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MINIMAX ESTIMATIONS

Koichi MIYASAWA

§1. Introduction

The purpose of this paper is to treat the problem of estimation from
the point of view of the risk function. For that we consider the decision
function as defined in our previous paper [5} . In [5] each stage of the
experimentation determined by the decision function consisted of observing
one and only one chance variable. But in this paper we consider the deci-
sion function in which each stage of the experimentation may consist of
observing any number of chance variables and in that range of decision
functions we shall find the minimax solution concerning the estimation of
the mean of the normal population with the known variance. The minimax
point estimation and interval estimation of the fixed length of this problem,
was studied by C.R. BLYTH [2; and G. WOLFOWITZ [4] respectively.

But in this paper we treat the problem from the viewpoints developed in
[5] for the more general case, and apply the results to the above cases as
the special cases. The interesting results are those the minimax solutions
of these problems are given by the nonsequential decision function, i.e.
the decision functions which indicate to stop the experimentation at the
first stage by taking a certain number, determined strictly by the problem,
of observations.

§2. Some Lemmas

Tet X={X\} (i1=1, 2, ----- ) be the sequence of random variables which
are independently and identically distributed with the same distribution
function F (x), about which we merely know that it is an element of
the given set £ of distribution functions. Let x = {x;{ (1 =1, 2, ----- ) be
the observed value of X = {X,}, D be the space of all possible terminal
decisions.

We consider the decision function which consists of two sequences
i Bu++n;} and  {dn+..40, (%)}, where =, is any positive integer (i =1,
2, e Y.

Here B.,+.+. is a certain subset of the space of (x,----- s Kupdootng)
(i=12, .- ). They are disjoint with each other, and satisfy the follow-
ing relation

oo

(1) ZS p(le]) ...... p(F’x7‘1+,,,+7‘z)dxl ...... dx"lf--~+ni:1

i=1

Bunyt+- g

59
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for any F ¢ @, where p (F|x) ic the density function of F (x). duy+vu (%)
is the function of the first »#, + --- + n; coordinates of x and its value is a
terminal decision, i.e. an element of D.

Then we write

(2) 3= [{Bugrrndd  {dugrony (£)1]

When the decision function (2) is adopted, the decision procedure is per-
formed as follows.

At the first stage of the experimentation, we make observations on the
chance variables X;, ----- , Xu , and obtain the observed value x = (%;, - ,
%..). If x¢ B. , we stop the experimentation and make the terminal deci-
sion determined by d., (x).

If x € B.,, then as the second stage of the experimentation we make

observations on the chance variables Xu,+1, - , Xuny, and obtain the
observed value (Xn,+1, -+ s Xngtng ) .
Then if x = (%, - y Xogy Xngtl, ooeee , Xngtng) € Bujrn,, We stop the ex-

perimentation and make the terminal decision determined by du +x, (%).
If x € Br+n, we make observations on the chance variables X, +u+1, -+
X +nytns, and proceed as above.

Let © be the space of all these possible decision functions 6. We assume
that the cost of the experimentation is the function of the number of
observations #z only, write it ¢ (%), and ¢ (n) >> 0 is the monotone increasing
function of n. Let W (F, d) = 0 be the loss when F is the true distribution
function of X,, and d ¢ D is the terminal decision made.

Let

(3) - r(Fd.(x))=c(n) + W(F, d (x)).

Then the risk of the decision function 6 = [{Buy+ - +n}, {d+r0 (2)}] when
F is the true distribution function of X, is given as follows

(4) 7r(F,d) = ;Sr(p, Aot (£)) D (F | %)) +ooov
B111+-'-+7,7; ’
p (F]x7;1+4-~+n,5) dx]_ """ dx"f"""f"”i

If ¢ is the a priori distribution of F, then the average riak of ¢ is given
as follows, assuming that the order of integration may be changed,

(5) 7(% 8)= Sr(F, 3)d £

Q

- ZS S 7 (Fy dugtecin; (£)) D (F| %)) oo B (F | Zproootng)
Bugt-tm @

) d E d xl """ d xnrf' g e
Consequently if we put
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(6) 7(s dj(x))zgr(F,dj(x)).b(lel) ----- p(Flx)ds

Q

for any positive integer j, then we can write

( 7 ) r(g) 6) = i S r(g; dwl"l‘----i'wt (x)) dxl """ dxnl-rn'—f-ni -

i=1

B7‘1+"'+n‘i
Let d°; (x) be the function of x=(x,, -+ , %;) such that
(8) 7 (& &; (%)) = min 7 (£ d;(x))
4

for any fixed x = (%, - » %),

where min stands for the minimum with respect to the function d;(x)

aj
which are possible.
Let

(9) 7: (& %) =r(§ a5 (x)).

