combination of (2.10), (2. 11) and (2.12) will give us 

(2.13)1A("[A(2)[f(u)]] — 42)[11(2)[f 

                    (CA(1)CA(A2()0 m+ CA(2)CA(111)(2)m) e • 
   In order to enunciate a lemma concerning the commutativity of two 

bounded linear operations applied to a function of two variables, let us 
introduce the following notions. Let E1= [u ; — < u < co] and E = [v ; 
— CO < v <CO], and let 3(E1) and 0(E2) be defined as for 0(E). Let 
V(E, x E2) be a set of all functions h(u, v), which are measurable over 
the product space (E1 x E,), and which are LP-integrable over the product 
set (M x N) for every M out of 3(E1) and every N out of 8(E2), that is, 

( 2. 141)1.1 h(u, v)1P dudv C00 . 
                                            .71/XN
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and we shall define 

 (2.  142) h(u, v) . 

                                                     ^ 

   Definition 2. 2. An operation A is said to be a bounded linear trans-
latable operation defined over the space x E2), provided that A„ trans-
forms every function out of V,P(E, x E,) into another one belonging to 
VP(E, x E2) and satisfies the following conditions: 

   (1°) It is additive, that is, for each assigned c, and c, we have 

(2. 15)A„[c,h,(u, v) + c,h2(u, v)] 
                    = c,A„[h,(u, v)] + c, A„[122(u, v)] 

   (2') It is translatable with every translation defined over E, x E,), 
that is 

(2. 16)A „[Tah(u, v)]] A,[h(u + a, v)] 
                             = AI? ,„[h(u, v)] 

                              T„''[A„,[h(u, v)]] 

   (3') It is bounded in the space t'n(E, x E2) in the sense that, for every 
M out of 0(E,) and every N out of (E2), we have 

(2. 171)C11 Au[h(u, v)111' dudv 

                           < C1,1‘/)7) h(u, v)\'' dudv, , 
                                                           01,1/x 

that is, 

(2. 172) A„[h(u, < C v)11,Amxiv 

   (4') Specially for a function h(u, v) f(u) g(v), where f (u) and g(v) 
belong to VP(E1) and V' (E2)respectively, we have 
(2.18)A„,[f(u)g(v)]= A„[f(u)]g(v) . 

   Similarly an operation is said to be a bounded linear translatable 
operation defined over the space VP (EI E2 ), provided that it satisfies 
four conditions similar to those (1°), (2°), (3°) and (4°), replacing (2.16), 
(2.171), (2.172) and (2.18) by the following (2.19), (2.201), (2.202) and 
( 2. 21 ) respectively : 
(2.19) ,IT7,[h(u, t,[h(u, v + a)] 

                           [h(u, v)] 
                        Tv v[h(u, v)]] 

(2.201) I r u[h(u, v)]r dudv 
                          IIIXS 

                    < CjPv)p I h(u, V)ipdudv, 
                                                mxffrA7
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that is, 

(2. 202) r v[h(u, CI h(u, v) mxors 

and 

(2.21) v[h(u, v)] — n[f(u)g(v)]--- f(u) F v[g(v)] 

   Lemma 2. 3. Let A„ and 11, be the bounded linear translatable opera-
tions defined over "(E, x E„) satisfying the conditions enunciated in 
Definition 2. 2. 

   T hen we have 

(2. 22)Aup' v[h(u, v)]] — r v[A„th(u, v)11 

for almost all u and v. 

   Proof : This is immediate from the following three observations. 
  (a) Let h„(u, v) be a simple function which can be written 

(2.23)n            h„(u,v) =E, 

                                       = where A,, A21 • • • An-1 and A„ are finite intervals belonging to E 1, while 
B„ B2, , B„_, and B„ are finite intervals belonging to E„ &J.') being con-
stants independent of u and v. 

   Then, in virtue of the additivity, (2.18) and (2.21), we shall have 

(2. 24) Auriv[h(u, v)]1,- ri,[A.[h(u, v )]] 
                                      n (n) 

                        =E a, 11„[C,i(u)]r v[CB,(v)] 
                                                         )=1 

  (b) Let h(u, v) be any given function belonging to 2P(E1 x E2). Let M 
out of 3(E1) and N out of 8(E2) be arbitrarily assigned. Then we can 
find a sequence of simple functions hn(u, v) such that 

(2. 25)lim .h12(u, v) — h(u, crr iv= 0 . 

