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  § 1. Introduction. This paper treats the unbiased estimation under 
existence of sufficient statistics. Dealing with this problem, existence and 
uniqueness of unbiased estimates depending only on the sufficient statistics for 
the unknown parameters themselves and for a f ew of functions of the un-
known parameters of normal distributions have been shown under some con-
ditions by various authors like RAO [17], HOEL [10] and KOLMOGOROFF [12]. 

   The main object of this paper is to show these results for a fairy 

general class of functions of the unknown parameters and derive the estimates 
explicitly when the distribution in question admits the sufficient statistics. 
General formulation of the problem is given in Section 2, on the basis of the 
following f acts utilized by LEHMANN-SCHEFFk [14], GIRSHICK-SAVAGE [8], 
and others : (i) in our situation we may restrict our attention to the class 
of estimates depending only on the sufficient statistics and (ii) the distribu-
tion admitting the sufficient statistics is of so-called exponential type intro-
duced by KOOPMAN [13], PITMAN [15] and DOOB [5] . Then in Section 3 
we will derive the unique unbiased sufficient estimate for a given parametric 
function and review about it from some operator-theoretic standpoint') 
From the uniqueness of these estimates it follows that they are the best 
unbiased estimates in the sense that they minimize the expected loss with 
respect to any loss function (for example, variance) among all unbiased 
estimates. Section 4 exposes the applications to the cases of normal and 

gamma distributions. Variances of our estimates are treated in Section 5. 
Extension of these results to the case where the number of unknown para-
meters is more than one is discussed in Section 6 and some concrete ex-
amples are given in Section 7. Further, we will mention briefly the treat-
ment of discrete case in Section 8. Some general aspects of operational 
methods hold also in these two cases treated in Sections 6 and 8. 

   In preparation of this paper, the authors are much indebted to Prof . 
T. KITAGAWA for suggestions and encouragements. 

  § 2. Statement of the problem. Let X =(X„ X2, ..., X,2) be a ran-
dom variable with cumulative distribution function F(x; 7) , where x (x1, 

 1) We owe to Prof. T. KTTAGAWA'S suggestion this operator-theoretic argument. 
    Concerning to this cf. KTTAGAwA (11). 

                                 69
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x.„ . . . , x„) is any fixed point in n-dimensional euclidean space R,, and 7 is 
a real unknown parameter. Our problem is to estimate the value of some 

given function 0(7) of r on the basis of observations on X. 
   By an estimate 5(X) we mean a statistical procedure which associates 

with each x a probability measure 5(x) on R1. An estimate is said to be 
non-randomized if for every x 5(x) assigns probability one to a single point 
of R1. We denote by L(0, a) the loss which results from making the estimate 
a when 0 is the true value of 0(r) and assume it to be a measurable function 
of 0 and a. Our aim is to determine 5 making the expected loss r(0(r), 
5(X)) = 1L(0(7), 5(x)) dF(x; r) as small as possible.2) 
   Because of the difficulty of finding from the totality of the estimates 

the one which minimizes the expected loss for all 7, it is ordinary to impose 
some natural conditions upon the estimete. Among these, unbiasedness is 
regarded one of the appealing conditions, and the theory of estimation so far 
has been mainly concerned with the best unbiased estimates.3) In this paper 
we will confine ourselves to the unbiased estimates and among them seek 
for the one which minimizes the expected loss. Hence the classical problem 
of " minimum variance unbiased estimation " is a special case of our situa-
tion where L(0, a) — (0 — a)2. 

   For such statistical problems, the notion of sufficiency introduced by 
FISHER [7] plays an important role.4' .First we give 

   Lemma I. In any estimation problem, the class of all sufficient esti-
mates, i.e., the estimates depending only on the sufficient statistic, is essen-
tially complete. 

   To be concrete, assume that the distribution of X admits the sufficient 
statistic U. Let 0(r) be a real-valued function of unknown parameter r, 
5(X) be a given estimate of 0(-1-), and r(0(r), 5(X)) be the expected loss 
resulted from any loss function. Then there exists an estimate 5'(U) 
depending only on the sufficient statistic U such that 

                r(O(v), O'(U)) <r(0(v), 5(X)) 

for all T. 

   Proof. 5'(U) = E[O(X) (I] has the above-mentioned property. 
   This lemma is a slightly modified f orm of the theorem due to BLACKWELL-

GIRSHICK [2], and also an extension of the one known as " the theorem of 
RAO [16] and BLACKWELL [1.]". 

   It is to be noted that in the above, if 6(X) is unbiased, so is 5'(U). 
Therefore, if the distribution admits the sufficient statistic, in constructing 
the unbiased estimate we can restrict ourselves to the class of estimates 

  2) This formulation is essentially due to WALD'S statistical decision theory. Cf. WALD C19j. 
  3) For the notion of unbiasedness, see CRAMER Czi. 

  4) Mathematical formulation and main properties of sufficiency are found in HALMOS-SAVAGE C9J 
and LEHMANN-SCHEFFE C14).
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depending only on it. We may remark also that b' (U) is a non-randomized 
estimate. Therefore in any estimation problem, randomization can be elimi-
nated under existence of sufficient statistic without any condition on the 
loss function, the parameter space, and etc." 

   Then the question arises what sort of distribution admits the sufficient 
statistics and how can we find these statistics. Answering to this, we will 
put forth a lemma which is due to KOOPMAN [13], PITMAN [15] and 
LEHMANN-SCHEFFE [14]. 

   Lemma 2. Assume that Fo(x; r) can be written in the form 

( 2. 1 )dF0(x ; r)=--f0(x; r) dx = Ao( r) ei3.7)...)1-%(x) dx , 
and the set on which fo(x; r) 0 is independent of r (except possibly 
a set of measure zero). Then, U = u(X) is a sufficient statistic for this 
class of distributions. 

   Conversely, assume that F0(x; r) admits a sufficient statistic, and 
                                                   al° 

satisfies the above condition concerning Z. And if the derivative ----- 
                                                              axar 

exists for almost all x and for all r, it can be written in the form (2. 1). 

   In virtue of these two lemmas we may and we shall restrict ourselves 
to sufficient non-randomized estimates and treat the estimation problem 
about the distribution of the form (2. 1). Further, we will treat it about 
the distribution of the form A.0(r)e-T's)-"°('' only, without loss of generality 
for any estimation problem. 