Then we have the following lemma concerning the Bayes solution relative
to the a priori distribution.

Lemma 1. We assume that the following (i) or (i') and (ii) hold.

(i) W (F, d) is a bounded function of F ¢ £ and d ¢ D, and let W,
be the upper bound of W (F, d).

(i) For the case W (F, d) is not bounded, we consider the following
situation. Q is a one-parameter family of distribution functionsF (x, 0),
the a priori distribution has the v»-th order moment (v =1, 2, ----- , m),
and W (F, d’;(x)) is given as the n-th (n < m) order polynomial

(10)  W(F, d&5(2) = 5fu(®m2) 05 (=12 ),

where d°;(x) is the function defined by (8).
For any ¢ >0, there exists 6 >>0, such that, if

(11) SP(F[xl) """ P(F|x)dx dx; <9,
Cj
where C; is the subset of the space of (x,, - , X;), then we have

(12) Sfu(xl """" %) p(Flx) - P(F|x)d % dx;<e,

(ii) Let

¢(n) = S 7. (5 x)dx, — 1. (§, %), (B=2,3, - )

—oe
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The sign of ¢ (n) is independent of the value of % = (%, - Xn-1), but
depends only on n.
Then if we can fined the positive integer N such that

(13) ¢ (n)<0 for 2=n=N,
and
(14) ¢(n) =0 for n> N,
the Bayes solution oy relative to &, that is the decision function o, such that
(15) 7 (& &) =1inf r (£ 9)
e
is given as the following decision function: we make observations on
X, e , Xy and stop always the experimentation at this only one stage,

and take the terminal decision determined by by d'y (x).

Proof. From (13) and (14), we have

(16) g 7, (& x)dx, <r,(§ x) fori-==2 3, .- , N,

(17) g 7, (& x)dx,=r;,(5 %) forj=N+1 N+ 2, e
for any decision function

(18) 0 = [{Bugreim} 5 {ngren (2)17,
if we take the decision function

(19) 6’ = [anl-f-...-f'ni} ) gd‘aq'i"'-‘f‘ni (x)%l P

it is clear that
r(§ )< r(§ 9).

Consequently, if we can prove that
(20) r (& 0) =7 (£ 9)

for any decision function ¢° of the form (19), then Lemma 1 is proved.
Let, for example,
(21) n + n, < N, n, + n, + ny > N.

For the other case different from (21), the following proof can be applied
in the same way. Then we have

@ g o=\ | s ndrean,

e —o0

= S r SmrN(E, x) + g Y S“’ 7y (§ x)dx,
CB, == ==

o -0

ny - 1
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where CB., is the complement of B., with respect to the space of (x,,

...... , xnl) .
From (16) ,we have

(23) S V S”rN(E, x)dx < Sr,,l(E, x)dx.

—oc —oa
K% 7y

Therefore from (22) and (23), we have

oo

(24) Sm rrﬂ(s, x)dx<s 7, (5 2)dx + S SGS 7y (& x)dx.
Now ) o
(25) S S“-..Smm(s, x)dx = S S“ S“m(s, %)dx
CBpy == == - .
B G O R

C(Bn1+Bnl+7x2) -

From (16), we have

(26) S gm---g:rN(E, x)dx = g Zoiny (6, ) d % .

B“’l g

Bnl-img_w
From (24) - (26), we have
(27) & g ry (6 x)dx< S 7, (§ x)dx + 8 Tty (&, X)d x

ny+ng

o te g
+ ‘ S 8 ry (& x)dx.
C(Bny+Bnjtny) == —°

From (17), we have

(28) S rN(E) x)dxg S S S rn1+112+713(5) x)dx.
C(Bn,-anl—kng) - - C(B,.1+Bn1+n2) - —
Now
(29) S S S rn1+112+7’-3 (907 x)dx = g S r-nl-f-n:ﬁ-'ng(é} x)dx
C(Bnl-rBasl-'-na) e —® gt (ny+ng)
nytngtng  mytaugtng
+ S S rrnl-i-'n,—i"ns (E) x) d x + S S ot S rwl"t‘ﬂz‘f'n:-, (SJ x) d x
Bn1+7)2 (nqtg) CBn1+ﬂ2 - -
nytngtng nytngtng nytRgtng
""" 1) x7ll+n2) Such that (xl ) Tttt