   (c) For any assigned M and N out of (.E1) and 11(E2) respectively, 
we have 

(2. 26)11 A„[F 0)] — /Lir „[h„(u, v)]] 

                  Cl_'„C1,4h(u, v) — h„(u, v)11,Amx,F 

(2. 27) r 4A„En(u, r „[A„[h„(u, v)]] 

       < v) — hn(u, N 

    Consequently we have 

(2. 28)'I A„{r ,,{n(u, v)ii— rdA„[h(u, v))];1 „, 
             < IA„p „[h(u, v)]] — A„[F,[11„(u, v)]]1L11XN                

1A„[I qh,(u, v)]] — r „,[zmn„(u,
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                 F„[A1[h„(11, V)]] — v[A„[h(tt, v)]]l mxs 

                          h(u, v) — h„(u, v)11 \ mx,r, --- 2E 

for n> n(E, a'111, or N), which will prove what was to be proved. 
   The similar arguments give us the following Lemma which will be used 

in § 3. 

   Lemma 2. 4. Let A be a bounded linear translatable operation defined 
over VP (E, x E2). Let co(v) be a measurable function such that yo(v)4 is 
integrable in the sense of Lebesgue over a finite interval (a, j9), where 
p-i + q-' = 1. 

   Then we have, for each h out of VP(E, x E2), 

                                               t3 

(2. 29)A4egh(u, v)co(v) did=fA„[h(u, v)](v)dv 

• in — 00 <u <00 , except possibly a set of measure zero. 

  § 3. Limit and operational calculus of a sequence of bounded linear 
translatable operations. Henceforth we shall be concerned with the 
space of V.2( E), and we shall proceed to discuss how to define a linear 
translatable operation which is not necessary bounded. 

   Lemma 3.1. Let il(„") (n= 1, 2, 3, ...) be a sequence of the bounded 
linear translatable operations each of whose generating functions 0„( ) is 
defined by 

(3. 01)A,`,'"[eAl= 0 „(2) ex" 

for all complex number 2. 
   Let T be any assigned positive number. Assume that 1/A(s + it) is 

belonging to L2(— 00, 00) as a function of t for each s such that a + E <  
s < g 6, where E is any assigned positive number." 

   Then we have, for every s in a < s < g 

                                                e(gtit)11 (3. 02)„1                       27r A(s +                              -T
T 1 0

„(s+ it)isty)"dt 
,                     27r A(s + it) 

                                          _T 

in almost all u. 

Proof : This can be observed from the f act that the operation A„ and the 

integration over the interval ( — T, T) with respect to t is commutative, 
that is, 

 3) The cases when cc = — and/or 8= + = are included as special cases.
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                              1 e(s-1-)?? (3.03)A(„n)[27, A(s + 

 

•  -T 

                  1e(s it)u 

                   27LA(s + i t)ldt , 

                                                    

• -T 

which can be verified by Lemma 2.4. 
   The remaining part follows from (3.01), in view of the fact that en(2) 

is an integral function of 2 and hence On(s + it) is bounded and continuous 
over any finite interval ( —T,T). 

   Lemma 3.2. In addition to the assumptions to Lemma 3.1, let us 
assume that, for n= 1, 2, 3, ... , 

                       07,(s + it)  (3
. 04)dtDo.                     A(s + it) 

                                      

' 
-- 

   Then we have, for every s in a< s< Q, 

                                  1  "" e(s-Fit)u (3
.05)A(un                 L2rF A(s+ 

                                                              e(S-1-it)u                  li
m                    27E1A(s+ it)du] 

                                                      • -T 

                    1 ' 19„( s + i t) e(8-F")" dt 
.                 2

zA(s + it) 

              — in almost all u in CO < u <0 . 

   Proof : In virtue of LP-convergence in the whole u line E2, we have 

                    e"1°°e"  (3
.06) lim1           - >0.A(s+it)dt —27rA(s+ it)dt du=0 

T 

   Consequently we have, for any assigned set M out of 8(E2) and for 
any assigned positive number E 

                                    eitu 
(3.07) e""2-17r A(s + it)dt —217r A(se'+"‘it)dt du< e 

       • A fif -T 

provided that T > T0(e, 6AM). 
    Since each A(") is a bounded linear translatable operation we have

T
e(S1-it)u 1°°e(S1-it)u (3

.08) 

          

1A(2,1-217,A(s + it)dt2 7A(s+it)titiIM
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        ITe                   e1  < 1di 

              127rA(s+ it)dt —271 A(s+ it) ,AM 

                                               

• --T 

           < CV) E 

for T>To(E,GAM), which will yield us the first part of the equality in 
(3.05), while the second part can be obtained by means of Lemma 3.1 and 
the assumption (3.04), hence our proof is completed. 

