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                MINIMAX ESTIMATIONS 

 KOichi MIYASAWA 

   1. Introduction 

 The purpose of this paper is to treat the problem of estimation from 
the point of view of the risk function. For that we consider the decision 
function as defined in our previous paper [5] . In [5] each stage of the 
experimentation determined by the decision function consisted of observing 
one and only one chance variable. But in this paper we consider the deci-
sion function in which each stage of the experimentation may consist of 
observing any number of chance variables and in that range of decision 
functions we shall find the minimax solution concerning the estimation of 
the mean of the normal population with the known variance. The minimax 
point estimation and interval estimation of the fixed length of this problem, 
was studied by C.R. BLYTH [21 and G. WOLFOWITZ [4] respectively. 

 But in this paper we treat the problem from the viewpoints developed in 
[5] for the more general case, and apply the results to the above cases as 
the special cases. The interesting results are those the minimax solutions 
of these problems are given by the nonsequential decision function, i.e. 
the decision functions which indicate to stop the experimentation at the 
first stage by taking a certain number, determined strictly by the problem, 
of observations. 

  § 2. Some Lemmas 

 Let X = XL (i = 1, 2,  ) be the sequence of random variables which 
are independently and identically distributed with the same distribution 
function F (x) , about which we merely know that it is an element of 
the given set S2 of distribution functions. Let x /xti (i = 1, 2,  ) be 
the observed value of X = X1 , D be the space of all possible terminal 
decisions. 
 We consider the decision function which consists of two sequences 

1B.11- —I-7Ni and (x) , where n, is any positive integer (i = 1, 
2,   ) . 

  Here is a certain subset of the space of (x1,   , x7,14. • • • tni ) 
(i = 1, 2,   ) . They are disjoint with each other, and satisfy the follow-
ing relation 

 ( 1 ) P (F I xi)  p (F 1-91i d x,   d -t-ni 1 
                       B7111- • 1-21i 

                                 59
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for any F E 2, where p (F x) is the density function of F (X) . (x) 
is the function of the first n, + ••• + ni coordinates of x and its value is a 
terminal decision, i.e. an element of D. 
Then we write 

 ( 2 ) = [ .Bni -t-rd , (x) ] 

When the decision function (2) is adopted, the decision procedure is per-
formed as follows. 

 At the first stage of the experimentation, we make observations on the 
chance variables X1,  , X„„ and obtain the observed value x = (x1,   
x„,) . If x E B7,.1, we stop the experimentation and make the terminal deci-
sion determined by cl,,,(x). 

  If x E B21, then as the second stage of the experimentation we make 
observations on the chance variables X„0-1 ,  , , and obtain the 
observed value (xn,i-i ,  , x2,0-.2) 

  Then if x (x1,  , xn, , x,,,+1 ,  , E B7111-9,2 , we stop the ex-

perimentation and make the terminal decision determined by di(x) 11-n2, • 
If x E B.11-„„ we make observations on the chance variables Xflit,,2-1-1,   

        and proceed as above. 

 Let be the space of all these possible decision functions a. We assume 
that the cost of the experimentation is the function of the number of 
observations n only, write it c (n) , and c (n) > 0 is the monotone increasing 
function of n. Let W (F, d) 0 be the loss when F is the true distribution 
function of X„ and d E D is the terminal decision made. 

 Let 

 ( 3 )r (F, dn (X)) C (n) W (F, d„(X)) • 

Then the risk of the decision function o = , (x) ] when 
F is the true distribution function of X. is given as follows 

 ( 4 ) r (F, = E r (F, p (F ji.t)   
                            1=1 

                                        Bn1-1-• • • -I-7,1 

                                          p (F I d Xi d Xni-t-• • --1-9,1 

If is the a priori distribution of F, then the average riak of a is given 
as follows, assuming that the order of integration may be changed, 

 ( 5 ) r(3) — (F, a) d 

      = 

                 r (F, (x)) P (F I xi)  p (F Xno-•••-t-N) 

                       Bv1-1-• • • I-ni 

                             ded.Xi  d . 