  § 3. Unbiased sufficient estimates. Let the random variable X — 
(X1, X2, , X„) have a generalized probability density") 

(3. 1 )210(r)e-Tu`').""(x) 

with respect to a measure /I on R„, where u(x) and vo (x) are real valued 
measurable functions, and r ranges over a non-empty set T of real numbers, 
on which 

(3. 2)-171.1(X)-71)0(X)x ) <cc.          {A0(e 
                                                  R7Z 

Then U=u(X) is a sufficient statistic for this family of probability distribu-
tions with a generalized probability density 

(3. 3 )A(7) e " 

with respect to a measure v(u) on R1, where u is real and for r E T, 

                     IA(r) -- e-Tu dv(u) < Co . 

  5) Cf. DVORETZKY-WALD-W011,0WITZ L6 j and BLACKWELL-GIRSHICK j. 
  6) With respect to the concept of generalized probability density, see LEIIMANN-SCIIEF14; ii.
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   Suppose that T' is a non-degenerated interval such that T =T', and 

the integral 

(3.4)I ueTu dv(u) 
converges for all r E T'. Let Z be the set of all complex numbers z=r+it 
for which r E T, then it is seen that A(z)r-i is analytic for z E Z.') 

   In this and subsequent Sections (§3— § 4), we shall assume that the 
above-mentioned measure v(u) is absolutely continuous with respect to the 
Lebesgue measure on R1, that is, U has a probability density f(u; v) which 
is written in the form 

(3.5)f(u; r) A(r)e-TUt-v;a) 

where the carrier 7.s'.(u) of ev(") is independent of T. 
   From these considerations we will give the following 

   Theorem 1. Let U have the probability density of the form (3. 5). 
Assume that the following conditions are satisfied: 

  (i) 0(z) is analytic in the strip such that s E T, where z=s+ it, 

  (ii) yos(— t)0(s + dt< ca, for S E T, 

                                               

• _co 

where cps(t) is the characteristic function of the distribution of U, when 
    S, 

 (iii)lim cos( — t) 0(s + i t) = 0 

uniformly in every closed subinterval of s E T. 
   Then if we put 

                           1 rs'  0(z) z (3
.6)w(u) —27i _i_A(z)eu(s E T, u E Z(u)), 

  s 

                                                       s) 

(3. 7)5(U) =e-v(u)w(u),                                                       hu.0 

is the unique unbiased sufficient estimate of o(r).") 
Further, if there exists a linear operator A,, satisfying the condition' 

 (iv)Aue7' = 0(2-)em 
and existence of both members and equality 

                                                                  (smit)u 

  (v)             .1-/1,A(s + i t) 
                  e(S±1t)111-dt = Aul)_A(s + i t)dtlk- 

   7) Cf. SVERDRUP C.18, § 2. 
   8) The symbol "1,t=c" means substitution of U for u. 

   9) Here the term "unique" is to be comprehended in the sense of "unique at almost every-
 where." 

  10) Cf. KITAGAWA [11), Theorem 3.1.
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are affirmed, then the above estimate can be expressed in the form 

(3.8)O(U) e-vcu)Auevcu)lu-L . 

   Proof. Since for z E Z A(z) is analytic it is seen that from the con-
vergence of (3.4) 

              -t  1 
                             e-itu{A(s)e-sul-tKu)jdu =cos(—t)0(s)1. (3.9) A(s—A(s)lz(u) 

Making use of the theorem concerning Laplace transforms we have by the 
conditions (i), (ii) and (iii) given above") 

                 0( r)A(r) e-7u w(u) du , r T 
                                         Z(u) 

Hence 

                  0(r) = 5(u)1A(r)e-"-"") du. 

                                   

- (u) 

   If we use (iv), w(u) becomes by (v) 

       w(u)_ 1 IAue"dA1                                                                   ezu 

              2 ir i I s_t_A(z)zA(z)dzAucv(a) 

Hence 

                              5(u)— e-v(u) Auev:u) . 

   Uniqueness of estimate is also due to the corresponding property of 

Laplace transforms. q.e.d. 
   It is to be noted here that the conditions (ii) and (iii) of Theorem 1 

are equivalent to the following two conditions (ii)' and (iii)' respectively: 

  (ii)' .!124.(s + i t);re 18(s + it)dt < for s E T , 

                   lim                         O(s + it)vr%                              A(
s + it) 

uniformly in every closed subinterval of s E T. 

   Remark 1. Let k(U) be the unique unbiased sufficient estimate of 
0,(r) (k —0, 1, 2, ...). If the conditions in Theorem 1 imposed on 0(r) 

are satisfied by all 0,(r)'s, and if 

                           akek(s+ it), 
                                                 k= I 

11) Cf. WIDDER [20J, p. 26.5.
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uniformly in t for any fixed s E T, where a, are constants, then 

                     50(U)— E akSk(U) 
                                                           k=1 

almost everywhere for all r. This is an immediate consequence of the. 
calculations in the proof of Theorem 1. 

   The assumptions above seem to be inevitable, but in most cases they 
are easily verified. For example reader may refer to § 4, where applications 
to normal and gamma distributions are treated. 

   Further, it is to be noted that the operator-theoretic terms employed 
in the latter part of Theorem 1 are useful in some cases for simplifying 
our arguments. Looking for the unbiased estimate of 0(z-), it suffices us to 
find the operator A„, of which 0(r) is the generating function. Following 
results can be got along this line. 

   Corollary 1.1. Assume that the sufficient statistic U has the probability 
density of the form (3.5) and for an assigned non-negative integer k f(u; r) 
has first (k + 1) derivatives with respect to u all belonging to the class 
L1(— co, co). Then if the condition (iii) of Theorem 1 is satisfied, the unique 
unbiased sufficient estimate of 0(y) = or' is 

                                                                          12) 
                                              ak 

(3.10)5(U)e-15(11)Dke"(u) e-v(" au ke 
                                                                                     u=1: 

   Proof. Since the conditions (i) and (ii) of Theorem 1 are satisfied, 
that the operator A„ is given by 

                      Aug(u) = a
u„g(u) 

is clear. 
   This result together with Remark 1 above enables us to estimate any 

function 0(r) which can be expanded in the form 0(r) E a,l-k provided 
                                                                                            k =0 

that the above conditions are fulfilled. 

   Corollary 1. 2. Assume that sufficient statistic U has the probability 
density of the form (3. 5), and T (0, co). Let 

                         0(r) = r-C4(a is a positive real number) 

together with the probatility density f(u; r) satisfies the conditions (ii) 
and (iii) of Theorem 1. Then the unique unbiased sufficient estimate 5(U) 
of 0(7) is given by 

                     1 (3. 11) 5(U) =Cy'ev(u) = e.'”)(1a)j
o-x'' 

                                                 ley)dx 
. 

