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§1. Introduction. This paper treats the unbiased estimation under
existence of sufficient statistics. Dealing with this problem, existence and
uniqueness of unbiased estimates depending only on the sufficient statistics for
the unknown parameters themselves and for a few of functions of the un-
known parameters of normal distributions have been shown under some con-
ditions by various authors like RA0[17], HOEL[10] and KOLMOGOROFF [127.

The main object of this paper is to show these results for a fairy
general class of functions of the unknown parameters and derive the estimates
explicitly when the distribution in question admits the sufficient statistics.
General formulation of the problem is given in Section 2, on the basis of the
following facts utilized by LEHMANN-SCHEFFE (147, GIRSHICK-SAVAGE [87,
and others: (i) in our situation we may restrict our attention to the class
of estimates depending only on the sufficient statistics and (ii) the distribu-
tion admitting the sufficient statistics is of so-called exponential type intro-
duced by KOOPMAN [13], PITMAN[15] and DooB[5]. Then in Section 3
we will derive the unique unbiased sufficient estimate for a given parametric
function and review about it from some operator-theoretic standpoint.”
From the uniqueness of these estimates it follows that they are the best
unbiased estimates in the sense that they minimize the expected loss with
respect to any loss function (for example, variance) among all unbiased
estimates. Section 4 exposes the applications to the cases of normal and
gamma distributions. Variances of our estimates are treated in Section 5.
Extension of these results to the case where the number of unknown para-
meters is more than one is discussed in Section 6 and some concrete ex-
amples are given in Section 7. Further, we will mention briefly the treat-
ment of discrete case in Section 8. Some general aspects of operational
methods hold also in these two cases treated in Sections 6 and 8.

In preparation of this paper, the authors are much indebted to Prof.
T. KITAGAWA for suggestions and encouragements.

§2. Statement of the problem. Let X=(X,, X,,..., X,) be a ran-
dom variable with cumulative distribution function F(x; ), where x — (x4,

1) We owe to Prof. T. Kitacawa’s suggestion this operator-theoretic argument,
Concerning to this cf. Kitacawa (11).
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70 Yasutoshi Wasuaro, Haruki Morivoro and Nobuyuki Irkepa

X., ..., %,) is any fixed point in #-dimensional euclidean space R, and ¢ is
a real unknown parameter. Our problem is to estimate the value of some
given function 0(z) of r on the basis of observations on X.

By an estimate 8(X) we mean a statistical procedure which associates
with each x a probability measure 5(x) on R,. An estimate is said to be
non-randomized if for every ¥ d(x) assigns probability one to a single point
of R,. We denote by L(6,a) the loss which results from making the estimate
a when 0 is the true value of 0(r) and assume it to be a measurable function
of 0 and @. Our aim is to determine & making the expected loss 7(6(<),
5(X)) = [L(6(<), 3(x)) dF(x; ©) as small as possible?

Because of the difficulty of finding from the totality of the estimates
the one which minimizes the expected loss for all ¢, it is ordinary to impose
some natural conditions upon the estimete. Among these, unbiasedness is
regarded one of the appealing conditions, and the theory of estimation so far
has been mainly concerned with the best unbiased estimates.* In this paper
we will confine ourselves to the unbiased estimates and among them seek
for the one which minimizes the expected loss. Hence the classical problem
of “minimum variance unbiased estimation” is a special case of our situa-
tion where L(0, a) = (0 —a)*.

For such statistical problems, the notion of sufficiency introduced by
FiIsHER (7] plays an important role.” .First we give

Lemma 1. In any estimation problem, the class of all sufficient esti-
mates, i.e., the estimates depending only on the sufficient statistic, is essen-
tially complete.

To be concrete, assume that the distribution of X admits the sufficient
statistic U. Let 0(t) be a real-valued function of unknown parameter r,
8(X) be a given estimate of 0(z), and r(0(<), (X)) be the expected loss
resulted from any loss function. Then there exists an estimate '(U)
depending only on the sufficient statistic U such that

r(0(<), 8'(U)) Zr(0(7), 6(X))
for all -.

Proof. &' (U)=E[6(X) U] has the above-mentioned property.

This lemma is a slightly modified form of the theorem due to BLACKWELL-
GIRSHICK (2], and also an extension of the one known as “the theorem of
RA0 (167 and BLACKWELL [1]”.

It is to be noted that in the above, if 3(X) is unbiased, so is o'(U).
Therefore, if the distribution admits the sufficient statistic, in constructing
the unbiased estimate we can restrict ourselves to the class of estimates

2) This formulation is essentially due to WarLDp’s statistical decision theory. Cf. Warp (19].

3) For the notion of unbiasedness, see CrRaMER (4].

4) Mathematical formulation and main properties of sufficiency are found in Harmos-Savace (9]
and LeaMANN-ScHEFFE (14).
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depending only on it. We may remark also that 4’(U) is a non-randomized
estimate. Therefore in any estimation problem, randomization can be elimi-
nated under existence of sufficient statistic without any condition on the
loss function, the parameter space, and etc.”

Then the question arises what sort of distribution admits the sufficient
statistics and how can we find these statistics. Answering to this, we will
put forth a lemma which is due to KoopMmAN[13], PITMAN[15] and
LEHMANN-SCHEFFE [[147].

Lemma 2. Assume that F,(x; ) can be written in the form
(2.1) AdF(x; ) =f,(x; t)dx = A, (1) eBmw2to@® gy |
and the set D on which fo(x; ) +0 is independent of v (except possibly
a set of measure zero). Then, U=u(X) is a sufficient statistic for this
class of distributions.