Consequently if we put
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 (  6  ) r($, d;(x))=r(F, d;(x))p(F x1)  p (F !x.,)dC.- 

                             u for any positive integer j, then we can write 

 ( 7 ) r (E, a) _= f, r (x)) d xi   d . 
                      i=1 „ 

Let d°, (x) be the function of x----(x1,   ,x,) such that 

 ( 8 ) r ($, d; (x)) = min r ($, d; (x)) 
                                      d; 

                           for any fixed x (x1,   , x2), 

where min stands for the minimum with respect to the function di(x) 
         d; 

which are possible. 
 Let 

 ( 9 ) (e, x) = r (x)) . 

 Then we have the following lemma concerning the Bayes solution relative 
to the a priori distribution. 

 Lemma 1. We assume that the following (i) or (i') and (ii) hold. 

 ( i) W (F, d) is a bounded function of F E 9 and d E D, and let WO 
be the upper bound of W (F, d). 

  ( i') For the case W (F, d) is not bounded, we consider the following 
situation. 9 is a one-parameter family of distribution functionsF (x, 0), 
the a priori distribution has the v-th order moment (1, = 1, 2,   m), 
and W (F, d°; (x)) is given as the n-th (n < m) order polynomial 

 (10) W (F, d°; (x)) (xi   xi) 0 , (j — 1, 2,  ) 
                                          i.0 

where d'; (x) is the function defined by (8) . 
For any 6 > 0, there exists a > 0, such that, if 

  (11) (F lx,)   P(Flx;)dx, ------ dx,<3, 
                        u; 

where C; is the subset of the space of (x1,   x,), then we have 

  (12) f, (x1   xi) P(Flxi)  P(Flx,)dxi dxJ<E, 
             ci 

                           (i= 0, 1,   , n; j = 1, 2,   ) . 

 ( ii) Let 

         (n) -= rn(e, x) d — ri,_i (E, x), (n = 2, 3,   
                                  -90
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The sign of tio (n) is independent of the value of x (x1   xn_.1) , but 
depends only on n. 
Then if we can fined the Positive integer N such that 

 (13) (n) <0for 2 < n N, 
and 

 (14)97 (n)�-_-_ 0for n> N, 

the Bayes solution 8E relative to $, that is the decision function a, such that 

 (15)r ($, at) = inf r($, 8) 
                                            sez 

is given as the following decision function: we make observations on 
X1,  , XN and stop always the experimentation at this only one stage, 
and take the terminal decision determined by by d'N(x). 

 Proof. From (13) and (14), we have 

  (16) ri ($, x) d xt<ri_1(, x) for i —2. 3,  , N, 

 (17) x) d x n_i (e, x) for j = N + 1, N + 2,   

for any decision function 

  (18)a Rii-F• • •4-74 dni-1-• • •-1-7,i (x) , 

if we take the decision function 

 (19)8° = aft --Fni , 6/%0- (X) }] 
it is clear that 

                    r (e, a°) (E, a) . 

Consequently, if we can prove that 

 (20)r (e, 8E) r ($ ,6°) 

for any decision function 3° of the form (19), then Lemma 1 is proved. 
 Let, for example, 

 (21)n1+ n2 N, n1+ n2 + n3> N. 

For the other case different from (21), the following proof can be applied 
in the same way. Then we have 

                      00 00 

 (22) r (e, at) ••• rN (e, x) d x1 d xN 

                                            00 CO 

                          

• rN($ , x) + ••• rN(e, x)dx ,
Jj ---
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where  CB., is the complement of B., with respect to the space of (x1, 
  Xnt) • 

From (16) ,we have 

 (23) c'e••• ($, x) d x <r„,($, x) d x 
       B,,,-"                                                           711 

Therefore from (22) and (23) we have 

 (24) ••• r„ (e, x) d x rn (e,x)dx+ • • r, ($ , x) d x 
                                       Bni 