         

, u=Cu.17 

  12) For every real number (x the symbol "Dctf 1" means integral of fractional order a if 
ne, --. 0 and derivative of fractional order a if CG 7--?' 0. Cf. ZvoNtuND C21 J. See also KITAGA WA LW, 
Example 3.1.
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   Corollary 1.3. Let U have the probability  density of the form (3. 5), and 
T = (0, CO ) . Assume that for any positive real number a the probability 
density of U has first ([a]+ 2) derivatives with respect to u all belonging 
to the class L1(— CC) ) .13) 

   Then, if the function of the unknown parameter 7 

                                   8(v) = T(' 

satisfies the condition (iii) of Theorem 1, its unique unbiased sufficient 
estimate 8(U) is given by 

                                                                                            rtti 

                                                                        et,U-70)dx, (3.12) a(U)— e-v`")e-v(u)(
ml—a)aum 

                                                                                                                       u.Lr 

where m=[a]+ 1. 

   Proof. It can be easily verified that the conditions (i) and (ii) of 
Theorem 1 are satisfied. Then the determination of the operator A„ is 
quite immediate. 

   Corollary 1. 4. Let U have the probability density of the form (3.5). 
Assume that for an assigned complex number c, 

                                 o(r)--e' 

satisfies conditions (ii) and (iii) of Theorem 1. If v(u) is defined for every 
complex value of u, we obtain the unique unbiased sufficient estimate 8(U) 
of 0(v) by the following: 

(3. 13)8(U) = e---vco-rv(t 

  § 4. Applications (1). In this Section we will give some concrete ex-
amples playing important roles in the statistical inference, to illustrate that 
the conditions given in § 3 are actually satisfied, and to obtain the unbiased 
estimates in more explicit form. 

   Example 1. The case where the sufficient statistic is distributed ac-
cording to a normal distribution. 

    When X,'s (i = 1, 2, ..., n) are distributed independently in N(7, 1), 
T being the unknown mean value, — oo < 7 < the distribution of X= (X1, 
X2, X„) is written in the form 

                                 \"e_.172 
                          1/'2 xl 

  13) " I " is Gauss' symbol.
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     Then U E X, is the sufficient statistic f or this class of dis-
                                                 t= 

  tributions and its probability density and characteristic function are 

                                       1-i7-172  (4
.1)2 7rnee2n 

   and 
                                     cos(t) = e-inst-2nt- 

   respectively. 

      Problem 1. 1. Consider the function 0( r) k being a non-negative 
   integer. 

      Here the conditions in Corollary 1.1 are obviously satisfied. The unique 
  unbiased sufficient estimate O(U) of 0( 7) is given by 

  (4.2) s(U)_(—L/ —n 1-1k( /rj"                                 n) ' 
   where Hk(x) are Hermite polynomials, i.e., 

                                                       k x2 a, 
                      Hk(x) = (-1) e2                                             a
xk 

      This result obtained for Problem 1. 1 together with Remark 1 in Section 3 
   shows that in this case the unique unbiased sufficient estimate of an n-th 

   order polynomial of r is also an n-th order polynomial of X. Furthermore, 
   the n-th order coefficients of both polynomials coincide. 

      Problem 1. 2. For a given complex value of c, the unique unbiased 
  sufficient estimate O(U) of 

                               0(r) ec7 

   is, from Corollary 1. 4, given by 

   (4 .3)O(U),_e-v(10-1-ro(1:+c)r(L21",2cfn. 

      Problem 1. 3. Suppose that for a < n, 

                          0(r) e 2 

   To this problem Theorem 1 is applicable. Therefore we have 

                      1 --1(z -02  nz2                   w(u)----e-tp/ 2 rim2 } ezudz 

                                                                                                                                     . 

                                       I/ n — b2 _itz, - (71—ci)t2-friabt 
          v2 e e e dt 

                        vn 24.6-taw2 
                                      e e 2(n—a) 

                               a
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Hence 

 ci] v- 2(n-a) 
                                                               _b2_(I  

(4. 4)e                       5(U) = e 21' -/n —a 

   Especially if we put a= 1 and b = y, where y is an assigned real num-
ber, it is possible to estimate the probability density of N( r, 1) at a given 

point y, on the basis of the independent sample of size n(n > I). Thus as 
the unique unbiased sufficient estimate of 

                                      1 -1(Y-T)2 
                             2 TCe 

we obtain 

           1                                           -e2(                                              I-1/n) (n›-1) . 
                   271"(1 —n) 

   Next, we are to estimate the probability that values of independent 
sample of size k all belong to a set A simultaneously, based on a observa-
tion of size n (n > k) which is independent of the sample in question. 
Namely, suppose that 

             0( 7)[^1edy                                    2Y-27)2f. 
                             1/27c 

Then we have 

                                                  11A' 

          1 

                                                                                                                                    1-                                             14-1---lii1)-,A     0(
r) =  e2'ke2k2=1dy,...dyk, 
              1/ Z            AA 

Making use of (4.4) in the case where a = k and b = llk yi we obtain 
                                                                                                  i= 

the unique unbiased sufficient estimate of 0( r) by 
                                             k 0 

                                     E 

           n__-=1 
(4. 5) 5(U) — 11 1  i              )   e2ne2tn -k)dyidyk                V 2itViz — k • A • A 

   1nE 
          )1'  V  1e  dy,.dyA                j/27rn — k .A •A 

where1 i = j 

            ao=  1  
                                 i  j .                          n — k + 1 

In the case where k=1, this result coincides with the one obtained by 
KOLMOGOROFF [12] .11) 

   Example 2. The case where the sufficient statistic is distributed 
according to the gamma distribution. 

 11) The idea due to Prof. T. KITAGAWA made the unified treatment of the problem for k 1 
and k > 1 possible.
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   Then the probability density of U =u(X) is 

                                     m 

                                                     —TU m— t 

                          11(m)e u , 

where m is an assigned positive number, r > 0 and 0 < u < co 
   That for a given value of a < m 0(r) satisfies the conditions of 

Corollary 1. 3 is quite evident. Then the unique unbiased sufficient estimate 
a(U) of is by Corollary 1. 3 

(4. 6 )                       r(m)                                U .                    O(U)r(m —a) 

   Problem 2.1. Suppose that the random variables Xi (i=1, 2, ... , n) 

are n identically distributed independent normal variables with mean 0 and 
unknown variance 62 . Then the probability density of X= (X1, X2, 
X„) is 

                                          E xi' 
                               1  n1 

                            \V 2 Xi One 

                       1  P
utting u(x) = E - 2 

c.,' we observe that U = u(X) is the sufficient 
statistic for this f amily of distributions and has the probability density 

            1  
                             2n12r(n12)---ie2'1.2u2 . 

