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Introduction

In this fourth paper we directed our methods of successive process of
statistical inferences to somewhat particular problems. In Part IX we shall
discuss certain applications of ranges to successive processes of statistical
inferences, which will be useful specially in statistical controls of quality
such as control chart methods. Indeed it seems reasonable both from the-
oretical and from practical points of view that we should appeal to successive
process of statistical inferences.

On the other hand it may be also urgent demands to simplify as far as
possible any calculations involved in statistical analysis. In Part X we shall
proceed to discuss fiducial inferences due to R. A. FISHER from the view
points of successive process of statistical inferences. Here we shall restrict
ourselves with an enunciation of certain two sample formulation to the
famous Behrens-Fisher test in order that the test may be suitably interpre-
tated from our view points. This formulation may be recognised as being
along the lines due to BARNARD [1]and STEIN [1]. It is to be noted that
there may be perhaps any other interprepations from the general point of
view of successive process of statistical inferences.

Bart IX. Applieations of ranges to successive processes
of statistical inferences

§ 1. Modified t-test in the two sample theory
We shall first observe

(1) Parts IX and X were communicated by the author at the Annual Meeting of Math,
Soc. of Japan held at Tokyo Univ. in June 6, 1952.
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36 Tosio KiTacawa

Theorem 9.1. Let O., and O., be two independent random samples of
sizes m, and n, respectively drawn from the same normal population.
Let the sample means of O. be x, (i =1,2). Let W =W (m, n) be the
mean range defined as mean value of m mutually independent sample
ranges where each range is defined for a sample of size n. Let us assume
that w, x, and x, are mutually independent. Let 1 — a be an arbitrarily
assigned confidence-coefficient. Then the equation

(1.01) Pr.{x, — Bw<%,<% + Bw} =1 -«
determines a constant B in an approximate form:
(1.02) B~ (n™+ 0,28, (a)/C (m, n),

where the constant C(m, n) and the v degrees of freedom of t-distribu-
tion are those by means of which w(m, n) can be approximated as
C (mmn) y,v V%, where y, means the chi-distribution with the v degrees of
freedom, and t,(a) denotes the significance level of t-distribution with
the v degrees of freedom.

Proof: The assertion that a mean range w (m, #) can be approximated
by C (m, n) y, v 2 is established in English authors® such as PATNAIK [1].
Writing 7, v~ by s,, we shall have

(1.03) (% — x,)/w (m, n) = (%, — %,)/C (m, n)s,
A (7t my ) X3 — X,
h C(m, n) Sy (nt+ mym)2?

where the second factor of the right-hand side is approximately distributed
as a f-distribution with the » degrees of freedom.

For the sake of applications we have constructed the following Table I,
which yields us the values of ¢ (m, #, ) =1t,(a)/C (m, n). The a-points
of ¢-distribution with the » degrees of freedom, ¢, (a), were calculated from
MERRINGTON, M [1] by quadratic interpolations, except for the low values
of df. v for which interpolations of higher orders were employed. Here it
is to be noted that the ordinary #-distributions defined for the positive
integral values of degrees of freedom can be generalised for any positive
number v as that whose probability density function is

1 tz vt
(1.04) 1+ >2-) 24d¢t.
RTER

§ 2. Successive poolings of data in control charts

Let O, (i =1, 2, <+ , m) be a sequence of independent random samples
of size n, and let {x,;} and {w,{ ({ =1, 2, ---, m) be sequences of sample
means and sample ranges defined for each of these samples O;, In the ter-
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minology of control chart method due to SHEWHART (1], the sequences {x,}
and {w,} define x-chart and R-chart, so far as each sample O, means in-
dependent sample from each of successive lots from the same supply. When
we have obtained these m samples, we can make use of the pooled data,
that are, the mean range w (m, ) and the pooled mean x,, .., defined as
follows :

(2.01) w(m, n) = (w, +w, + - + w,)/m
(2.02) Ky = (X + Xy 4 oo + x,.)/m.

Under these circumstances, let us assume that a random sample of size
7y, Ouy, will be obtained independently from these m samples. Let y be
the sample mean defined for O.,. Then we shall observe

Theorem 9.2. Under the general hypothesis to this paragraph 2, let
us assume that production is statistical comntrolled and that each lot has
the same normal distribution.