Conversely, assume that F,(x; ) admits a sufficient statistic, and

of

satisfies the above condition concerning . And if the derivative 5}60%
exists for almost all x and for all <, it can be written in the form (2.1).

In virtue of these two lemmas we may and we shall restrict ourselves
to sufficient non-randomized estimates and treat the estimation problem
about the distribution of the form (2.1). Further, we will treat it about
the distribution of the form A,(r)e =7 only, without loss of generality
for any estimation problem.

§ 3. Unbiased sufficient estimates. Let the random variable X-=
(X, X,,..., X,) have a generalized probability density®
(3.1) A7) e T

with respect to a measure « on R,, where #(x) and v,(x) are real valued
measiurable functions, and ¢ ranges over a non-empty set T of real numbers,
on which
(3.2) {AU(T>}_[ — J e—-fu(m)-t-v(\(m)d#(x) < oo .

Ry
Then U=u(X) is a sufficient statistic for this family of probability distribu-
tions with a generalized probability density

(3.3) A(n)e ™

with respect to a measure v(#) on R,, where u is real and for e T,

oo

(A = | e ™Mdv(u) < o .

J —oo

5) Cf. Dvorerzky-Warp-Worrowitz (67 and Bracgwwkrnn-Girsuick (2],
6) With respect to the concept of gencralized probability density, sec Leumasn-Scnrrrit( 147,
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Suppose that 7" is a non-degenerated interval such that T 7”, and
the integral

oo

(3.4) we “dv(u)
converges for all e 7”. Let Z be the set of all complex numbers z=r7-i¢
for which ¢ ¢ T, then it is seen that {A(z)}~! is analytic for ze Z.”

In this and subsequent Sections (§3~§4), we shall assume that the
above-mentioned measure v(x) is absolutely continuous with respect to the
Lebesgue measure on R,, that is, U has a probability density f(#; r) which
is written in the form

(3 5) f(u, T) :A(T)eﬂ'ukv:u) ,

where the carrier £(u#) of ¢"™ is independent of «.
From these considerations we will give the following

Theorem 1. Let U have the probability density of the form (3.5).
Assume that the following conditions are satisfied .

(i) 0(z2) is analytic in the strip such that s T, where z=s + it,

(ii) r lo(—8)0(s+it)dt< oo, for seT,
where ¢,(t) is the characteristic function of the distribution of U, when
T=75,
(iii) lim ¢ (—£)0(s+it)=0
|0

uniformly in every closed subinterval of seT.
Then if we put

_ 1 0(2) :
)—in. _iNA(Z)e dz | (seT, uedDu)),

5

(3.6) w(u

§

(3.7) SU)=e " wu)

u=U
is the unique unbiased sufficient estimate of 0{z).”
Further, if there exists a linear operator A, satisfying the condition

(iv) A, =0()e",
and existence of both members and equality

(s+it)u o0 (s+it)u

e

” e '
v A, —ld :Au{ il
(v) J_m asrint® J_wA(s+ in?

7) Cf. SVERI;I(&’ (183, §2.
" 8) The symbol “|y=¢” means substitution of U for .

9) Here the term “unique” is to be comprchended in the sensc of “unique at almos! cvery-
where.’
10) Cf. Kitadawa (11}, Theorem 3.1,
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are affirmed, then the above estimate can be expressed in the form

(3.8) oU) =€ A8 _ .
Proof. Since for z¢ Z A(z) is analytic it is seen that from the con-
vergence of (3.4)

1
TA(s)

(3.9) {A(s+it)} { e “{A(s)e M fdu=g,(— t)1A(s)}T .

s D(u)

Making use of the theorem concerning Laplace transforms we have by the
conditions (i), (ii) and (iii) given above'”?

“w(w)du, ccT.

a(r):A(r)[ e

J Dlu

Hence

o(r):[ 3(u){A(t)e ™™ v du .

2 ()
If we use (iv), w(u#) becomes by (v)

1 r‘ﬂlw Auew 1 r-kim ezu

271 ‘“dz:/’“{zni A(z)

e . v(u)
_A(2) dz} =A,e .

w(u) =

§ o §—ieo

Hence
5(%) — e-»v(u) Aueviu) .

Uniqueness of estimate is also due to the corresponding property of
Laplace transforms. g.e.d.

It is to be noted here that the conditions (ii) and (iii) of Theorem 1
are equivalent to the following two conditions (ii)’ and (iii)’ respectively :

" lo(s+it)
(ii) __,iA(s+z't)idt<°°’ for seT,
(iid)’ lim ST g

e A(s+it)

uniformly in every closed subinterval of se 7.

Remark 1. Let 6,(U) be the unique unbiased sufficient estimate of
07) (k=0,1,2,...). If the conditions in Theorem 1 imposed on 6(<)
are satisfied by all 6,(¢)’s, and if

0.(s+1it) :i ab.(s+1it),
k=1

11) Cf. Wipbker [20), p. 260.
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uniformly in ¢ for any fixed s ¢ T, where @, are constants, then
50<U> == ; a}cak(U>

almost everywhere for all . This is an immediate consequence of the
calculations in the proof of Theorem 1.

The assumptions above seem to be inevitable, but in most cases they
are easily verified. For example reader may refer to §4, where applications
to normal and gamma distributions are treated.

Further, it is to be noted that the operator-theoretic terms employed
in the latter part of Theorem 1 are useful in some cases for simplifying
our arguments. Looking for the unbiased estimate of 6(<), it suffices us to
find the operator 4,, of which 6(z) is the generating function. Following
results can be got along this line.