So that we obtain for (9( r) = 7.'72 (= a9), the unique unbiased sufficient 

estimate 

                 r(n12)1X,2. ( 4
. 7)a(U)r(

n/2 + 1)U=nUn  , 

and for 0(r), r-'/2/2 ( a), 

          () 
          2  (4.8) b(U)VEnx,2 .                     2 Tr+1—) i=[ 

                            2 

   Problem 2. 2. Suppose that Xt's (i =1, 2, , n) are distributed ac-
cording to the gamma distribution. That is, the probability density of X = 

(X„ X2, , X„) is of the form 

                               z_na_TI xi \ 

         

3 r( a) ,                                                                        i=I 

where r is a positive unknown parameter and a is an assigned positive
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constant. In this case U _-u(X)----E  X, is the sufficient statistic and its 
                                                            i= I 

probability density is 
                                                 na 

                                  r-7u na - I 
                        e u                       r(72a) 

   So that for 0( 7) = r8, where )9 is a real number such that g<na, we 
obtain the unique unbiased sufficient estimate 

(4.9)                          r(mx)                                                      U-13.                      5(U) =r(nce --s) 

  § 5. Variances of estimates. In this Section we will concern our-
selves with the problem of calculating the variances of our estimates obtained 
in the previous Sections. If the functional forms of f(x; r) and O(r) are 
given, we can mostly give the conditions for the existence of the variance 
explicitly. And in certain circumstances we can even give the variances 
themselves. 

   If the variance of our estimate O(U) exists a(U) is the minimum variance 
unbiased estimate of its expected value. Therefore, it is interesting to com-
pare this with CRAMER-RAO'S lower bound, which is not necessarily attainable 
by any estimate. For an example of the case where the variance of our 
estimate does not exist, we will show the following : 

   In Example 1 of Section 4, let 

                                                           n2  T2 

                                B(r) = e2kk--"" 

where k/2 < n< k. By a simple calculation we have 

     j 

             1 - .2 Jul-n7)2kn2                                                                                        T2 

                       e2"e -n du e2(k-n) .           V 27rn V k — n 
Therefore 0( 7) has the unique unbiased sufficient estimate 

                                / k — n e,-'2, 
                    V k 

and if k/2 < n< k it is evident that the variance of our estimate does not 
exist. In such cases unbiased estimate of 0(r) with finite variance does not 
exists. 
   Now we will give the variances of estimates for a few cases. 

     Proposition 1. In Problem 1. 1 of § 4, the variance of the unique 
unbiased sufficient estimate a(U)= (-1/17n )1' Hk(Ulkin) of rk exists, and 
is given by 

                                     k (5.1)vo(u)),,s--vlcciI/ (k _ i) !,,(1/ n )i-k)2 _ r2k . 
                                                  i.4-61_



80Yasutoshi  WASHTO, Haruki MORTMOTO and Nobuvuki IKEDA

   Proof. Existence of the variance of O(U) is clear. First we calculate 

the covariance of the estimates 5,(U ) of74' and,(U) of r'. For k > 1, 

 (1/4±1E0k(U)5,(U=r) H1( 1,4 e 272  n)fle 2"1 du 
                 ^nnz7cn 

   1 -u2           =
i/27 Hk(u — 2)H,(u — 2)e 2 du , 

where A = 1/ n T. Then making use of relations 

                                           k 

            H k(ti 2) AYHT)(u), 

                        I 

             HP)(u) k(k — 1) (k — j +1)Hk_i(u) , 

whereHV)(u) = D
U-114W , 

we have 

27r,.2          jE!( 2)jkCi(i!)lik-Au)1-1E---;-t(-2)'/Ci(i!)14-i(u)1.e"'u    j=0i.0 

 k11  
   EEkCJICi(— 2)11-j/2 7Ilk---Au)111_4(u)e''att.  ;,.i=0 

By the orthogonality of Hermitean polynomials 

                                _u2i(k—j)! k—j=1—i 

     F 

            1 a* H 
                        k_i(u)H,_,(u)edu =                                 10 k —j — i . 

So that we obtain 

       EO,(U)Ok(U) = (1/ n)-k-1 kCk_11-1 • iCi(— 2)k-11-2i (1 i)! 

                          =E ,Ci(- -1t2i (1- i) . 

Putting k =1, we get the required result. 
   In this problem it is seen that CRAmER-RAo's lower bound is given by 

                                         k2 2k-2 

                                              n. 

Hence the efficiency is unity if and only if k = 1. 

   Proposition 2. In Problem 1. 2 of § 4, the variance of our estimate a(u) 
= e-6'21(2")-(nin of 0(r) ec'T (where a is an assigned real number) esists , 
and is given by 

(5.2)                     V 0(U)l = (e4 —1)e2'
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 Proof. We have 

                                                                            U2                                                                                            127.2,                                      .t,r:u .(1 __....:,,- Ttl-•-.-z,-_       EP(U)1—e—-e =e ed                                                     '2"du 
                                         !-L/' 27rn                           .1 0 

                                   0,2 , co _ (20)2_ 2 au1_2,2_ Tu _,,,2 
                _ e2117172e                                        --ne2e'71- du                .(1v27, 

                                     a2 

                    = e                                            2Ta                       "e .

Hence our proposition is established. 
   The variance of this estimate is greater than CRAMER-RAO'S lower 

bound a' I n • e 2c" for all a 0. 

   Proposition 3. In the problem 2. 2 of § 4, the variance of our estimate 
         na) a(u)

=u_P of(7-) = TP (where fl < na) exists, and is given by      r(
na(—g) 

         vo(u)},i( r(na) v)r(na-2g)+/IT20 (5.3)                      (na13))r(n
a) 

   Proof. We have 
                                                                       20 

        EO(U2)r("))2U-211 rand-1 eldu 
                   (na — fi)o(na) 

                     F(na)  \2F(na —2,e)  
                     k F(na--R)) F (na)T-213•q.e. d. 

   In this case, CRAmER-RAo's lower bound is given by )3 2 in a r2/3. 

 § 6. Two unknown parameters. Generalization of § 2, § 5 to the case 
of several unknown parameters is quite immediate. And so in this Section 
we will treat only a few important results in the case of two parameters. 