Let 1 — « be arbitrarily assigned confidence-coefficient. Then the
equation

(2.03) Pr.{ly —%p. .| =Cw(m n)}=1—«
determines a constant C in an approximate form

(2.04) Cxt,(a) {(mn)™ + n;1i12/C (m, n),

where the meanings of v, C(m, n) and t,(a) are those defined in
Theorem 9. 1.

To proceed to successive procedures of poolings which we have discussed
in Part III in our paper [1], we should take into consideration the sequences
of successive means {x;,. .} (i =2, ------ , m) defined as

(2. 05) ElZ"'i = (Ni—l xlz.‘.i_l -+ m Ei)/(N{_l + ni) > (i == 2, 3, """ 3 m) N

where N, , = n, + n, N n,_,, and of successive mean ranges {w (¢, n)}
(i =2, ---, m) such that

(2.06) w (i, ) = (w;, + wy + -+ + w;)/i, (=23, - , m).

Our problem will turn out to calculate the probability

‘ xl i M] ______ ‘ Elzmm—-l —i;m L
@01 Prof o <A G m <A Sy <)
Since {w (7, n)} (i =2, 3, ----- , m) are not mutually independent, this

probability can not be obtained directly from the chi-approximaticn of
each mean range.

On the other hand the similar problem which will treat the successive
poolings of sample means in stead of the simultaneously successive poolings
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of sample means and sample mean ranges may be solved extremely simply.
In view of Part I, §1 in our previous paper [1] , we shall readily observe

Theorem 9.3. Let O.(k=1,2, - , m) be m independent random
samples of size n, from the same normal population N (%, o?), where &
and o* are unknown to us. Let us denote by w, the sample range defined
for O,. Let ¢, be the domain in the n, + n,+ ----- + n,, -dimensional
sample space such that

(2' 08) €m ¢ IEI - E2‘<142u)2: iE]'l - -'i.3|<A3 Wiy oo > |x12~~m—1 - Em\' < Am Wy
where %y,.. (i =2, 3, , m— 1) are those successively pooled means
defined as in (2.01).

Then we have

m

(2.00)  Pr.fen) = IL Pr.{|% — Fipm| < As i}

~ | X — Zip.iny |
= il Pr.| ClL ) <A

Proof : This follows from the transformation %, =, — x,..,_;, ({ = 2, 3,
------ , m) which yields us

n; 2
— = Yy F e —— U
Nz 2 + + f Ic)

m.
— 2
+ ;ZN,_ln,-N, Tu?.

(2.10) i‘im(fi - EP =N, (% - ¢+

After integrating with respect to x, in — o < x; < oo, we reach the first
equation in (2.08), which yields the approximate evaluations in view of §I1.

We have also constructed Tables II and III by means of Table I for the
sake of applications of Theorem 9.2 and 9.3.

Table 1. ¢m,n (&) : (m, n, &) > ¢m, » (@) = ty (}/C(m, n)