Now 

 (25) ••• rN ($, x) d x = ($, x)dx 
    CBniB9,1-1-n2 

                                    C• • • rN ($, x) d x . 
                                          C(Bnii-Bnit n2) 

From (16) we have 

             •••Ysr   (26)„( e, x) d xrntfin2x) d x 
     Bno 712 - -mBni rn, 

From (24) — (26), we have 

  (27) ••• r,(E,x) d x (E, x) d x + r„,,„2(, x)dx 
                  BniBn1-t-n2 

                                             

• • N (e X) d x 

                                                C(Bni-r-B.1-1-r42) -"" 

From (17), we have 

 (28) • • • x) d x s ( E, x) d x• 
  C(Bnli-Bnct-n2)  

Now 

 (29) • • • (soy x) d x r„($x) d x                                                                                            772+n:3-7 

     C(Bni-t-B„0-90Bnitn2B(n1-1-21) 
                                                                                 vil--7121-.3 no-7121,3 

                     (el x) d x +                  r x) 

         cB(.1-1-n2)CBni."2 
       ,111-7,21-n3 nitn2tn3wit-n21-n 

where B"rt-"2 denotes the set of (x1,   x71i-n2) such that (x1, ------ , 

xn,-1-7.24-n3) E
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CB" 1t"2is the complement cf Bn1+' relative to C (.13„1 + B„,+") , 
      nci-n2-h13 

B("1±n2) denotes the set of (x7,0-9,2±1,   , x.„-i-no-„2) such that (x1,   

Xn11-7)21-n3) E RIO-2121-n, , 

C.B("±"2) denotes the complement of B('''''2) relative to the psace of 

 (Xni-l-n2±1 , • • • • • , Xni-t9,21-n3) • 
Then we have 

 (30)rz,itza2tn, ( x) d x ( x) d x , 

     B1, 1-1-n2B(n1-1-n2)B                                                                          711 7,2 3 
                    7,1-1-n2-t-n3 

and 

 (31) ( x) d x + • •  rz,itn2tza3 ( e, x) d x 

        B?CB0/ ft-7,0                                                       CB"l±n2 
                7.14-.2"h'3 v1-h'21-n3 

                       =rn i-t-n2-1-n3 e, x) d x • 
                                    C(Bni 

Therefore from (27) — (31) ,we have+B7,21-v2,-FBni+n,-f-2,3) 

 (32) ••• rNdx< rn1 d x                                       . rri1±22d x 
          Bn1B                                                                           7/2 

                              -1-712*7,3 d x +r7,0,31-7,2d x • 
                                 B,11-n2-1-z}3C (B111 ± B711±7l2 Bn -1-712-1-4 

Proceeding in this way, for any positive integer k, we have 

(33) ••• r()d(')d                           7/11- • • • -1-7,/XX +rXX •                                     i=1                                                       Bno-• • •-t-nt                                                                                       C(EB 9A1-1- • • •I-770 
                                                                                         1=1 

Now 

(34) x)d x 
                 i=k 1-1 0, 

                             Dv I I- • • • -t-ni 

      = (ni +   + + W (F, 

                                                       i- • • • 1-n. 

                                   711-1- • • • 1-71,1 

               P(Ffpci)dxicl$ 

                                                                                          9,,-f-•••1-ni 

                c(ni + ••• + n ) Ij p (F1 xj)d xide 
                         i=k1-1 

                                      unit • • • -t-vi
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 ir (F, d°n-t • • 1-nk (x)) — W (F, duo- ..-f-nk (x))1 
                    •B7Fit•• •tvii 

                               ni-t• • • 1-74 

           Ijp (F Xi) d Xi d 

                    r (F, (x)) — W (F, crnit.••1-nk (x)) 

                          k 

                       C(EBnit.--1-ni) 
                         1=1 

                            ni1-• • • 1-nk 

           II p(FIxj)dxjdE 
                           2=1 

                      x) d x 

                           tni)                               '1=1-••• 

          — W (F , ..-f-nk (x)) II P (F xi) d d E 
         o k 

                       C(EBni-t- • • -tni) 
                           1=1 

Therefor we have 

 (35) ($, x) d x x) d x                                              1,k+1 
                                                              Dint- • • •trt t             C ( • ..-t-ni) 