   Suppose that the random variable X =(X1, X2 X,2) has the gener-
alized probability density 

                                                          --7.1.,(r)-7-2.2(x)tv,(x) 

                       Ao(ri,r2) e 

with respect to a measure a on Rn, where ui(x), u2(x) and vi,(x) are real 
valued measurable functions, and rl and T2 range over non-empty sets T1 
and T2 of real numbers respectively, and on which 

                  21-0(ri,r2)}-1 = re-,,ui(x)-72.2(x)-o(.) ditt(x) < co • 
   Then, U = (U1, U2) = (ui(X), u2(X)) is a sufficient statistic for this 
family of distributions with a generalized probability density 

                                                                         -7 It 1- 72,42 

(6 .1)A(71,7-2) e
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with respect to a measure u,) on R2, where u, and u2 are real and 
for ri c T, and r c T2, 

(6. 2)A(7 I,= e-7'U-T21,21'dv(u1, < (73 • 

                                                         

. _Ds 

   Suppose that T:and T2' are non-degenerated intervals such that 
T,=T,' and T2= T2' and the integral 

                   (6. 3)                                    roe 
                                 _2,23 

                   iciu2e-7u) 

                                                                   2 converges for all ri c and r2 c T2'. Then it is easy to see that A(z,, z2) V-' 
is analytic for all (z„ z2) provided that the real parts of z, and z2 belong 
to T, and T2 respectively.') 

   In this and the next Sections we shall assume that the measure v(ui, u2) 
is absolutely continuous with respect to the Lebesgue measure on R2, that 
is, U has a probability density f(ui, u2 ri, T2) which is written in the form 

(6. 4 )f(u1,u2 ; vi, r2)= A(7 1, 72)e-,,,,,--72,2-1-,(,,,,2) 

where the carrier Z(u„ u2) of evc"1."2) is independent of 7, and 12. 
   Similarly to the one-parameter case, we have 

   Theorem 2. Let U =(t Ti,U2) have the probability density of the form 
(6.4). Assume that the following conditions are satisfied: 

   (i) 0(z1f z2) is analytic in the cylinder s2 c T1, s2 C T2, where z, = s, 
+ it, and z2=s2+ it2. 

  (ii)              I ICN,82(—t1,—t2)0(s1+it1, s2+it2) dtidt2< 
for s, E T,, s2 E T2, where,s,,s2,(tI,2,tis the characteristic function of the 
distribution of U=(U„U2), when the parameters 71= s, and 12= s2. 

  (iii)lim ( —t1,—t2)0(si+iti,s2+it)=0 
                         ti , 

uniformly in every closed subdomain of s, E T1 and s2 C T2. 
   Then if we put 

(6. 5)e'''11±E'u2dz,dz2 
                                              s2 

            W( tt„ u2) =(1\2 r2±I's( Z1Z2)                 27.cil1z,)-i-A('9z 

for s, c T1, (u1, u2) c ( u 1 , u2), i = 1, 2, 
            ,U2) 

(6. 6)ö(U)= er2) 

is the unique unbiased sufficient estimate of e(r„ 72). 

  15) Cf. BOCHNER-MARTIN OD, p. 140.
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    Further, if there exists a linear operator  11„,,  „2 satisfying the condi-
 tion 

   (iv)A,,„,e"±72u2=0( 7„ r2)e"Th'u2 , 

and the existence of both members and equality 
                        GOCO 

                                    e0,-1-iti)ult(s2tit2)a2 

                 A(.31+ it„ s2+it2)i. dtidt, 
                                                                  e(s1-rit1pt,-1-(s2-1-0t2),t2                A„,,u,i ••-citidt21-                              .___A(s,+zt„s2+it2) 

are affirmed, then the above estimate can be expressed in the form 

(6.7) (U)= e-v("u2)eV(U1' u2)                                                                              (ut, 21)=(1.1,1.2) • 

    From this theorem we obtain 

   Corollary 2.1. Suppose that the sufficient statistic U= (U 1f U2) has the 
Probability density of the form (6. 4). Then the unique unbiased sufficient 
estimate O(U„U,) of 

                              0(r1, r2) = rikir2k2 

(where k, and k2 are both non-negative integers) is given by 
                                         k112 

(6. 8)               o(Ui,U2)=u2)  a3 evo,,,u2)                                                       ki 

                                             au,au2k2(.1, u2)=---(r1, c2) 

provided that the conditions (ii) and (iii) of Theorem 2 are satisfied. 

   This result can be got similarly to Corollary 1.1 and the proof is omitted. 

   Corollary 2.2. Let the sufficient statistic U = (U1,U2) have the 
probability density of the form (6. 4), where 

        Z(u„ u2)=1(u„ u2) ; K1(u2) < u1 < K2(u2), — co <u,< 00 

and r1 >0. Suppose further its density have (k+ 1) continuous derivatives 
with respect to it, all belonging to class L1 (— 00, CO ) . 
Assume that 

                                 e(pi, 72) = 71-c' 72k 

(where a is a positive real number and k is a non-negative integer) 
together with the density function satisfies the conditions (ii) and (iii) 
of Theorem 2. Then the unique unbiased sufficient estimate o(U 1,U2) of 
0(r1, 72) is given by 

                   aku2) 

(6. 9) a(U„LI2)=u2)•-•v(u))                                  xeu'dx!                             r(a) ) au:A. 2,(„L,„2) (u1, u2)=(1•1, 7.2) 
where K1'(u1, u2) = max(u1 + K1(u2), 0).
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   Proof. We obtain by the properties of convolution, 

 w(u1, u2) 

       ( 1\2 1 f.100                             0 +it)r1 1-(s-rtitO'illg9( tlt2)Z tdt,dt,      \2
7r)A(s,, s2)(s22)k e-                                              (s, + 

              1akqui"2-). 
             x--dx         =

r(a)au: 

Hence the proof is completed by making use of Theorem 2. 

   Corollary 2.3. Suppose that the assumptions made on U= (U,, U2) in 
Corollary 2.2 are slightly changed so that the range of r 2 be (0, co ), 
instead of (— co, ). Then if 

                        O(r, r2) r7r, 

(where a and )3 are assigned positive numbers) satisfies the conditions 
(ii) and (iii) of Theorem 2, the unique unbiased sufficient estimate O(U„ 
U2) of 0(r,, v2) is given by 

                   1. am a, (6
. 10 )(U, , U,) =e-v(ui212)                      r(M — a) r (N — g) auim au2N 

                              ee sc(i,, U2) 

                                             y1V-13-1 ev(ii-x,u2-y) dxdy                  
. 0 IC2'(4,1, U2)(ul, U2).(Ut, 1.2) 

where M= [a] + 1, N= [,3]+ 1 and K,;(u1,u2) and K2'(u1, u2) are defined 
in the same way as in Corollary 2.2. 