Corollary 1.1. Assume that the sufficient statistic U has the probability
density of the form (3.5) and for an assigned non-negative integer k f(u; r)
has first (k+1) derivatives with respect to u all belonging to the class
L,(— o0, o). Thenif the condition (iii) of Theorem 1 is satisfied, the unique

unbiased sufficient estimate of 0(<)=<* is
P 12)
—”(Wi U(u)‘

T ke w(w) -
(3.10) s(U)y=e D& =e P

u=U \ u=U,

Proof. Since the conditions (i) and (ii) of Theorem 1 are satisfied,
that the operator 4, is given by

k

0
A, g(u) :é;cg(u)

is clear.
This result together with Remark 1 above enables us to estimate any

function 6(r) which can be expanded in the form 6(7):i}akr’“ provided
that the above conditions are fulfilled. -

Corollary 1.2. Assume that sufficient statistic U has the probability
density of the form (3.5), and T = (0, ). Let
0(c)=1"" (a is a positive real number)
together with the probatility denmsity f(u; ©) satisfies the conditions (ii)
and (iii) of Theorem 1. Then the unique unbiased sufficient estimate 6(U)
of 0(<) is given by
1

o _ o =v(u) y—a U] o u) - @~1 vo(u—x) |
(3.11) s(U)=e""D"e =e F<a>J0x e dx

!u: 12 u=U

12) For every real number o the symbol “D%{ }” means integral of [ractional order « if
o -~ 0 and derivative of fractional order o if ®=0. Ci. Zyemunp (21). See also Kiracgawa (113,
Example 3.1.
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Corollary 1.3. Let U have the probability density of the form (3.5), and
T =(0, ). Assume that for any positive real number « the probability
density of U has first ([«] + 2) derivatives with respect to u all belonging
‘to the class L(— o, o).

Then, if the function of the unknown parameter

()= Pl

satisfies the condition (iii) of Theorem 1, its unique unbiased sufficient
estimate 5(U) is given by

m e
—v(u) 1 a m—a—~1 vu—-x)
e d

_ =vlw) e v(u) - p—
(3.12) 6(U)=¢ "D'e I'(m—a)ou™ |, *

ju=Ur u=U

where m—=[a)+ 1.

Proof. It can be easily verified that the conditions (i) and (ii) of
Theorem 1 are satisfied. Then the determination of the operator 4, is
quite immediate.

Corollary 1.4. Let U have the probability density of the form (3.5).
Assume that for an assigned complex number c,

0(z)=e

satisfies conditions (ii) and (iii) of Theorem 1. If v(u) is defined for every
complex value of u, we obtain the unique unbiased sufficient estimate (U )
of 6(z) by the following :

(3. 13) 6<U) — e~-v(L-)+v(1<+cJ .

§4. Applications (1). In this Section we will give some concrete ex-
amples playing important roles in the statistical inference, to illustrate that
the conditions given in § 3 are actually satisfied, and to obtain the unbiased
estimates in more explicit form.

Example 1. The case where the sufficient statistic is distributed ac-
cording to a normal distribution.

When X/s (i=1,2,..., n) are distributed independently in N(z, 1),
t being the unknown mean value, — «o < v < 0, the distribution of X = (X,
X,, ..., X,) is written in the form

1T \" _le =)L ¥ a2
o 2 \ 2 =
Var) ¢ ¢ o
Vo4

13) “[ 1” is Gauss’ symbol,
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Then U=u(X) = — Z X, is the sufficient statistic for this class of dis-

tributions and its probabﬂlty density and characteristic function are

1 B R
(4 1) ;22*7;12 e "
and inst— L ne2
QDS(t) _ e——inst 2 t
respectively.

Problem 1. 1. Consider the function (<) =7+", % being a non-negative
integer.

Here the conditions in Corollary 1.1 are obviously satisfied. The unique
unbiased sufficient estimate d(U) of 6(<) is given by

1 \* U
(4.2) oU) = (=) Hel /5)
where H.(x) are Hermite polynomials, i.e.,
k x2 Ak

Hy(x)=(-1) eza ke z-

This result obtained for Problem 1.1 together with Remark 1 in Section 3
shows that in this case the unique unbiased sufficient estimate of an z-th
order polynomial of ¢ is also an #-th order polynomial of X. Furthermore,
the z-th order coefficients of both polynomials coincide.

Problem 1.2. For a given complex value of ¢, the unique unbiased
sufficient estimate d(U) of

6( T) — el"f
is, from Corollary 1.4, given by
o v2_(Utey? _c2 et
(4 3) 6(U) _ e—v(UH—v(L'f— ) —egin M g inn

Problem 1.3. Suppose that for e < =,

0(z)=e

To this problem Theorem 1 is applicable. Therefore we have

~;'i(-r—b)‘~'

1 fo a2 . _n?
w(n) = 55| € 2 {;/Znne 2 }emdz

Tl ) _;w ,
V n *‘:‘,l’bz T i - Ln—ayt2riabt
——e * e e* dt
TV 2n -

1 _anz _(utan)?