where B"i:’ﬂ , denotes the set of (x,
” N T

xnl-hngfng) € B"l'hxa-fng,
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CB"t is the complement cf B™™ relative to C (B, + Butn),

n,tngtng nytngtog
(ny+ng)
Bnt:_n;bins denotes the set of (Xijrngr1, +--oo , Xnjtngray) such that (&, - s

xm1+712+n3) € B111+7121-9;3,

CB™*™2 denotes the complement of B“'*"® relative to the psace of

7yt Rg+ng nytngtng
(Zytngt1, oo y Kmptugtng) «
Then we have

(30) S g r711+1),+n3 (g, x) d X = S rn1+nz+a;3 (E, x) d X )
wytng B(7ll+n2) B711+”2+, 3
attngtng  agtugtng

and
(31) S S 7’”11-7:2+715 (5, x) d X + S S b S 7‘1;11»7,21-7;3 (5, x) d X
Bul+n5 CB(W‘+7/2) CB711+752 e el
nytugtag nytng+ng 2y tnugtng

= Pogtngtng (5, 2)d %.
C(B”‘l-f-B71-2-1-112+B1q+713+113)

Therefore from (27) — (31) ,we have

(32) S S rzvdx<§ rwldx + S rnl-f-wzdx

- - Bwl B'nl‘f‘ng
+ g rnl-l—ng-hrs d x + r7r1+713+‘ng d X .
By tngtug C(Byy+ Buj+ng+ Brytngtug)

Proceeding in this way, for any positive integer %k, we have

= - L3
(33) g b S rNdx‘<1;S 1’7,11----1—71,; (E, x) dx + g r,,1+-~-+77k (g, x) dx .

e S B s k
gt tng C(i_ZIB“l.;..‘.—h,i)
Now
(34) Z S fn1+---+ni(5, x)dx
i=k+1
Bwﬁ'u--h:i

:§ S S fc (m + oo + )+ W(F, doyrin (£)))

g t=k+1 B“],‘*'"""‘"i
nyttng
p(Flx)dxdé
J=1
oo ngtetng .
= .Zﬂ c(m+ - +n) 111 p(Flx,)dx;dé¢
i=k Jj=

Bnl-g-.. st
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:g Z, {7 (F, &ntoiny (%)) — W(F, dnir.vny, (%)) }

iz=k+1
Q B'nl'i‘ tng

Ty +etng

II p(Flxs)dxsds

= S S ;r (F, d°n1+m+nk (x)) - W (F, d°n1+.--+nk (x))}
. C(fiv_,anl-r...-rn,-)
nyt--tn,

“P(Fix)dxsde

1

J

I

S Trgttnme (€, ) d %

k
Z n1+«-~+n1)

Nytiong

S S W (F, dnron () 1L p(F 2)dzmdé.
C(ZBn1+ )

Therefor we have

(35) 8 Trprom (6, £) d X = Z. Sr‘nﬁ- +n (&, x)d x
C(ZBnl-i- “I‘Nl) Bnrf‘ e (21

Congteetny

+ g S W (F, d°nyt...4n, (%)) I;Il P(F[xj)d;tjdf.
. C(iéan1+-~~+ni)

Let R, be the second term of the right hand member of (35). Then we
shall prove that, for any positive ¢, we have

(36) R.<e

if k is a sufficiently large positive integer.
For any ¢’ >0, if % is sufficiently large, we have from (1) that

Z, gp (Fix1) - P(F | Xn+ tn;)d %1 -+ oo+ d Xnjtooiny < €
=kl Byt +ny

that is

(37) | I (Flmydn <

k
C(ZBrr o)

Consequently, if assumption (i) is sttisfied, we have
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nyt--tng _
ngWO II ﬁ(F‘x,:)dx;dEéWoe/,
Q k 7=1
C(E By -+

that is, (36) is proved,

Under the assumption (i'), (36) can also be proved in the same way.
For any >0, if we take the value of %, such that for which (36) holds,
then we have from (35) that

(38) S Vogrtny (6, X)d % < i S Pat+n (€, 2)d % + €.

k i=kt+]1
n e g
C(ingnx+»»<+ni) e

Therefore we have

) k
(39) ZS rnrl-.”-f-nt(fy x)dx+ S rle-t-.‘--rnk(f; x)dx<1’(5, 5°)+6
i=1
Bnyt---tn; C(iiIBnl—rm»rni)

From (33) and (39), we have

=

(40) 7 (&, 0) = S S rx(§ x)dx <7 (& d,) .