   Proof. Similarly to the proof of Corollary 2. 2, making use of convolu-
ion properties, we get 

                                0000 

 W(111, U2) = (1)2                          1i t
i )M( S2 ± it,)Ne(g1±"1)urt(s2+"2)"2               A(s „s2) 

                       g2(— ti, — t2)                  • 
(s1+iti)1"(s2+it,)iV-Pdt1dt2 

                 1am as Ki, wt;u2) 
                           vX-1dx'v("1-U2-y)       —ile*(M — a) r (N — fi) aleak;1( 2/("1, u2)0edy. . 

This relation together with Theorem 2 proves the corollary. 
   Making use of these corollaries, it is easy to treat the case where the 

values of a and fi are not restricted as above. 

 § 7. Applications (2) : Example 3. In this Section the case of normal 
variable with unknown mean and variance is treated. Suppose that X:s 
are distributed according to N(a, a2 ), where i =1, 2, ... , n, — cc <a < oc 
and 02 > 0.
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    Then the probabilidydensity of  X= (X,, X2,. . . , X„) is as follows: 

                „ na2 1 "   

(7.1)  e 2cr2 iLt 1;ji                          1/ 2 7L 

    1 a 
           2a Putting=.-=u,(x) =E xi2and u2(x)=E xi, it is clear that 

U (U 1, U2) = (ui(X), u2(X)) is the sufficient statistic for this class of 
distributions and its probability density is 

                                 n702n 
                                                           271=1                                                                                                                                                                           ,--t                      47/ 2–uu 

(7.2)n-9eeT11 =21/422                             1 nY4 n              7L r (n  2 1) 
where u22/n< ui< CO —00<u2< < 00 , K,(u2) u22 in and K2(u2) °° • 

   Problem 3.1. Suppose that 

                                                           0 

                        e(ri, r2) —2r2(— a2) 

To this problem Corollary 2.2 is to be applied.From(6.9) 

       12 21-,        5(
u                                iut_._7(u,— x — 2\dx 

                                                                                   2  

            „u2) =                (
n (u,1n-I1            21——u22I.–n)             n)° 

                                         2 

                                U2               = 2(U1 n) • 
Therefore 

                E(Xi — X)2 
(7.3) (U„ U2) n 

is the required unbiased estimate. 

   Problem 3. 2. Suppose that 

                       0( r„ 72), T1-' z2/2 (=a) . 

Corollary 2.2 is also applicable to this problem . From (6.9) 
                                                             U22 

              1a211-Tii:12     5(u„u2) =n -t— n(u, — y —2dy                 1 /1 au.,2
nCu —u 22)}2 

            1 

                 = - 2 

Therefore, 

(7.4)5(U1, U2) X 

is the required estimate.
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   Problem 3. 3. Suppose that 
                      0( r, , 72) 71-1/2 r2/2 ( = ala). 

From (6. 9) of Corollary 2. 2 
                                                                      u22 

          1"1-11,u22                 1  a
x,it 2  a(u,, u2) = n-1dx                       ---11 Om           2.11(u,— 22)I.r 

                        2 

          r(2n —1) 
                                   u92 —12 2u  

                11 \(u,—(— n2) . 
                2 r          k 2 2) 

Therefore 

                     r -2-1) 
             X  (7. 5 )5(U„112)                                                                                    7/                   rPi-21— 12) VE(— X)2 

      k 

   Problem 3.4. Suppose that 

       1)k                       = (V2rr,AedY• 
where A is a subset of R1 and k is an assigned positive integer. This 

problem has as same meaning as the latter part of Problem 1. 3 of Ex-
ample 1 in Section 4. 

   Here the conditions of Theorem 2 are satisfied. And 

 w(u„ u2)( 1)2•,219i9                                                         it*(1,±t2)U_         •1           v 2) it„ s2+ it2) 
                                                              k 

,(121-42) \2 

       F(i/L)k (list+ iti)„e-(011-itl) 
                                                                      ._

Sifitt))       •dy, .dy,cdt,dt,. 
       • AAv 

But 
                                                           n-4 

                                                                     „ _n(.11..i                                                                                        21-it

t2)2         A(s,+s2+ t2) (s + i t,Y2.e 4(I).                    r(n1) 
                             \ 2 

Therefore 

                  ( 1\2(1 \A1   wui,1                         dydy          (142)=\27,1rCp3jAfAI••• 
                                                                             \n- 

                        1-e(s,Thitoui,-(s2,-itou2( +1                                   i tt) 
                                 -4811-it I)1 .1k4(1(2s1:_tit2t)12)..t_n(S2-1-it2)2 

            

• eI14('1111')dt, dt2 

               1 ( 1 )kd ydyx                   27r C„ t/7rA; •AI • • •"
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 where 

                                                                       k 

                                                                n—k 

         I`
v si + it, 

                 =1(1  )e(81-Fitt)ui-(811-iti)Z,Y 2                                                 i=1dt, x I„ 

                                                         k(n—k)(s2-1-it2)2 

                   .1.,_ e(s21-itiOu2t(s21-it2);Yji-             14(s ii-it 1) di-, 
                    . — 

and 
                                      n-4 

                  n2     C
7,= 
                / r r in — 1\        )7 .                    2 

By making use of properties of characteristic function of normal distribu-

tion we have 

               ,1/47r ^Vs,+ it,-(st'-al)(.2-1--i Yj)2                     /2      =en—k 
                     -1/n — k 

Hence by making use of properties of characteristic function of gamma 
distribution we have 

                     k(.2+ky.))2k                                                 (k(u21- vi)2 
      1/47r s,fut-v2— 7,-?-1k1}J=10.                                                           n—k — 1"'tut— E Yi—nj-lk}                                                                                       :7=1    I,----- -1/n — ke                   f(1/ s,1+ it,)-edt 

  I/47r1 k1k2 

        

_ 27r111— E Y.:—n—k(u2+- 1' j)J-     i/ n—k r(n — k —1);=I.2=1 

                2    = 

                      A- ,1                     for-tu,— E y;—n— k(14-±±j                         Y)1> °                              J-=-1''j-,-..1 

      0otherwise. 

Hence 

          i 

         I' • '^(1/)kli CI —21)1  1 k                       r (n — k — 1)1/n— 4ti--nV1111—E,,Y; 
                       2 w(u,,u2)=-=1k2 71 - k - 1                                                                                                                                                      - 1 

                                         n — k(142+.5..Yj)2 
            k1k                                                 for {u1— E y1 '--n— k(U2+ E y;)2j.__>,0                     .7=1j:.-.1 

            0 otherwise. 

Now we put 

            a (u,, u,)= 1 ...1 (p(y 1, y2, ..., Yk)dyidy2. ...dyk. 