2 2An=ay
, e "e T

VrR—a
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Hence

2oy m e
2n 2
g 2
/n—a

(I +am?
2(n—- a)

(4.4) (U) =e*

Especially if we put ¢=1 and b=y, where y is an assigned real num-
ber, it is possible to estimate the probability density of N(z, 1) at a given
point y, on the basis of the independent sample of size #(#>1). Thus as
the unique unbiased sufficient estimate of

1 —~__l;(v—r)2
2z ’
we obtain
1 X

NI (1)),

Next, we are to estimate the probability that values of independent
sample of size %2 all belong to a set A simultaneously, based on a observa-
tion of size m (# > k) which is independent of the sample in question.
Namely, suppose that

0(z) = [712; [ e_zy:__;);dy]k |

A

Then we have
0(2) = (5= =" dy,...dy,,

Making use of (4.4) in the case where a—#% and b—=1/k Ek ¥: we obtain
i=1
the unique unbiased sufficient estimate of #(z) by

k k N K .
N A
A

B . 2 )
(4.5) 2(U) = < 127>k,/1;f kei;; L L e—ééw:_i( = | dy,...dy,
- (;712;;)";1%% [ . [ K R T
where 1 j=3j
e {nflm i

In the case where k=1, this result coincides with the one obtained by
KOLMOGOROFF [[127."

Example 2. The case where the sufficient statistic is distributed
accordmg to the gamma distribution.

14) The idea due to Prof. T. Kitacawa made the unified treatment of the problem for =1
and %> 1 possible.
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Then the probability density of U =u(X) is

m
T —-7u  m—1

r(m® * -

where m is an assigned positive number, r >0 and 0 < # < o,

That for a given value of a<m 0(z)=1" satisfies the conditions of
Corollary 1.3 is quite evident. Then the unique unbiased sufficient estimate
3(U) of «* is by Corollary 1.3

_ I'(m) -
(4.6) )= ey U
Problem 2.1. Suppose that the random variables X, (i=1,2,...,n)

are » identically distributed independent normal variables with mean 0 and
unknown variance ¢*. Then the probability density of X = (X, X,,...,
X,) is

3 o
1 "1 -=5
(75) e
Putting #(x) :ixf, T= 217 we observe that U=u(X) is the sufficient
i=1
statistic for this family of distributions and has the probability density
1 1 e_fl‘luztg—1 )

2T (1)2) 6"
So that we obtain for 6(t)=1"'/2 (=), the unique unbiased sufficient
estimate

_ T2 o 1 _= X
(4.7) MWU)=F2r )0~ ¥ <="n‘)’
and for 0(<)=:"2/2 (=o0),
1‘<_”_>
(4.8) oU) = FEREIN /P08
a3 il i=L
var(y+ ;)
Problem 2.2. Suppose that X;s (i=1, 2,..., ) are distributed ac-

cording to the gamma distribution. That is, the probability density of X =
(X, X4y..., X)) is of the form

n
no A
T SUPITH r a1
2€ =t ° H X
=1

()}

where r is a positive unknown parameter and « is an assigned positive
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constant. In this case U-u(X)=3] X, is the sufficient statistic and its

probability density is

na
-
T

F(na)e

-7 na—1

So that for 0(c)=<*, where # is a real number such that f<na, we
obtain the unique unbiased sufficient estimate

I'lna)
5 = —_— -B
(4.9) )= 5 55
§5. Variances of estimates. In this Section we will concern our-

selves with the problem of calculating the variances of our estimates obtained
in the previous Sections. If the functional forms of f(x; r) and 6(r) are
given, we can mostly give the conditions for the existence of the variance
explicitly. And in certain circumstances we can even give the variances
themselves.

If the variance of our estimate §(U) exists 6(U) is the minimum variance
unbiased estimate of its expected value. Therefore, it is interesting to com-
pare this with CRAMER-RAO’s lower bound, which is not necessarily attainable
by any estimate. For an example of the case where the variance of our
estimate does not exist, we will show the following:

In Example 1 of Section 4, let

a
e

_nt
0(2.) — gXk—m)

where k/2<n< k. By a simple calculation we have

© w2 (utnr)? 5 n2 o
1/ 2]: ’;‘ J eZke 2n du - ]/k k ezuc—n)T .
T

—n
Therefore 0(<) has the unique unbiased sufficient estimate
ﬁ?e%j
k

and if k/2<mn< k it is evident that the variance of our estimate does not
exist. In such cases unbiased estimate of 6(<) with finite variance does not
exists.

Now we will give the variances of estimates for a few cases.

Proposition 1. In Problem 1.1 of §4, the vari_ance of the unique
unbiased sufficient estimate 8(U)=(—1/v'n)"H,(U/, ' n) of <* exists, and
is given by

(5.1) VIO(U)} = 316Ca/ Th= D114 (y )4 = .
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Proof. Existence of the variance of §(U) is clear. First we calculate
the covariance of the estimates 6,(U) of <" and #,(U) of <. For k>1,

(1/"/7)k+1E{ 5.(U)6,(U)} = [:o {H,h(“u 7) H, (%)l { 1 e—f7 e—”"j‘, du

V' n “n ’2rn

1

_ 727:J Hou—2)H(u—2)e *du,

where 2 =)"n . Then making use of relations
ko] ) .
Hk(%—1)=]§ F(-A)]HIE])(“)’
HP(u)=k(k—1)...(k—j+1)H,_,(u),

) o’
1)) _
where H(u) = auij(%) ,

17
il

j;/% r {E J'(_Z) C; (1) H.. ,(u)H ' (—Z)ilci(i!)}[lAi(u)} €—u§du

j=0

k l . 1 ~ o0 -11_2
— Z Z kC]lC ( ,{)H‘J - Hk—j(u)Hl—i(u)e 2 du .

Jj=0 i=0 ¥ 271'
By the orthogonality of Hermitean polynomials

1
V 2m

So that we obtain

E{(U)0,(U)} = (7 7)™ 3 iComns - Ol — )™ (1 )1

(k=)  k—j=1—i

{ H_(u)H,_(u)e 'd”-*{ 0 E—j#1—1i.