—oo —oo

This shows that J; is a Bayes solution relative to & and Lemma 1 is
proved.

LemMA 2. If, for a decision function o6*, we can find the sequence
163 (B=1,2, -~ ) of a priori distributions on s such that

(41) sup r(F, o*) =1lim r (£, 3,)
P k— oo

where 9, is the Bayes solution relative to &,, then the decision function
3 is minimax.

PrROOF, If 0* is not minimax, there exists a decision function & such that
(42) sup r (F, 0) <sup r (F, o%).
¥ ”

Then form (41) and (42), if & is sufficiently large, we have
(43) sup v (F, ) <r (&, 3).
On the other hand we have

(44) sup 7<F7 ‘?) Zf(gma):é?’(gk, 8k)-

(44) contradicts with (43), and Lemma 2 is proved.

* This lemma is essentially the same as the lemma due to E, Lernmany, cf. [2].
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§ 3. Formulation of the problemé

Let {X,{(k=1, 2, .- ) be the sequence of independent chance variables,
each being N (4, ¢%), i.e, normal with the mean ¢ and the variance o2
where o? is known, but ¢ is unknown.

The purpose of this paper is to fined the minimax estimation the mean ¢
of in the range ® of decision functions defined in § 2.

(i) General estimation.. In this case, if the decision function & stops the
experimentation when » obsevations x = (&, ----- , %.) are obtained, then
its terminal decision d, (x) determines the values of two functions L! (x)
andL? (x), (LL<L?), and indicates to estimate ¢ by the interval (L. (x),
L%(x)), where L} (x) and L2(x) are functions of x = (x;,----- s Xn)
associated with 4. We assume that the cost of the experimentation is
proportional to the number of observations, and the risk function is given
by the following form

(45)  r(6,d. (%)) =cn+ k(L (x) — L', (x)) + W (6,d, (x))
where ¢ and %k are certain positive numbers, and
0, if Li(x)=0=<L:(x),
(46) W (6, d.(x)) = j (0 — L% (%)), if 0>L% (%),
(6 — L% (x))?, if <L, (x).
(ii) Estimation by an interval of the given length 2I,. This is the
special case of (i) where d, (x) is limited to a function such that
(47) Li(x)— Ll (x) =2, for any x = (x,, ----- y Xn),

Therefore in this case we may take 2 -=0 in (45).
(ili) Point estimation. This is the special case of (ii) where /, = 0. At
" first we shall find the minimax solution for the general case (i), and then
apply its results to cases (ii) and (iii).

§4. General estimation.

THEOREM 1. If the risk function is given by (45), then the minimax
estimation of 0 is determined as follows.
Let ¥,(l) be the function of 1 defined by

(48) Y,y = w2r - k-1 + (6 -m12x — 1Y expi{i— x%/2}d x
vn -o-1.1
(n — 1’ 2, ...... ) ,
h(n) be the function of n defined by
(49) h(n)=2=)"2{min ¥,_, (1) —min 7, (1)}
4 l
(n — 2’ 3, ...... ) .
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Then h(n) is a monotone decreasing function of n.

Consequently we can-define uniquely the positive integer N as follows. If

h(2) <c/2, then N =2, if h(2)>c/2, then N is the integer such that
(90) h(N)>c¢/2 and h(N+1)=c/2.

Then the decision function 3, which indicates to take observations (x,,
------ y Xn of (X, -y Xy) and stop the experimentation at this one
stage and estimate 0 by the interval

(51) (éxi/N—lN, z’::m/NJr 1)

is the minimax solution of this estimation problem where is the value
of 1 such that

(52) v, (1) = mlz'n v, (1).