                 W (F, d'ni±...1-nk (X)) p (F xi) d d . 
   o k3=1 

                          C(EBnii-• • •-t-ni) 
                         i=1 

 Let Rk be the second term of the right hand member of (35). Then we 
shall prove that, for any positive e, we have 

(36)Rk < 6 

if k is a sufficiently large positive integer. 
For any e'> 0, if k is sufficiently large, we have from (1) that 

                (F l xi)  p (F I Xni-t- •-tni) d x1 d Xn1-1-•••1-ni< Ef               i'k+1 Bnifi • • • 

that is 

                                                        nit• • •1-nk 

(37)                           p (F 4.1) d < el 
       k 3'1 

              C (Bn) 
                                  i111-•••±"i 

Consequently, if assumption (i) is sttisfied, we have
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                                                      nit • 1- nk 

     Rk W0 p (F xJ) d d $ 0 e' , 
         S2 k.2=1 

                              C (E Bni-t- •• -1-nt) 
                                i=1 

that is, (36) is pröved, 
Under the assumption (i!) , (36) can also be proved in the same way. 
For any e >0, if we take the value of k, such that for which (36) holds, 
then we have from (35) that 

 (38) rni-t-•• "tnk r                                                    ••-1-1?,(, x) d x + 6 . 

       C 

                   i=1 . 

Therefore we have 

 (39) rno- i-ni (E, x) d x + ($, x) d x <r (e, a') E 
                                   --1 

                                                  C(E Bnit.. --t-n1) 
                                                       i=1 

From (33) and (39), we have 

                                                                00 

 (40) r (E, at) ••• r (e, x) d x <r (e, a0) • 

This shows that at is a Bayes solution relative to E, and Lemma 1 is 
proved. 

 LEMMA 2.* If, for a decision function a*, we can find the sequence 
   (k = 1, 2,  ) of a priori distributions on such that 

 (41)sup r (F, a*) = lim r (e, ak) 

where ak is the Bayes solution relative to then the decision function 
a' is minimax. 

 PRoOF. If a* is not minimax, there exists a decision function a such that 

 (42)sup r (F, a) < sup r (F, a*). 

Then form (41) and (42), if k is sufficiently large, we have 

 (43)sup r (F, <r ($1 k) • 

On the other hand we have 

 (44)sup r (F, a)>_ r a)-_„> r ak) 

(44) contradicts with (43), and Lemma 2 is proved. 

 * This lemma is essentially the same as the lemma due to E. LEIMANN, cf. [2].
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  § 3. Formulation of the problems 
 Let  X,A(k = 1, 2,  ) be the sequence of independent chance variables, 

each being N (0, a') , i.e., normal with the mean 0 and the variance 02, 
where 02 is known, but 0 is unknown. 
The purpose of this paper is to fined the minimax estimation the mean 0 
of in the range of decision functions defined in § 2. 

 (i) General estimation.. In this case, if the decision function a stops the 
experimentation when n obsevations x (x1,   , x.) are obtained, then 
its terminal decision d„ (x) determines the values of two functions (x) 
andIZ (x), (Lin< , and indicates to estimate 0 by the interval (.14, (.x) , 
Ln (x)) , where La}, (x) and L2 ( x) are functions of x (x1,   xn) 
associated with a. We assume that the cost of the experimentation is 
proportional to the number of observations, and the risk function is given 
by the following form 

 (45) r (0, d„ (x)) = cn + k (x) — Lin (x)) + W (0, d„ (x)) 
where c and k are certain positive numbers, and 

                 ( 0,if Ll (x) 0 L,2 (x) , 
 (46) W (0, do (x)) = (0 — Q,(x))2, if 0'Ln.(x) , 

                   ( (0 — Lin (x))2, if 0 <L!, (x) . 