11

:g #Croti * zCz( — l)"’“lﬂi(l _ Z) I

Putting k=1, we get the required result.
In this problem it is seen that CRAMER-RAO’s lower bound is given by
k? 2k—2
- .
n

Hence the efficiency is unity if and only if £=1.

Proposition 2. In Problem 1.2 of §4, the variance of our estimate 3(U)
= =%/ —@Oin of ((¢)--e* (where « is an assigned real number) esists,
and is given by

(5-2) Vis(U)} = (" — 1)é™.
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Proof. We have

EWRUY e | e e Fe 7 du
1o (874 271'”
@2 o (2w)2_2au w2 u?
fe7;’ e_ 2w { 1 e "."e i '.:h} du
V2n
o2
___eie TR

Hence our proposition is established.
The variance of this estimate is greater than CRAMER-RAO’s lower
bound a?*/n - e**” for all a #0.

Proposition 3. In the problem 2.2 of §4, the variance of our estimate

o(U) = F(I (:a)ﬂ)U # of 0(c)=1+" (where f< na) exists, and is given by

_ /. T'(na) \VI'(na—28)
(5.3) vVioU))={(; (m_ﬂ)) Fma) +1}fﬂ.

Proof. We have

E15(U%)| = (I‘(Fn(::a)ﬂ) I [F(M) o le,m]du
2 -2
(1‘(2(;2 a>ﬂ)> FF((nnaa)r_i)' g.e.d.

In this case, CRAMER-RAO’s lower bound is given by 8%/na - .

§6. Two unknown parameters. Generalization of §2~§5 to the case
of several unknown parameters is quite immediate. And so in this Section
we will treat only a few important results in the case of two parameters.

Suppose that the random variable X =(X,, X,, ..., X,) has the gener-
alized probability density
. AU(TUTZ)e—'rlul(r)—'rzuz(r)*vn(r)
with respect to a measure # on R,, where #,(x), #,(x) and v,(x) are real
valued measurable functions, and z; and ¢, range over non-empty sets T,
and T, of real numbers respectively, and on which

Ar,m)} = |eTMETEROT® g (%) < oo

Then, U= (U,, U,) = (u,(X), u,(X)) is a sufficient statistic for this
family of distributions with a generalized probability density

(6.1) A(ry, w)e T
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with respect to a measure v»(#,, #,) on R., where u, and u, are real and
for 7, ¢ T, and +,¢T,,

oo - o0

‘ e T Ay (uy, 1) < oo

Jo—oo J —o0

(6.2) (A7, w7 =

Suppose that 7/and 7. are non-degenerated intervals such that
T.cT/ and T, T." and the integral

oo

- TiU[—=T2U2
uize T dv(uy, uy)

(6. 3) ﬁ
converges for all r, ¢ 7/ and =, ¢ T./. Then it is easy to see that { A(z,, z.)} "
is analytic for all (z,, z,) provided that the real parts of z, and z, belong
to T, and T, respectively.'?

In this and the next Sections we shall assume that the measure v(#,, u,)
is absolutely continuous with respect to the Lebesgue measure on R,, that
is, U has a probability density f(#,, #, ; «,, =») which is written in the form

(6.4) f(uu Uy Ty, ) = A(y, T-_’)e_nul_wuﬂl(“huz} ,

where the carrier ®(u,, u,) of ¢“*? is independent of r, and z,.
Similarly to the one-parameter case, we have

Theorem 2. Let U= (U,, U,) have the probability density of the form
(6.4). Assume that the following conditions are satisfied :

(i) 0(z1, 2,) is analytic in the cylinder s,<T,, s.e¢T,, where z, =s,
+it, and z,=s,+ it,.

(ii) ‘ { |05, (=81, —2:)0(S,+ 1y, S, +11,) dtdt,< o,
for s, €T, s,eT,, where ¢, . (t,t.) is the characteristic function of the
distribution of U= (U,, U,), when the parameters t,=s, and t,= s,.
(iii) lim ¢31132(_t1, —t3)0(81+it1, 32+it):O
1t1 i t2foee

uniformly in every closed subdomain of s, ¢ T, and s,cT,.
Then if we put

(6 o) w(u,, u?_) = (

177>2 Satico "Sl‘i'icu '9(271,4?/-_)7)‘ -
2wi/ |

Az, zg)e “dz,dz,,

Sg—ioo J 5 —~iee

fO?’ sie Ty, (ui, ) € DUy, u), 1=1, 2,
(6 6) 5(U) — e"v(ul,uz)w(u“ uz)[

Gy ud=(1). ()

is the unique unbiased sufficient estimate of 6(r,, 7).

15) Cf. Bocuner-MarTin (3], p. 140.
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Further, if there exists a linear operator A, ., satisfying the condi-

tion
T HToU ) TiUu Uy

(iv) A”l' s € =0(7y, ©.)e

and the existence of both members and equality

’

(s it uy+(sotitadn,

- = e
‘ A""“ﬂ{A(sl—}—l’tn S,+it,)

v =90 S —os
= Au,, ug{

}dtldtg

(v)

oo

roo (sytit)dut(8atitydus

e
A(s,+it, s,+18)

dtldt._,}

oo S —oo

are affirmed, then the above estimate can be expressed in the form

(U, u2)

—v(uy, u2)
(6- 7) 6<U) =e Aumt:e Ve, w) =g, 1)

From this theorem we obtain

Corollary 2.1. Suppose that the sufficient statistic U= (U,, U,) has the
probability density of the form (6.4). Then the unique unbiased sufficient
estimate 6(U,, U,) of

0(7y, 7o) = ¢ /f10,02
(where k, and k, are both non-negative integers) is given by
k k.
a la 2 'D(ll[,dz)!
ou" ou,” |ty =y, 1)

provided that the conditions (ii) and (iii) of Theorem 2 are satisfied.