Explicitely, mlin V,(1) and 1, is given as follows.
Let M be the smallest positive integer, greater than 2¢%/z k.
If n=M, then
(53) min ¥, (1) = (2rn)126%/2n, 1,=0.
1

If n<<M, then

£

(54) min ¥, (1) = A nt [(22)1% (20)" kni%s, + | exp {—2/2] dx],

3n

where s, the value of s such that

o

(55) exp {—s/2 — s\ exp{-x/2{dx = (27)V%(20)"! b n\?

and .
(56) l, =onlis,,

PrROOF. At first, let us assume that ¢ has the a priori distribution
N (0, b*), denote it by &,, and by means of of Lemma 1 we shall fined
the Bayes solution 4, relative to &,.

In this case we have

oo

(87) (& d. (%)) = (2ra")™2 (22 0*)712\ 7 (6, d, (%))

—o0

exp {—1/2 (3 (%, — 0)/a? + 2/b2)} d 0 .
1
Let us put
(58) A, = $x§/az — (lﬁ 2)2/(o* + nb?) . o
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(59) A, =expi—A|2}
(60) K, = (27022 (22 b2)"12 . A,
a, = o b (0% + nb*)?

Q.= —a@/2(0 — 3 5/a ).
Then it can be shown that

(63) 7(%,d. (%)) =K.cn(2x)?/a, + K, k(27)"/a,- { L (x) — L} (%)}

L},(x)

+ K, | (0—L?,(x))2epr,,d0+& (6 — LL(x)) exp Q,d b} .

Li(x) o

Therefore, from (63), in order to minimize 7 (¢,, d,(x)) with respect to
the fuction d, for the fixed value of x, L!(x) and L2 (x) should have the
following form.

(64) Li(x)=nx/a’o? — ] (x)
(65) L (x)=mnx/a’q*+ 1 (x)
where x = ixi/n and / (x) is a certain function of ¥ = (x, ----- s Xn) .
1

For these values of Ll (x) and L (x), it can be shown that
(66) 7(§, d.(x)) =2K,/a, [(2n)"cn/2 + (2n)"2k - 1 (%)

S (2/a, — 1 (%)) exp{— 2*/2}dz)].

a,l’T)

Now ¥ (1) be the function of / defined by

(67) Tr(l)y = (2r) 2k -1 + S (z/a, — 1) exp{ —2°/2}dz

Then we have
(68) r(&,d, (%)) =2K,/a, [(2n)2cn/2 + P2 (1(x))] .

Consequently, for any fixed x = (x;, - , X.), the function 4", which satisfies
(69) r (4, &(%) = ming (&, dy (5)),
should determine L} (x) and L2 (x) as follows
(70) Li(x)=nx/a s> - I
(71) L2 (x) =nx/ao®+ I}
where [’ is the value of / such that
(72) T (b)) = min (1) .

Then, we have



70 Koichi Miyvsawa

(73) 7. (5, x) =minr (5, d, (%)) =7 (&, d(x))

= 2;7{,,/a,, [(22)2en/2 + W2 (1))
=2 (27 a2) 2 (20 B7)"12/q, {(2m)W e m/2 + WL(IL)| - A,.
If we put
(74) B, =2 (2z5*)"* (2= 0)"%/a, } (2n) P cn/2 + ¥ (1)}
then B, is independent of ¥ and we have
(75) 7. (%, %) =B, - A,.

Here we determine the value /2 of ! which satisfies (72) and the value of
7 (lky. From (67), it can be shown that
d

(76) 7 () =2/a,- [(22)" ka,/2 — exp : —s*/2]

— sg exp {—2z*/2}dz.

Let the function f (s) of s be defined by

oo

(77)  f(s) = exp { —5%/2} -ss exp{—24/21dz, (s=0),

s

then f(s) is a monotone decreasing function of s, and f(0) =1. If s, is
the value of s such that

(78) . _ (2n)%ka./2 = f(s)
then we have
(79 IL = s./a..

Here, since a., as a function of », is a monotone increasing function ofz,
we have the followings from (78).

(2n)2ka.,/2 =1 is equivalent with
(80) n_>20%/(n k) — */b°

Let M® be the smallest positive integer which satisfies (80) .
If #_>M", then we have [ =0, and

(81) mlm r(l)= 7,(0) = g /@t exp | —22/2} d z = (2x)1%/(2a)) .

0
If n<M?, then /% is given by (79), and it can be shown that

(82) min ¥i(l)= V() =a[(2n)"ka.s./2 + S expi{—22/21 d z2)

$n

or
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(83) = a2 [(27% ka,s./2 + s;t exp § —sh/2}
— (27)"2 ka./(2s,)]
Now, form (75) we have

oo

(76) g 7.(&, x)d %. = B, - & A.dx,.