 (ii) Estimation by an interval of the given length 210. This is the 
special case of (i) where do (x) is limited to a function such that 

 (47) Ln (x) — L;, (x) = 210, for any x = (x1,   , Xn) 
                                             n= 1, 2,   

Therefore in this case we may take k 0 in (45) . 
 (iii) Point estimation. This is the special case of (ii) where /0 = 0. At 

first we shall find the minimax solution for the general case (i), and then 
apply its results to cases (ii) and (iii) . 

  § 4. General estimation. 
 THEOREM 1. If the risk function is given by (45) , then the minimax 

estimation of 0 is determined as follows. 
Let T;(1) be the function of 1 defined by 

  (48) n (1) =- 27r • k -1 + (a 22-112 x — 1)2 exp x2/2 d x 

                                                 

• 0-1 .1 

                                          (n = 1, 2,  ), 
h (n) be the function of n defined by 

  (49)h (n) = (27)-4'2 min '11n_1(1) — min T„ (l) 

                                         (n 2, 3,   ) .



68 K6ichi MIYASAWA 

Then h (n) is a monotone decreasing function of n. 
Consequently we can-define uniquely the positive integer N as follows. If 
h (2) s c/2, then N = 2, if h (2) > c/2 , then N is the integer such that 

 (50)h (N)> c /2 and h (N + 1) c /2 . 

Then the decision function a0 which indicates to take observations (x1, 
  , x, of (X1, ...... , X,) and stop the experimentation at this one 

stage and estimate 0 by the interval 

 (51) xi/N — 1,, x,/N +1,) 

is the minimax solution of this estimation problem where is the value 
of 1 such that 

 (52)Tr„ (1„) = min T.„ (1) • 

Explicitely, min 1'„ (l) and 1„ is given as follows . 
Let M be the smallest positive integer, greater than 26,2 k2 . 
If n z M, then 

 (53)min q', (l) (27r)112a2/2n , 1„= 0. 

If n<M, then 

 (54) min Tr (1) n-1 [(27)112 (2(7)-1 k n112 sn exp —x2/21 d xi , 

                         n where s,, the value of s such that 

 (55) exp —s2/2 — s exp x2/2# d x (27)112(20.)--1 k n112 

and 

(56) n-1/2sn. 

 PROOF. At first, let us assume that 0 has the a priori distribution 
N (0, b2), denote it by E,,, and by means of of Lemma 1 we shall fined 
the Bayes solution a, relative to b • 
In this case we have 

 (57) r d„ (x)) (27T (72)-"i2 (27: b2)-112 r (0, d„ (x)) 

                     exp —1/2 (7±(x, —0)2/(72 + 02/b2)1. 

Let us put 

 (58) = xV — b2 x')2/( (32 + n b2) • 02
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(59) exp —AC/2 

  (60)K„ = (27 (72)-12 (27r b2)-112 • A„ 
                     = b (a2 + nb2)112 

             Q, = —aV2(8 — . 

Then it can be shown that 

 (63) r ($b , d7, (x)) = K„c n (277)112/ a„ + Kk (27)112/ a „ • .1.2.„(x) — 

                                    4(x) 
      + K7, (0 — Ln (x))2 exP Q„d B + (0 — (x))2 exp Q„d 01 . 

Therefore, from (63), in order to minimize r d„ (x)) with respect to 
the fuction d„ for the fixed value of x, 1,,,(x) and M (x) should have the 
following form. 

 (64)L(x) = n (72 — 1 (x) 

 (65) n.i/d',(72 + 1(x) 

where X = xi/n and 1 (x) is a certain function of x (x,   x.) 

For these values of L!,(x) and L2„ (x) , it can be shown that 

 (66) r (e,'„ d„ (x)) = 2.1C„/ [( 27r )1/2 c n/2 + (270112 k 1 (x) 

                         (z/a„ — 1 (x))2 exP — z2 /2 d z] . 