(6.8) O0(Uy, Un) =™

’

This result can be got similarly to Corollary 1.1 and the proof is omitted.

Corollary 2.2. Let the sufficient statistic U = (U,, U,) have the
probability density of the form (6.4), where

D(u,, u,) ={(uy, u.); Kx(uz)<u1< K.(u,), — < Uy < 0§,

and ©,>0. Suppose further its density have (k+ 1) continuous derivatives
with respect to u, all belonging to class L, (— o, ).
Assume ihat

0(zy, 1) = 0,77,
(where « is a positive real number and k is a non-negative integer)
together with the denmsity function satisfies the conditions (ii) and (iii)
of Theorem 2. Then the unique unbiased sufficient estimate 5(U,, U,) of
0(tq, ) IS Ziven by

k K7y, w
1 a Vi ) a—1 v(u;-—x1,u2) !
e dx,

& i ’
F(a) 8%2 S K (g, us) [ ud=(T, 1)

(6. 9) o(Uy, Uz) = e_v(u"uz)

where K/(u,, u,) = max(u, + K;(u,), 0).
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Proof. We obtain by the properties of convolution,

wn,, u.)
1,2 1 ‘m (= N CS[+[r|)r111-(sz+¢[n)7mgpx‘.Sg(—-tl! "tz)
=) o — e Py o2 REPTRY
(52) A(s,, s.z),_,,j,,,(s?“t?) ¢ (sv+it) 14t

T Ir'(a)out

: Ky (U un
1 ak Vi) a1 o(uj—xz, u3)
: x e dx

Ky, u2)

Hence the proof is completed by making use of Theorem 2.

Corollary 2.3. Suppose that the assumptions made on U= (U,,U,) in
Corollary 2.2 are slightly changed so that the range of =, be (0, =),
instead of (— oo, ). Then if

0(z,, ©,) = t77.fp

(where « and [ are assigned positive numbers) satisfies the conditions
(ii) amnd (iii) of Theorem 2, the unique unbiased sufficient estimate 6(U,,
U.) of 0(z, w.) is given by

M N

1 o7 o
F(M" a)I‘(N—ﬂ) auluauzw

oo ~Kp/ (g, 42)
v, uy M—-a—1 N—-B—1 v(uj—2, up—y)
X e
0

Ko (uyy ug)

(6‘ 10) 6(U|, UZ)—_—e‘v(““'L"Q)

dxdy[i ,
IQupy u2d=(U), 1)
where M =[a]+1, N=[p]l+1 and K/'(u,, u,) and K, (u,, u,) are defined
in the same way as in Corollary 2.2.

Proof. Similarly to the proof of Corollary 2.2, making use of convolu-
ion properties, we get
1 2 1 < ~ . M . N _(spritpupt(sat+ita)us
w(u, u,) = (2n> A, 50) J [ (si+it) (s;+it)"e
. ¢s,,32(_tlr ’_t_')
(s, +1t)" (s, +1t)
L 1 8‘” aN Kl/(zl;jf)_l - N—B—1 v(uy—z, ua—9y)
*HM—amN—ﬂ)W;"a*uﬂ o "x“ ¢ dy-

o/ (ug, u2) J 0

—o0 J —oo

s dt,dt,

This relation together with Theorem 2 proves the corollary.
Making use of these corollaries, it is easy to treat the case where the
values of a and S are not restricted as above.

§ 7. Applications (2): Example 3. In this Section the case of normal
variable with unknown mean and variance is treated. Suppose that X,’s
are distributed according to N(a, ¢°), where i=1, 2, ..., n, —x<a<o
and ¢%>>0.
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Then the probabilidy density of X=(X,, X., ..., X,) is as follows:

na

” .o

(7.1) VP =

Putting = 2}72, T, = %,, u(x) =3_ﬁl x” and wu,(x)= — g %;, it is clear that

U=U,, U, = (u(X), u,(X)) is the sufficient statistic for this class of
distributions and its probability density is

n _nm? n n=1_,
2

.2 ST e

where #'/n<u, < o, —o<u,< o, K,(u,)=u?/n and K,(#,)= oo.

Problem 3.1. Suppose that

T,

0(z,, TZ)ZT“(:&-’).

To this problem Corollary 2.2 is to be applied. From (6.9)

9
Uy~
2 n-—-1

1 M=y U 5——1
5( [E] 2>: onf[][ [ — =2 dx
RETRRT E

Therefore
(X~ X)
(7.3) 5(U1:Uz):7—1‘—

is the required unbiased estimate.

Problem 3.2. Suppose that
(7, ) =1""7/2 (=a).
Corollary 2.2 is also applicable to this problem. From (6.9)

1 0 u’—u%zg 1 u;’ -t
6(“(: uz) = 1 uzz n;l—'15u—2 JO 72 (ul s ;) dy
2 (=)}
1
=-"u,.

n
Therefore,
(7.4) o(U,U)=X

is the required estimate.