—o0 —o0

Here we can rewrite A’, as follows

(T7) Ay = @y~ (08.)" 120 — bZ"g % J(2 4 (n— D)+ Ay

Then we have

(78) S Adx,= A,y (2n)0a,/a., .

—oo

From (76) and (78), we have

(79) S 70 (5, 5)d% =B, - Avy (27)2 680/ Gu_y .

—o0

Let ¢?(n) be defined by

(80) ¢ (n)= g 7. (5, x)d % — 1., (§,, %) .

oo

Then from (75) and (80), it can be shown that
(81) ¢ (n) = A._, (2n0?)~ D2 (2r b2)"12 g1, 2 (27)112
(c/2 = (22)72 4 00 (L)) — YR (I)Y]) .

Accordingly, the sign of ¢ (#z) is independent of x, and dependent only of
n. Now we define functions #° (%) and g®(#) of n by the following

(82) B (n) = QCr)2 {0 (L) — V(5]
= (22)71 imin Vi (1) — min T2(D)1,

(83) g (n)=c/2—-n(n).

Then, for any fixed x, the sign of ¢’ (»#) coincides with that of g*(#=).
Here we shall shown that A*(z) is a monotone decreasing function of z.

For that purpose, it is sufficient to prove that the function ¥ (%) of =
defined by : '

(84) - U (n) =min V2 (1)

is a convex function of #, that is & ¥*(») /dn*>0. Now it can be shown
the followings.

If n>M", from (81) we have
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a2 I (n)
d n?

If n<<M°, from (82) we have

= (n)2s4a,$>0.

d? Wb(ﬁ),m
dan?

Sn Sn

= [20%al g exp i —x/2} d x]7! - [(48 exp | —x%/2}dx

+ S. expt—si/2}) . g exp{—x2/2}d x — exp § --si}]1 >0.

n

Therefore #° () is is a monotone decreasing function of .
If B*(2)<c¢/2, let N, be N, =2, and

if B (2)>c¢/2, let N, be the uniquely determined positive integer such that

B (N,)>c¢/2, and k" (N, + 1) < ¢/2.

Further it can be shown that the assumption (i’) of lemma 1 is satisfied in
this problem. Consequently, from lemma 1, we can conclude that the deci-
sion function 4, which indicate to make observations (x,, -----
stop the experimentation at this one stage, and to estimate # by the interval

(85)  (Nb*-%/(a + N, b*) — I}y, N,b*- x/(c* + N, %) + I%,)

Np
is the Bayes solution relative to &,, where x = 3 x.,/N,.
1

, Xx,) and

Now we shall obtain the value of r (¢,, 4,). From (75), we have

oo

(86) r (&, 6,) = S g 7w, (& %) d %y oo dxy,

L BNI‘ . S g A‘vbdxl ...... dx}h-

Now, to obtain the value of the integral

oo

(87) Sw SmANdxl e d %y = r S exp[— (202)]

—co —o0 —co

we make the following transformation of the variables

(88) =%+ 3(1-2)V2+9(2-3)72+ 0o + Y5 (N=1- N)™°
Fr=F - 312 4 33237V 4 s yay (WD - N2
X=2 —29,(2:3)712 4 ... + Yy (N—1-N)2
Ay=2X% —(N—=1)y,,(N=1- N)'?,

Then it can be shown that we have
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oe o o2

(89) Sw& Aydxy - dx.v:g S exp (202)7

(S g2+ No2ze 7/(a? + Nb?) )
«/%f dy - dyy,d%x = (2n)Y2(o® + N D)2 . o771,
Therefore, from (86) and (89),we have
(90) r (%, 8,) = By, (2n)/2%6% 1 (o? + N, - b*)'2.
Consequently, from (74) and (90), we have
(91) (5, 8) =CcN, + 20" + 2 (27) 2 (ab)™ ! (o + N, b?)1?

oo

S (x —I")? exp{— (2+ N, - b*) - 22/2°0% dx

16
where [° stands for 7%,.
Now it is clear that
(92) lim P2 (1)=",(1)y=(2=z)2. k.1

=)

+ (n 126z — )2 expi — 22/2} d z

nli2la

(93)  lim B (m) = h(n) = (20)7" min 0., (1) —min 0. (D)} .

Let N be the positive intermined in Thecrem 1, then we have
(94) lim N,= N liml,=1,.