Now r (1) be the function of 1 defined by 

 (67) Ti;), (1) = (2;,)112k • 1 (z — 1)2 exp — /2# d z 
                                                     anl 

Then we have 

 (68) r (E,, do (x)) = 2K11/ [(270112 n/2 + n (1(x))] 

Consequently, for any fixed x = (x1 „ x„) , the function d'7, which satisfies 

 (69)r , el° (x)) = min r , do (x)) 

should determine Ln (x) and IZ (x) as follows 

 (70)L!, (x) 02 — 

 (71)L2 (x) n x/d;', (12 + 

where lb is the value of 1 such that 

 (72)T1, (/',:) = min r, ,(l). 
Then, we have
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 (73)  r,(e„, x) = min r (e, , d„ (x)) = r ($b crn(x)) 

               = 2K „/an [(27r)1/2 c n/2 + 'n (lb 
                 = 2 (27z. (72)-42 (27r b2)--112/a„ (270'12 c n/2 + (In • A„. 

If we put 

 (74) Br, = 2 (27r (72)-12 (27r 102)--1/2/an (27)112 c n/2 + Tr:), (In} 

then Br, is independent of x and we have 

 (75)r„(e„ x) = B„ A„. 

Here we determine the value P, of 1 which satisfies (72) and the value of 
T . From (67), it can be shown that 

 (76)d d 1?1"::(1) = 2/a„ • [( 27r )1'2 k an/2 — exp —s2/2} 

                                      exp — z2/2 } d z . 

Let the function f (s) of s be defined by 

  (77) f (s) = exp — /2} — s exp z2/2 d z, 0), 

then f (s) is a monotone decreasing function of s, and f (0) = 1. If s.n is 
the value of s such that 

 (78)(2,r )112 k a„/2 = f (s) 

then we have 

(79) s„/a,,. 

Here, since an, as a function of n, is a monotone increasing function ofn, 
we have the followings from (78) . 

(27r)1/2 k an/2 >_ 1 is equivalent with 

 (80)n� 2a2/(7r k') — 02/b2 

Let Mb be the smallest positive integer which satisfies (80) . 
If n z Mb , then we have r, = 0, and 

  (81) min n (1) Tii,; (0) — z2/aF, exp — z2 /21 d z (27r)1/2/( 2(4). 

                                     0 If n < Mb , then l n is given by (79), and it can be shown that 

  (82) min TT, (1) = T1.1/i ( a272 [(27r)112 k an sn/2 + exp d z) 
                                                                                                 s. 

Or
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 (83)=  a;2 [(27:1(2 k au s„/2 + s;,1 exp g /2 
                                        — (27r)1/2 k a„/(2s„)] 

Now, form (75) we have 

 (76) r. (e, , x) d B„ • Abel xn . 

Here we can rewrite A',, as follows 

 (77) An,' = an-1 • (ow n)-2 E xi /(c2 + (n — 1)Y) A'-1. 

Then we have 

  (78) And xn = A-1 • (2701/2 0. anl am_i - 

From (76) and (78), we have 

  (79) rii (e„ x) d x = • A-1(270112 a„I a—i • 

Let 49b (n) be defined by 

 (80) n = rn ($b, x) d x„ — r„_1(-„ x) 

Then from (75) and (80) , it can be shown that 

  (81) (n) = A,,_1 (271- 02)-(.--1)/2 (27, b2)-1/2 ail,                                         2 (27r)1/2 

                      {c /2 T (27T)-1/22 TCL1 (g_1) - TT, . 

Accordingly, the sign of (n) is independent of x, and dependent only of 
n. Now we define functions hb (n) and gb (n) of n by the following 

  (82) h') (n) = (27r)-112 3 Li (n-1) — T1, (P)3 
                 (27r)--1/2 (1) — min T71: (1) 3 

 (83)g° (n) = c/2 — hb (n) . 