86 Yasutoshi Wasn1o, Haruki Morisoro and Nobuyuki Ixkepa

Problem 3.3. Suppose that
0(x, ) = 7" 0/2 (=ajo).
From (6.9) of Corollary 2.2

1 1 784 - %,,‘“1 "Iiff’)$71;]_‘
a(uy, uy) = PN ‘)‘ dx
A ()
F<n—2—1) u22 ﬁ% 2u
_zr(ngl_é)<u' 2) <_;>
Therefore
r(?=1 _
(1.5) U, U.) = n(_f )1 N S
(31 VR o

Problem 3.4. Suppose that

¢ 72,2 k
e‘Tj(x—éT—l) dy) ,

S 4

0z, 1) = <17§an

where A is a subset of R, and % is an assigned positive integer. This
problem has as same meaning as the latter part of Problem 1.3 of Ex-
ample 1 in Section 4.

Here the conditions of Theorem 2 are satisfied. And

w(u " ) _( 1 7)2 = ‘m e(s,-i—i:,)ul-r-(sgﬂtz)w ]-
Ly %2 Vv 2 . A(Sl+2‘tl,s-_r+itz)

—00 . —o0

(s9tity) o
~tity) 2<jj ’(s;-}-it[))

1\ e
. “...)‘ (77) ('V Sl+lt1) d 1...dykdt1dt2.
<A s A

But

n 2 n n(so+ite)2

’(Sl+ itl)ie—m .

Y

1\2/ 1 \*F1
w(unu)—<27r) (’;n:) C dy....dy,c
nJ4 J

’,m {w (S[+i£[)u1+(sz+itz)u2< 1 >
. e _—
Vs + it

(sptitg)®  (sytita)?
-m*“l) Z &7+ (sptits) Z TR TGO gy g
1 2

AR

A(S["‘I‘ itl, S, + it_z) -

Therefore

n—k

._-cn.-—on

[ [dy,. .dy. x I,
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where
k
= 1 mE it Uy~ (s D Y
J e 1 1
o i (n—k)X(s2+it0)2
(Satit3)ust(sa+ity Vit I
Iz — " e Satit3dust(satits) P Y+ 4Tt dt2
and
n—1g
n z
Co= =1,
V' T F( )

By making use of properties of characteristic function of normal distribu-
tion we have

I

2

. 1//4-71 I/Sl -+ it, e—(s;til)(uz-r i llj)z
h J=1 .
vVn—Fk

Hence by making use of properties of characteristic function of gamma
distribution we have

o

i P
n—k—1 ”’l{“l‘z Yi 7@*}

/ 1 3 Jj=t
i & | Gratea) “
. ; 1 )
et e B e )
_ F( 2 )
for {ul—é‘: yj:—n_l_k<u_+j:ﬁly)>-} =0
0 otherwise.
Hence
/ n-—-1
v T 1 e
[1[1(/‘7{) r(n_g_l)l/ﬁ_4nT?{u;*EYJ
w(u,, uz) ==/ _n i7k (uz +j:él yj>: n ,:-—L,

} for {ul—jéy]-;z%k uz+;2;y;)-f_>_~0
\ 0 otherwise.

Now we put

o(u, u,)= [ " P(Yis Yoy ooy ¥i) dyidy,. ... dy,.

o4 4



88 Yasutoshi Wasuro, Haruki Morimoro and Nobuyuki lgkepa

Then we have

m—1
(;;7gj@3) 11
Kﬂz>re_k_HV% k;%

2

go(yu y2’ LIRS | yk)

\
|
J for [u, - g ¥, = —

! 0 otherwise,

e 1( u,
== ul—f—).
n n

where

On the other hand we have,
1 3 . 1 3 2
el =2 (et ) ]
P

—£&:+;tﬂéaﬂﬁ+%ﬂw+fﬂ,

P D)

where
1 for i=j
a;; = 1 .
kil for i=<j
Therefore .
n—
1y 02 1
<1/?> F<n—§— ) n—ikn;‘—«;
(7.6) bl
_k+]_ k& 5 ) . 1
(i Vor o vvr We) = [1 ﬁfﬂﬁ’%g“”@ﬁ%)(yﬁﬂh)] z
o'"
k K
¢ EE“”(” )(y +:z> _n(n—Fk)
or —————— p <
c n—Fk+1

0 otherwise.
Introducing the function
n—k+1x &
C1-0 o B 2 it

Jj=1 =1

for E Z a;tit; < (_nk—:ki

=1 i=t

f"/(tlr tz, “e ey tk) ==

0 otherwise,
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U /
where t = <y£ + 2~> /o’

and

we can write (¥, ¥s, ..., ¥:) in the form

1 k
So(yl’ Yas o -0 ylc> :(?‘,) fn(tly t‘.’_y ceey tA) -

As n— oo, the function f, converges to the limit

*
1\ X
f"’(tli t2!--': tk):('{;-‘z—;z:) e =t

This result coincides with the KOLMOGOROFF’s one in the case where k2= 1.

§8. The discrete case. The discrete case can be treated similarly
to the previous Sections by utilizing the concepts about Laplace-Stieltjes
transforms.

Let the sufficient statistic U=u(X) have the generalized probability
density

(8.1) flu; ) =A()e ™™™  ueDu)

satisfying the conditions as mentioned in Section 3, and () be a discrete
subset of R, which are bounded to right or left hand and independent of =.
In what follows we shall assume that ®(«) is a set of non-negative integers
without loss of generality. Further, assume that

tw']

(A = Jwe‘”"d{ S e"‘“‘"’} < .