                          

• A. A
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Then we have 

                          / 

               1 \„ r( 2n -1)                           1  1  

                    (-1/ 7r 1/n - k -1\Vn -k n.';-.7.         r  2', 

            c             )                       

( 1 r,..,/,1 /k,n—k—l—                                             I1 
  q)(ylf Y2, • • • , Y k)=1inG"Lut -÷lY;-k/12+,- _-E.Y.'1 J  

                                                                          . 

                                                                   (Ilk 

           k1k                      for [u, - E y'2 - u+ EyJ)1>0                                   ;c1n-'k(2,_,t-- 

                ^ 

                     0 otherwise, 
where                     

. 1                             (7'2=---  (u,-n2). 
           nn 

On the other hand we have, 

        1  rn 
t -k                   9 1 /                                 4          n0.'2L4-4Y                      _”-n -kV.24-,--,13'i 

                 k)1 

                 = 1_ (3n-k + 1f±1÷-(.ic,(u.,\[                        '2 n(n - k) 1,-_,(;-_1(1°0 ''-1- n 1V3 + n-II ' 
where 

                    1 

             u= 1 
                    n — k + 1for i = j 

                    a 

                                for i  N j. 

Therefore 
             / i(2n —1) 

           ( 1 \k                              1  1                        iv) /n -k -I.V n - ki--..;             r 2 )Ii 
(7.6)it—k-1 .....                          n - k + 1 k k 

          [- EE( 
                                                              U.2/ 4,i ±u,\-121 

  4°(Y i , y2, • • • , Y k) =I. n(n - k) a'24=1 j=1atiY i +IdVn/J  
                                                                 crfk 

                      kk, 

                       E± aoVi + u2)(y,;+ill) 
                 for1=12=1n,.nn(n - k) 

                                                  a/k< n - k + 1 

                   0 otherwise. 
   Introducing the function 

                       -n—k+1 k k       C„'[1                         EEaotit 2] 
                                 n(n - k).1,-,i,_-, 

 fn(t 19 t2, • • • v tk) =kk                                           n(n - k)                                for E E a
ut,&I)----                                       i,, i=,-- n - k + 1 

                  0 otherwise,
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whereti= (y,ua' 
 n and 

                        r (n — 1\ 

        C,'= 1 ) 21 1  
                                 7, 

                              (n— k—1,/n — k k-1' 
we can write olvv              ,y2, • • • , Yk) in the form 

               50(Y1, Y2, • • • , Yk) -7= ( 1)k in(ti, t2, • • • , tk) • 
                                                  a' 

As n —0 co , the function f„ converges to the limit 

                                                                             kIN'A. 
                  12                   t„t2,..., tk) =  e 
                                    1/ 27r/ 

This result coincides with the KOLMOGOROFF'S one in the case where k= 1. 

  § 8. The discrete case. The discrete case can be treated similarly 
to the previous Sections by utilizing the concepts about Laplace-Stieltjes 
transforms. 
   Let the sufficient statistic U u(X) have the generalized probability 
density 

(8. 1 )f(u; r) = A(r) e-rutv(u)u E Z(u) 

satisfying the conditions as mentioned in Section 3, and Z(u) be a discrete 
subset of R, which are bounded to right or left hand and independent of z. 
In what follows we shall assume that Z(u) is a set of non-negative integers 
without loss of generality. Further, assume that 

           A(T)}-1 ev(u'l < . 
                  0.".. 

Then the following theorem holds: 

   Theorem 3. Assume that for a given parametric function 0(r) there 
exists an unbiased estimate; i.e , an estimate a (U) such that 

                                                         rt                 0 (r) = A( r)e-TU/5 (u") ev(u")} , 
                                                        u".0 

where Eo(u') ev W) is of bounded variation in (0, u0) for every positive u0. 
               U' 

Then b(U) is the unique unbiased sufficient estimate of (r) and given 
by the formula 

(8.2)5(U) = 2e-vn —1)" E(-1)'5(k)e”`"*1 , 
             k.11 u=C
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where 

                     1fs-tic.0(z)euz— ecu-1>z1
ze'v(u)5(u)=27r                                  A(z)dz} , for any s ET. 

Further, suppose that there exists a linear operator satisfying the 
condition 

  (i)ilaleuz= 0 (z) , for 01(z) ET, 

                                               and the existence and equality of both sides of 

                                                                                                zu 

      1 'ezu                v,u)1  (ii) e e dz —27riAdeE ev(te)e-zul.    2i z !u,-0zu'=u 

are affirmed. Then O(U) is expressed in the form 

(8.3)5(U ) = e ") Auev(u), . 

   Proof. If an unbiased sufficient estimate of 0(r) exists, the uniqueness 
follows from the completeness of our family of distributions.'" 

   Now let us put 

                ev(u) (u)u< 0 

          ev(u)(u)*, 5(u) ev(u)5(u — 1) ev(u-1)                                                             CC) > U > 0                         2 

               ev(u) 5(u)u . 

Then utilizing the theorem concerning Laplace transforms we have') 
                     Sti-

0euz 10(z)e(u-1)z1 
      O(u)ev(u)}*=2i              1 ()(z  

           z A(z)AA(z) 

                                       

• s -i-

                     1 IS14`"0 ( z ) eus. — ecu-oz 1  
            27(411A(z)dz} , for s E T. 

   So that the definition of 5(u)ev(21V furnishes the first half of the 
theorem. 

   If we use (i) and (ii), 

            1  zu                                      e 
        E O(u')e v('' 

                   1,6') =1 Auzev(u)e—zu}dz                u/.0 
                                                                                  s-i' 

                 1sti. z(u-u')                _  .AuFevew) dd. 
                                471Lte-5-4 

  16) With respect to the notion of completeness, see LEHMANN-SCIIEFFI L14) . 
  17) Cf. WANDER C20) p. 69.



Unbiased Estimation based on  Sufficient Statistics91

                               

, 0 ut> u 

                      1i'tt-ez(u-1"dz =—1               2 Butu 
          7z.iI2 

                                                        8-iee 

                            1 u'< u 

                                       v(u,)v(u) 
HenceE6( u') ev(u)rAe+ e. 

    w=0=2 

And(u).tt-1)                 (u)e(u)= A,,i-2[evc.)+ ev(= A ev*:u) , 
                evoh,u< 0 

                        ,(u)ev(u)v(u-1) 
                  e where0 < u < co                       2 

                                             v(u) 
                              e                                                           = CO . 

So that we have by the definition of 5(u)el''")}* 

                          (u) evcu) A„[ev(u)] , 
namely,b (U) = e-v" A 2,[ev(ul. 