Then, for agy fixed x, the sign of (n) coincides with that of gb (n) . 
Here we shall shown that hb (n) is a monotone decreasing function of n. 
For that purpose, it is sufficient to prove that the function (n) of n 
defined by 

 (84)Trb (n) = min T71), (1) 

is a convex function of n, that is d2 V" (n)/d n2 >0. Now it can be shown 
the followings. 
If n z Mb , from (81) we have
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                 d2 "rb (n)                                 _ (nr2(7-4 an-6>0.                      d222 

If n <Mb , from (82) we have 

     d2 'b  (n)               [204 an exp —x2/2} d x]-1 [(4 exp —x2/2 d x        d 
122 

    S.Sn 

                                                                                                                     c.° 

            +smexp 4/2) • exp 1— x2/2 } d x — exp --sFii]> 0 . 

Therefore hb (n) is is a monotone decreasing function of n. 
If hb (2) < c/2, let Nb be Nb = 2, and 
if hb (2) > c/2, let Nb be the uniquely determined positive integer such that 
hb (NO> c/2, and hb (Nb + 1) s c/2. 
Further it can be shown that the assumption (1') of lemma 1 is satisfied in 
this problem. Consequently, from lemma 1, we can conclude that the deci-
sion function 3,, which indicate to make observations (x„ ...... , x,b) and 
stop the experimentation at this one stage, and to estimate 0 by the interval 

 (85) (Nb b2 /(a2 + Nb b2) — Nb b2 • x/( 02 + Nb b2) + 
                                                                Nb 

is the Bayes solution relative to where x = E xi/N,. 

Now we shall obtain the value of r (:„ . From (75), we have 

 (86) r ($b , oh) = •-• rNb(c,, ,x) d x1   d 

                                  00 00 

                            = B „vb • • • • A d .X1  d                                                                                   X •:b 

Now, to obtain the value of the integral 

  (87) ••• A, dxi  d .x, •• • exp[— (2o2)-1 

                                                                IV 

                   — b2 (,2 + N b2)-1 • E ,x?f]dx1   d 

we make the following transformation of the variables 

  (88) x1 = x + yl (1 • 2)-1/2+ y2 (2 . 3)-1/2 +                                                        Y/V-1 (N — 1 • N)-1/2 
         x2 = — y1 (1 2)-1/2 ± y2 (2 • 3)-1/2+                                                    .Y (N— 1 • N)-1/2 
        = X— 2y2(2.3)-112 +   + — 1 • N)-112 

                                     — (N — 1) y, _, (N • N)-"2. 

Then it can be shown that we have
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  (89) •-• A,.dx1  d x, •••exp( (2(72)-1 

                       N-1 

                 y22. N 0.2 . -i2/(c2 N b2) H 

                   1 

            A/ N d y1 d y „id z = (277)N12 (c2 + N b2)"2 ce-1 . 

Therefore, from (86) and (89) ,we have 

  (90)r a,,) = (27r ) "bpa.-vb-i 62 N,, b2.)1/2 

Consequently, from (74) and (90), we have 

  (91) r ) = cN, + 2k 1" + 2 ( 277 ) -1/2 (c b )-1 (62 b2)1/2 

                 (x — l")2 exp ( (2 N, • b2) • x2/2 b2 d x 
                         /6 

where lb stands for . 

Now it is clear that 

  (92) (l) = 11•2, (1) = ( 27r)u2 • k • 1 

                 + (n-112 z 1)2 exp — z2/2 d z 
                                     92112//0. 

 (93) lim le (n) = h (n) = (27r)-112 min Ifn-i(1) —min I,z (1)1 . 

Let N be the positive intermined in Theorem 1, then we have 

 (94)lim N,, = N lim &v. 

Now wa shall prove that the decision function ao which is defined in Theorem 
1 is a minimax solution. We have 

                                                                                                    2‘• 

 (95) r (0, ao) = r (0, dN (x)) (227 a2)-N/2 exp —E (x, — ())2/2,9 

                                            d xl d 

Here we make the transformation (8) . Then it can be shown that 

  (96) r (0, ao) = c N + 2k 1, + 2 (27,,2)-1/2 Nr2 

                       (x — l,)2 exp N x2/202 d x . 
                                      IN 

From (91), (94) and (95), we have 

 (97)lim r ab) = r (0, ao) for all 0. 