Then the following theorem holds:

Theorem 3. Assume that for a given parametric function 0(z) there
exists an unbiased estimate; i.e, an estimate 5(U) such that

0(z)=A(r) re’m/d{ufi}:o a(u') ewu)} ,

0

where Zuﬁ(u’) €'’ is of bounded variation in (0, u,) for every positive u,.

w’ =0

Then o(U) is the unique unbiased sufficient estimate of 6(<) and given
by the formula

(8.2) 8(U)=2¢""(=1)" Z<~ 1) {a(k)e™i*

I
u=u
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where
$tioo wuz (u=1)z
2—71”{ [ b(z)ie —e¢ '} ~1——dz} , for any seT.

() [ —
{e 5(”)% - z A(z)

t §—ice

Further, suppose that there exists a linear operator satisfying the
condition
(1) Age v =0(2)e", for R(z)eT,

and the existence and equality of both sides of

(i) 55|

* s—iloo * §—ieo

are affirmed. Then 6(U) is expressed in the form

(8.3) S(U)=e"" 4,1}

u=U

Proof. If an unbiased sufficient estimate of 6(r) exists, the uniqueness
follows from the completeness of our family of distributions."’
Now let us put

‘ e o(u) u<0
v{u) o{u-1)
;evwa(u);*:f(u)e +6éu_1)e o >u>0
ev(u)ﬁ(u) U = oo,

Then utilizing the theorem concerning Laplace transforms we have'™

Stieo wz Stioo (u—1)z
oy . 1 6(z)e 1 _ [ 0(z)e 1
fo(u)e '} __zni{.s_m o A(,z)dz ) . A(z>dz
_ 1 (Ta@e e 1
=0 [ o A(z)dz}’ for seT.

Y §—ioo

So that the definition of {6(u)e"}* furnishes the first half of the
theorem.
If we use (i) and (ii),

» W)y g 1
S {au)e *:—.‘ et
u':(}g ( ) ; ZTfZ ) .
§—io0
Stice  zlu—wu’)

— a3 ] S,

w =0

* s—ice
16) With respect to the notion of completeness, sce Leumann-Scugrrf (14].
17) Cf. Wipper (20] p. 69.
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0 u>u
SEile pu—w)
1 j 1
But 5 ——dz= u=u
2z | z ( 2
S§—ioo
1 uw<u.
“ S U=l wu) 1 »w
Hence ga(u')ev(“)§**:Au{2 e —re”}
w =0 w=u 2
(), ., 1 (u) v(u=1) v UY
And 16 (u) ™" ;*:Au{g[e"“ + ") = Ae™
e <0
k) ev(u) ' ev(u—l)
where e = T 0<u< o
v{u)
U =

So that we have by the definition of {8(u)e>?}*

V{U)

o(u)e”™ = 4,[¢],

namely, S(U) =e ™ 4,[e"")
ju=U
It should be noted that the existence or non-existence of an unbiased
estimate depends on the behaviours of A(r) and 6(r) in question. For
example :'®
(a) if v (2)=10(z)/A(z) is analytic at every z such that R(z) €T and if
for some real s in T the two sequences
S(=1)" ™ (s)i n=0,1,2,...ad inf.
and f(=1)" ¥™(s,)} n=1,23,...ad inf.

are positive definite or positive semidefinite, or

(b) if y(z) can be written in the form v(z)=+v(2)—v.(2), by two
functions ,(z) and v,(z) satisfying the condition (a), existence of such
an estimate is affirmed.

(¢) if y(r) has derivatives of all orders in 0<<r< o and there exists
a constant M such that

o

| o) i

k—1
;1)~!dz<M (k=1,2,...).
When D(#) is unbounded to both sides, e.g., D(#)={—c0, ..., =2, —1,
0,1,2, ..., <}, the above conditions must be slightly modified but the
estimation problem can be treated quite similarly to the previous lines by
making use of the properties of bilateral Laplace transforms.
Now we will give some illustrations about the discrete distributions.'?

18) Cf. WippEer (20] pp. 265-270, 306.
19) The idea of transformations is due to Prof. T. Kitacawa.
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Example 4. Poisson distribution. When X/s (i=1, 2, ..., n) are
distributed independently according to the Poisson distribution with a com-
mon unknown mean, 0 < 2 < o, the probability distribution of X = (X,,
X, ..., X)) is

7
e—-n}\ Z zilog A
[ el 1

xlx!. .. 2,

so that U = Z} X, is a sufficient statistic for this class of distributions and

its probabﬂlty dlstrlbutlon is

"
—ne~T —urtlog 2
w7

e - e : >0
0 uw<0,
where ©=log i

Suppose that we wish to estimate e~", that is, 4*. In this case, making
use of the operator 4™ such that

h) . 10 —hT TU T(—-h)
[e1=e e =e ,

we obtain the estimate

UuUu-1)....U-k+1)

‘N

U

(8.4) oU) =
0 U<
Example 5. Binomial distribution. When X/’s (i=1,2,...,n) are
mutually independent random variables which are identically distributed

according to a binomial distribution with an unknown parameter p. Then
the probability distribution of X =(X,, X,, ..., X,) is

7 xi 1— Zmbl“g—'
o 1-p) "= 1-pye=

Hence U :é X, is a sufficient statistic for this class of distributions and
i=1
the probability distribution of U is

2Cu {1 -i—leq} né—m ’

where r———logip - <.

—p ’
For e (= p/q), making use of the operator 4, such that

T uT T(u—1)

A4V =e e =¢e
we get the unique unbiased sufficient estimate

U

o(U) = n—-U+1"
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L(h+k>! — (k)T
k!

= "k(h'*-k)'n u—h—k
— 1) e U>h
6(U) = Z( ) nCu a={ T

0 U<h.

(= ph'), we get the estimate
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