   Lemma 3.3. In addition to the assumptions to Lemmas 3. 1 and 3. 2, 
let us assume that there is a function e(s+ it) defined over the strip 
S,[s+it; ce<s< )3, —cc <t<co] such that, for every s in a<s<fi, 

(3.09) On(s+it)-0(s+it)r dt <00 . 
                    A(s+ it) 

                                                                          • 

   Let us define an additive operation A in such a way that we have 

(3.10)Aurel= 0(2)e" 

for every 2 belonging to the strip S. 

   Then we have 

                   ;A(„,r11 e(s HOU (3.11)                Jim—"L2j A(s + i t-dt] 

                         ) 

                                                                                oo 

                              1 0 S + it)e(s.tit)u dt 
                     27rA(s + it) 

                       1Ir e(s"-I-it)it 27rAuLA(s + it)ldt 
   Proof : This is immediate from Lemma 3.2, (3. 09) and (3.10) . 

   Lemma 3.4. In addition to the assumptions to Lemma 3. 3, let us 
assume that the function of t 

(3.12)0(s +it)[A(s+ it)]'i 

tends to zero uniformly in s belonging to the interval ad-e<s<g—e, 
e being any assigned positive number, as t tends to +00 or to — co. 

   Let e(s + it) be regular and analytic in every open strip included 
the strip S. 

   Then the integral 
                                                                        0- 

(3.13)_1_ °( s +t)e(st.it).dt                  27rA(sit) 

is independent of s such that a s
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   Proof : This is immediate from the Cauchy integral theorem applied to 
the rectangular domain I?, whose corner points are a + e — iT, E iT, 
fi — E — iT and g - E iT, and from the limiting process of making T to 
infinity. 
   The combinations of these four Lemmas give us now 

   Theorem 3. 1. Let z1(,',2), (n = 1, 2, 3, ...); be a sequence of bounded 
linear translatable operations having their respective generating functions 
0„(2) 3 for which (3.01) hold true. Assume that 

   (1°) [A(s + U)]-' and On(s+ it)[A(s + it)]-' belong to Ly(— cc, co) as 
a function of t for every s in a<s<J9 and for every positive integer n. 

   (2°) There is a function e(s + it) which is regular and analytic in 
every closed strip included in S and for which (3.09) holds true for every 
s in a < s <g. 

   (3°) The function (3.12) tends to zero uniformly in s belonging to 
every closed interval contained in the interval (a, g). 

   Then we have the following assertions: 
   (a) The function 

(3.14)ey(„,w(ii, 1 f0(s + it)                      I2rIA( s + it)e`smi""dt 

exists and is independent of s in a < s < Q. 
   (b) We have 

(3.15)v(201Ie(S-1-it)24                 e 27rjA(s + it)dt 

   (c) The limit 
(3. 16)lim 

                                                                                 71-. 

exists for which (3.11) holds true. 
   (d) If we define A„[ev(")] by 

(3. 17)Au[evl =lim it") [ev(")] , 

then we have the consequences: (i) The definition (3.17) is independent 
of a particular choice of a sequence of bounded linear translatable opera-
tions (ii) The relation holds true that 

                           1 es + it)e(stiou (3
.18)A„[e"(-,] = 27,( dt .                           A(s + it) 

   (e) The function 
(3. 19)147(u) L.-2 C") A „[e"`")] 
is the unique unbiased estimate for 0(r) based upon the sufficient statistic 
u for r. Furthermore it is with the minimum variance provided that the 
variance of W(u) exists.
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 Proof  : The assertion (e) is the only one to be proved now. 
   What we have to establish is the relation 

(3.20)A(r)IW(u)e'"'")du = 0(r), 

which can be obtained if we have 

                                           0(7-) (3.21)FAdele-7"du=-A'( ) 
which is however immediate from (3.19) in virtue of the Laplace transform, 
completing our proof. 

   Example 3.1. The differentiation D is an additive translatable opera-
tion defined over the subset of V2(E) consisting of differentiable functions, 
but it is not bounded in our sense. On the other hand 

(3.32)tin [f(u)] ---12,71f(u+11„) — 

is a bounded linear translatable operation whose generating function is 
(On' — 1)//z„. 

   For a sequence of non-negative real numbers h„} such that lim 14= 0, 

the conditions in our Theorem 3. 1 are satisfied in some class of functions 
[A(s + it)]-', that is equivalent to say, ev("). For instance for the case (4. 07). 