13

oo

Now wa shall prove that the decision function ¢, which is defined in Theorem
1is a minimax solution. We have

oo oo

©) 70 = | | r @ @)@y exp | =31 (x, — 0)/27]

Here we make the transformation (8). Then it can be shown that
(96) r(0,38,) =c¢N + 2kl + 2 (2rs*) 12 N2,

g (x — I, exp{— Nx*/2s% dx.

N

From (91), (94) and (95), we have
97) lim r (5,, 6,) =7 (0, &) for all 0.

b oo

Therefore, from lemma 2, §, is a minimax solution of this problem. q.e.d.
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§5. Estimation by an interval of the given length 2[,.
THEOREM 2. Let
(98) 7 (0, du(x))=cn+W(0,d.(x)) (=12 - )

be the risk, when one takes the sample x = (x,, -+ , %.), and then
take the terminal decision determined by the functiond. (x).
Here W (0,d.(x)) is given by (46), but in this case we should have always

L2 (x) — Li(x) =2l,.

Let
(99) v, () = S (0-n2x — [))? exp { —x%/2}d x
w1257
and
(100) h(n)= (2z)2 {0, (1)) — (D)t

Then, h(n) is a monotone decreasing function of n. Consequently we can
define uniquely the positive integer N as follows. If h(2)=c/2, then
N =2, if h(2)>c/2, then N is the integer such that

(101) h(N)>c/2, R(N+1)=c/2.
Then the decision function o, which indicates to take observations (x,,
------ , %y) of (Xy, -+, Xy) and stop the experimentation at this one
stage and estimate 0 by the interval

(102) (;”;xé/N— ,, ﬁjlxi/N-F 1)

is the minimax solution of this estimation problem.
Further, the risk function r (0, 8,) is given as follows

oo

(103) 7 (#, 6y) =cN + 2(2r) 12 N'2g S (x — I, exp {— Nx*/2}d x.

[}

ProoF, If we put 2 =0, and / = /, =const, in Theorem 1, then Theorem
2 follows immediately from Theorem 1.

ExaMpPLE. From theorem 2, it can be easily determined the sample size
N which gives the minimax estimation of this problem:.
For example

1) if o=1, 2[,=2 6-103<<¢=2-.102, then N-=3

2) f o=1, 2l,=2, 2-10°<c¢=4-102, then N=4

3) if =1, 2/,=1/5, 6-10*=<c¢c=6-10"%, then N=11

4 if =1, 2,=10" ¢c=2-10", then N =20.
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$6. Point estimation.

In this case, if we take /, =0 in Theorem 2, then we have the following
Theorem 3 immediately.

THEOREM 3. Let
(104) (0, d. (%)) =cn+ {60 —d.(x))?

be the risk, when one takes sample x = (%, - , X.), and then estimate,
the terminal decision, the value of 0 by the value of the function d. (x).
Let N be the greatest positive integer smaller than

(105) $1 4+ (1 + 46%/c)'2} /2.
Then the decision function &, which indicates to take observations (x,,
------ , Xy) of (X;, -, Xy) and stop the experimentation at this one

stage and estimate # by the value
N
(106) x=>x/N
1
is the minimax point estimation of 0. -
Further, the risk function r (0, 6,) is given as follows

(107) 7 (8, %) == ¢ N + o%/N.

PROOF. In this case (99) and (100) becomes as follows

(108) T,(0) = ay/n - g x? exp { —x%/2  dx = (22)'20%/(2n),

0
(109) hn)=02/2-{(n—-1)1—nT},
Then from the equation ¢/2 — h(n) = 0, that is from
(110) cn’—cn—2=0,
we have two roots of »n
L+ 4oy /2 (1),
and {1 — (1 + 4:2/c)v2 /2 (<20).
Therefore Theorem 3 follows from Theorem 2 putting 7, = 0.

ExaMPLE. In this case, the sample size N which gives the minimax point
estimation can be determined easily from (105).
For example we have the following table of N and 7 (#, ¢ ) for several
values of % and c.
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when ¢ = 1.

Kob6ichi Mivasvwa

‘ ¢ 101 10-2 10-3 10—4
‘ N 3 10 32 100
7 (0, 8y) .63 20 063 0200
: i
when #2=2.
} ¢ 10-1 10-2 10-3 10—+
N 4 14 45 141
i 7 (0, 8¢) .90 .28 .089 0283 |
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