Therefore, from from lemma 2, ao is a minimax solution of this problem. q.e.d.
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  § 5. Estimation by an interval of the given length 21o. 

  THEOREM 2. Let 

  (98) r (0, do (x)) = cn + W (0, d„(x)) (n 1, 2,  ) 

 be the risk, when one takes the sample x = (x1,   , x„), and then 
take the terminal decision determined by the functiond. (x) . 
Here W (0, do (x)) is given by (46), but in this case we should have always 

                     (x) — (x) 
Let 

  (99) T.„ (10) = (a • n-1'2 x — 10)2 exp —x2/2 s d x 
                                 u

i/2/0 /a-

and 

 (100)h (n) = (270-1/2 { (la) — n (/0) i • 

Then, h (n) is a monotone decreasing function of n. Consequently we can 
define uniquely the positive integer N as follows. If h (2) < c/2, then 
N = 2, if h (2) > c/2, then N is the integer such that 

 (101)h (N) > c , h (N + 1) ‹c/2. 

Then the decision function ao which indicates to take observations (x1, 
  , xE) of (X1,  , XE) and stop the experimentation at this one 

stage and estimate 0 by the interval 

 (102)(ix,/N— lo, + lo) 

is the minimax solution of this estimation problem. 
Further, the risk function r (0, 00) is given as follows 

 (103) r (0, ao), c N + 2 (27)-112 N1/2 0. \(x - lj)2 exp Nx2/2 d x . 
                                                    rp 

 PROOF. If we put k = 0, and 1 = 10 =const, in Theorem 1, then Theorem 
2 follows immediately from Theorem 1. 

 EXAMPLE. From theorem 2, it can be easily determined the sample size 
N which gives the minimax estimation of this problem. 
For example 

 1) if a = 1, 2/0— 2, 6 10-3 c < 2 • 10-2, then N — 3 

 2) if a = 1, 2l0=2, 2 •c<-1.410-3, then N = 4 

 3) if a = 1, 2/0— 1/5, 6 • 10-4_< c s 6 • 10-3, then N = 11 

 4) if a— 1, 210=10-1c = 2 • 10-3, then N = 20.
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   6. Point estimation. 

  In this case, if we take /0= 0 in Theorem 2, then we have the following 
Theorem 3 immediately. 

  THEOREM 3. Let 

  (104)r (0, d„(x)) = cn + (0 — d„(x))2 

be the risk, when one takes sample x = (x1,   , x„), and then estimate, 
the terminal decision, the value of 0 by the value of the function d,, (x) 
Let N be the greatest positive integer smaller than 

 (105) 1 + (1 + 402/c)1/2 /2 

Then the decision function 30 which indicates to take observations (x1,   
, XN) of (X1, --• -• , X,) and stop the experimentation at this one 

stage and estimate 0 by the value 

(106)x = ±,x,/N• 

is the minimax point estimation of 0. • 
Further, the risk function r (0, a()) is given as follows 

 (107)r (i9, 30) c N + (72/N 

PROOF. In this case (99) and (100) becomes as follows 

  (108)11,,(0)--= (72/n • x2 exp —x2/2(2y/2,2/(2n)                                         d x— 

                                   0 

  (109)h (n) = 0-2 /2 - 1(n — 1)--' — . 

Then from the equation c/2 — h (n) 0, that is from 

 (110)c c n 62 = 0, 

we have two roots of n 

                 1 -i-- (1 + 4)2/c)1/2V2 (>1), 

and{1 (1 + 4,2/012w2 (<0). 

Therefore Theorem 3 follows from Theorem 2 putting /0 = 0. 

 EXAMPLE. In this case, the sample size N which gives the minimax point 
estimation can be determined easily from (105). 
For example we have the following table of N and r (0, o ) for several 
values of (12 and c.
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when G2 1. 

                1 10-1 10-2 l0-3 10-4 

     N1 31032 100 

       r (0, 80)2 .63.20.063 .0200 

when 02 

       c1 10-1 10-2 10-3 10-4 

    N1 41445 141 

       r (0, act)3 .90.28.089 .0283 
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