  § 4. Loss function approach in estimating value of a known function 
of an unknwon parameter. Let 0(1) be a known function defined over 
a finite interval, which we may and we shall assume without any loss of 
generality to be the interval 0 < I < 27r. Let 0(1) be a function belonging 
to L'(0, 27r) with the expansion 

(4 .01)0(1),E akek 
                                                             k.o 

   Since this function 0 is known to us, we may and we shall assume the 
sequence a„1 is known to us. On the other hand the value of /1 itself is 
unknown to us, and we are now concerned with the case when A can be 
estimated by means of a certain sufficient unbiased statistic u whose proba-
bility density function is given by (1. 01). Now the results obtained by 
WASHIO, MORIMOTO and IKEDA [1] § 5 lead us in particular that the follow-
ing assertions hold under certain restrictions given in their paper : 

   (1°) The unbiased sufficient statistic for estimating e'" for each k is 
given by 

(4. 02)W ,(u) 7-7 e-,' ")T 

                                                e- v(eev(utik)
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 (2°) The unbiased sufficient statistic for 0(2) is given by 

(4.03)E a,W k(u) 
                                                     k=0 

provided that the convergence of the series (4.03) secures us the change 
of the order of the summation of this series with the integration of e-Tulv'") 
with respect to it measure, that is 

                                                                t-v(n) (4.04) a „W „(u)) e clit(u) 

                                                                        -rui-vo-Hk) 

                         W,(u)e dit(u). 
                                       k=0 

   However we have a hesitation for appealing to the statistic (4.03) in 
estimating the value 0(2), because it is not practical to adopt an infinite 
series. Indeed there may be a possibility of appealing to biased estimates 
of the form of a finite sum 

(4.05)g,(u) = a,W,(u) , 
                                                            k=0 

   Our criterion in choosing a suitable estimate among biased or unbiased 
estimates for 0(2) is to make use of the average loss function defined by 

(4.06)W(0, 

                             1`27e 
                 2t2( 2)— ak wk( u )i}(12                     7L((A)ic=0 

   In what follows we are concerned with a special case when we have 

( 4. 07)A(A)e-xu-t-Nu)dtt(u) 

                                  1  -TA2—A24--"2                        —
v,27rne 2e2" du , 

that is, u is the unbiased sufficient estimater with minimum variance for 
the population mean A of the normal distribution N(2, 1), which is derived 
from a sample of size n. 

   First we can observe 

   Lemma 4. 1. Let us put 
                                                                            A' 

(4.08)0(2)=Eake". 
                                                       k=0 

   Then g,(u) is the unbiased sufficient statistic with the minimum vari-
ance for estimating 0,(2) and we have 

(4.09)W(0 „, ja,12(e," --- 1) 
                                                            k=t
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 Proof  : What we have to show here is to prove (4 .09). Now in virtue 
of the definition 

(4. 10)W(0,, gx) 

                  2E„[Oiv(—akW k(u)IdA                  7c(A)k=0 

                                                                                   2.7c 

                                1  

                   =EEaka1
G0Edh,i(u)d2 ,                        A.=01=0 

                                                      1i ) 

where we have put for a moment 

(4.11)E,jhkl(u) 
                       (A) 

                   Eul(W k(u) — e") (W 1(u) — e") . 
                             (A) 

   But the results obtained by WASHIO, MORIMOTO and IKEDA [1] give 
us in particular 

                                                      Al 

(4.12)E„{hki(u)= el4(k-1) (en — 1 ) . 
                       (A) 

   Consequently the combination of (4.12) with (4. 10) leads us to 

                                                                         2,t 

(4. 13)W (0N, g,) =Ela,121(e"—1) d2 
                           k=0h7r                                                                        ' 0 

                                                  k2 

                    =Elak12(e" —1) , 
                                             k=0 

as was to be proved. 

   Lemma 4.2. We have 

(4.14)W(0,g,)=W(0,,g,)+W(0,0,) 

                   2v1,2 

                   =Elak12(e" —1) + E 
                                          k=t 

   Proof: We have 

(4.15) W(0, g2v) 

            = —1 E „[1(0(2) — 0 ,(2) + 0 ,(2) — g„(u))11d2             2 
                                               'o 

              1-E „[10 ,(2) — g,(2)r] dA 
                     h7r (A) 

                               0 

                                       2ir 

            1 

           +E„[10(2)-0,(u)nd2 
                      Lit(A) 

                                 0
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            +2-011 E,dR(6(1)-0,(2))09,(2)—g,(u))d2 
                 L7r oo                                • 

0 

                 =W1-1- W2 + W3, say. 

   But it can be readily seen that 

                      IVA.2 

(4.16) W, = W(0,, g,)=Ela,12(en -1) 
                                                  4=1 

(4.17) W2= E 

and 
                                 2g 

(4.18) W3= - RRO(2)-0,(2))E„(0,(2)— g,(u));dil 
                                             uo                               0 

              = 0 , 

which complete our proof. 
   The direct combination of these two Lemmas obtained just now yields us 

Theorem 4.1. The value of the non-negative integer N which minimizes 
W(0, g,) is given by the integer No which is the largest non-negative 
integer N0 among N such that 

(4.19)N< (n log 2)2 . 
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