   It should be noted that the existence or non-existence of an unbiased 
estimate depends on the behaviours of A(r) and 0(7.) in question. For 
example :18) 

 (a) if (z) = 0(z)1A(z) is analytic at every z such that 9i(z) E T and if 
for some real s in T the two sequences               

} ( — 1 )n 'fr(n)( so ) n= 0, 1, 2, ... ad inf. 
and — 1)Th *(n)(so)t n=1, 2, 3, ... ad inf. 

are positive definite or positive semidefinite, or 
 (b) if 'fr(z) can be written in the form V (z) (z) — r2(z), by two 

functions ik,(z) and k 2(z) satisfying the condition (a), existence of such 
an estimate is affirmed. 

 (c) if 1k( T) has derivatives of all orders in 0‹ z < 00 and there exists 
a constant M such that 

                      I(k-1)!dz<M (k = 1, 2, ...).                                                        .Q 

   When Z(u) is unbounded to both sides, e.g., Z(u) — co, ..., —2, —1, 
0, 1, 2, ... , co }, the above conditions must be slightly modified but the 
estimation problem can be treated quite similarly to the previous lines by 
making use of the properties of bilateral Laplace transforms. 

   Now we will give some illustrations about the discrete distributions.'" 

 18) Cf. WIDDER C20) pp. 265-270, 306. 
  19) The idea of transformations is due to Prof. T. KITAGAWA.
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    Example 4. Poisson distribution. When Xi's (i,----1, 2, ... , n) are 
distributed independently according to the Poisson distribution with a com-

mon unknown mean, 0 < 2 < 00 , the probability distribution of X = (X1, 
X2, ..., X„) is 

                                                                                                           7. 
                               e-70,xi log A                                                                                  ea---' 
                           xi! x2! ... x„! 

                       /7 

so that U = E Xi is a sufficient statistic for this class of distributions and 
                    2=1 

its probability distribution is 
                                       —ne—T-ur-l-logl: 

            e• e, 

           0u> 0                                     u < 0 , 

where r = to1-                2 • 

   Suppose that we wish to estimate e-"T, that is, 2'. In this case, making 

use of the operator A„(h) such that 

                            Au(h)[el= e-hr e" = e " -1') , 
we obtain the estimate 

                    U(U— 1) ... (U—h+ 1) (8. 4).3(U) ={nhU> h 
            0U< h. 

   Example 5. Binomial distribution. When Xi's (i = 1, 2, ... , n) are 

mutually independent random variables which are identically distributed 
according to a binomial distribution with an unknown parameter p. Then 
the probability distribution of X = (X„ X2, ..., X„) is 

                                                                                   7? 

                                                                     Exilog _J_.' 
              11pxt (1 - p )'= (1 - p) ei=i1—p. 

                               J=1 

                  n 

Hence U = E X. is a sufficient statistic for this class of distributions and 
                   ir.1 

the probability distribution of U is 

                                1"-T46
"C" 11 + Cri e ' 

where r---=1Pp'          log—co< r < O. 

                For e— (=pig), making use of the operator Au such that 

                                ilue4T= =e-Tewr= eT`u-') 

we get the unique unbiased sufficient estimate 

                         U                       a (U) — 
n—U + 1
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And for  E( - 1)k (h + k)! k!e-(41-k)r                          ( = il) , we get the estimate 
    kr.--0 

                                  7t_ h 

              \E( - 1)kk(h +k)!„Ci,_h_kU > h           5(U)                 ------{k=0k!,C.1a=1' 
         0U< h. 
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                                        Ref erences 

C 1 D. BLACKWELL ; Conditional expectation and unbiased sequential estimation. Ann. Math. 
     Stat., 18 (1947), 105 -112. 

C D. Br,AoKwELL and M. A. GIRSHICK ; Theory of games and statistical decisions. New York. 
     1954. 

C 3 J S. BOCHNER and W. T. MARTIN ; Several complex variables. Princeton. 1948. 
C 4 ] H. CRAMR ; Mathematical methods of statistics. Princeton. 1946. 
C 5) J. L. Doon; Statistical estimation. Trans. Amer. Math. Soc., 39 (1936), 410-421. 
C 6) A. DVORETZKY, A. WALD and J. WOLFOWITZ ; Elimination of randomization in certain 

      statistical decision procedures and zero-sum two-person games. Ann. Math . Stat., 22 
     (1951), 1 -21. 

C 7 R. A. FISHER; On the mathematical foundations of theoretical statistics. Phil. Trans. 
     Roy. Soc. London., Ser. A. 222 (1922), 309-368. 

C 8) M. A. GIRSHICK and L. J. SAVAGE; Bayes and minimax estimates for quadratic loss func-
     tions. Proc. Second Berkeley Symp. on Math. Stat. and Prob., Berkeley and Los Angels 

     1951, 53-73. 

C 9) P. R. HALmos and L. J. SAVAGE; Applications of the Radon-Nykodiin theorem to the 
     theory of sufficient statistics. Ann. Math. Stat., 20 (1949), 225-241 . 

[10) P. Hoel ; Conditional expectation and the efficiency of estimates. Ann. Math. Stat., 22 
    (1951), 299-301. 

[11) T. KITAGAWA ; The operational calculus and the estimations of functions of parameter 
     admitting sufficient statistics. Bull. Math. Stat., 6 (1956), 95-108. 

[12) A. N. KOLMOGOROFF ; Unbiased estimates. Amer. Math. Soc. Translation, No. 98 (1953). 
     (English translation). 

[13) B. 0. KOOPMAN ; On distributions admitting a sufficient statistics. Trans. Amer. Math. 
     Soc., 39 (1936), 399-409. 

[14) E. L. LEHMANN and H. SCHEFFi.: ; Completeness, similar regions and unbiased estimation. 
     Part I. Sankhy5, 10 (1950), 305 -340 ., Part II. Sankhya, 15 (1955), 219 -236. 

[15) E. J. G. PITMAN; Sufficient statistics and intrinsic accuracy. Proc. Camb. Phil. Soc., 32 
    (1936), 567-579. 

C16) C. R. RAO ; Information and accuracy attainable in the estimation of statistical para-
     meters. Bull. Calcutta Math. Soc., 37 (1995), 81-91 . 

C17) C. R. RAO ; Sufficient statistics and minimum variance estimates. Proc. Camb. Phil. Soc ., 
    45 (1949), 213- 218. 

[18) E. SVERDRUP ; Similarity, unbiassedness, minimaxibility and admissibility of statistical 
     test procedures. Skandinavisk Aktuarietidskrift., 36 (1935), 64-86. 

L19j A. WALD ; Statistical decision functions. New York. 1950. 
1_201 D. V. W TDDER ; The Laplace transforms. Princeton. 1946. 
L21) A. ZYGMUND ; Trigonometrical series. Warszawa and Lwow. 1935.