Pr. {a, (';in) > vm,n(a)} -
(1) o =05%
Size Number of samples, m
of sample T -

n 1 \ 2 ] 3 | 4 | 5
3 95370 25979 25116 2.2403 21011
4 34268 2.0570 1.7746 1.6542 1.5881
5 2.3003 1.6330 1.4661 1.3919 1.3517
6 1.8536 14113 . 12907 1.2430 1.2137
7 1.5948 1.2695 1.1833 1.1438 11215
8 1.4276 1.1502 1.1053 1.0727 1.1385
9 | 1.3099 1.1032 1.0457 1.0188 1.0033
10 o 12224 1.0389 0.9993 0.9593 0.9627
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) e=12%
Size Number of samples, m
of sample
” 1 2 3 ‘ 4 \ 5
| ! I
3 62309 25915 | 21450 19551 | 18536
4 26704 1.7597 ‘ 1.5581 1.4703 | 1.4213
5 1.8904 1.4243 ! 1.3032 1.2488 [ 1.2181
6 1.5568 1.2441 E 1.1579 1.1195 {10973
7 1.3599 1.1269 f 1.0628 1.0333 ‘ 1.0161
8 1.2301 1.0255 0.9956 0.9700 0.9572
9 1.1376 0.9869 0.9440 0.9237 0.9119
10 1.0644 : 0.9405 5 0.9037 0.8861 0.8758
(III) @ =259
Size ' Number of samples, m
of sample
n 1 } 2 3 | 4 5
3 3.6239 1.9632 1.7083 1.5960 15344
4 1.8971 1.4018 1.2824 1.2276 1.1980
5 14314 1.1622 1.0884 1.0546 1.0352
6 1.2125 1.0290 0.9754 0.9500 0.9369
7 1.0792 0.9399 0.8993 0.8811 0.8702
8 0.9891 0.8604 08461 0.8303 0.8214
9 0.9235 0.8315 0.8044 0.7917 0.7838
10 0.8733 0.7950 0.7715 0.7603 0.7505
(IV) « =59
Size Number of samples, m
of sample |[—— T
n 1 2 3 4 | 5
3 24175 1.5558 1.4027 1.3334 1.2946
4 1.4395 1.1518 1.0775 1.0433 1.0238
5 1.1338 0.9707 09242 0.9024 0.8898
6 0.9801 0.8676 } 0.8331 0.8172 0.8085
7 0.8840 0.7972 ‘ 0.7716 0.7593 ' 0.7522
8 08176 0.7327 0.7273 0.7169 9.7110
9 0.7686 0.7103 0.6928 0.6836 0.6792
10 0.7303 0.6808 0.6651 0.6581 0.6537
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Table 2. Wm, n'(a) : (m, n, d)-’ TFm, » (@) =@m, u (a) l/iﬂll; +
Xm — %1 _
Pr'{w(m, n)>qu',,(a)} “
(1) 059%
Size Number of samples, m
of sample
n 1 1 2 { 3 4 5
3 7.7878 1.8110 1.6744 1.4461 1.3289
4 24231 1.2596 1.0246 0.9551 0.8698
5 1.4548 0.8944 0.7571 0.6960 0.6622
6 1.0702 0.7057 0.6084 0.5674 0.5428
7 6.8525 05877 05164 0.4833 0.4643
8 0.7138 0.4980 04512 0.4240 0.4409
9 0.6175 0.4504 0.4025 0.3797 0.3664
10 0.5467 0.4024 0.3649 0.3392 0.3239
an 1%
Size Number of samples, m
of sample
n 1 2 3 4 5
3 5.0881 1.8325 1.4300 1.2620 11723
4 1.8883 1.0776 0.8996 0.8219 0.7785
5 1.1956 0.7801 0.6730 0.6244 0.5967
6 0.8988 0.6221 0.5438 0.5110 0.4907
7 ° 0.7269 0.5217 0.4638 0.4367 0.4207
8 0.6151 04441 0.4065 0.3834 0.3707
9 0.5363 0.4029 0.3633 0.3442 0.3330
10 0.4760 0.3643 0.3300 0.3133 0.5034
(I11) 259%
Size Number of samples, m
of sample T
”n 1 2 3 4 5
3 2.9592 1.3882 1.1389 1.0302 0.9704
4 1.3415 0.8584 0.7404 0.6863 0.6562
5 0.9053 0.6366 0.5621 0.5273 0.5071
6 0.70C0 05145 0.4598 0.4336 0.4190
7 0.5769 04351 0.3925 0.3723 0.3603
8 0.4946 1.3726 0.3454 0.3282 0.3181
9 0.4353 0.3395 0.3096 0.2951 0.2862
10 0.3905 0.3079 0.2818 0.2688 0.2500
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(IV) 5%
Size Number of samples, m
of sample |— e |
n 1 2 3 i 4 5
3 19741 1.1001 0.9351 0.8607 0.8188
4 1.0179 0.7053 0.6221 0.5832 0.5608
5 0.7171 05317 04773 0.4512 04359
6 0.5659 0.4338 0.3927 0.3730 0.3616
7 04725 0.3690 0.3368 0.3209 0.3114
8 0.4088 0.3173 0.2969 0.2834 02754
9 0.3623 0.2900 ‘ 0.2667 0.2548 0.2480
10 0.3266 0.2637 1 0.2429 0.2327 0.2264
Table 3. ¥ () : (m, n, ) > ¥ ) = (a) B +‘L
. m, n : , N, m,/n( = Pmy,n (M“l)n o
(I) 05%
Size Number of samples, m
of sample
] ‘ 2 3 4 5
3 21214 1.7760 1.4935 1.3563
4 1.4545 1.0867 { 0.9551 0.8878
5 1.0328 0.8030 | 0.7188 0.6759
6 08149 0.6454 | 0.5860 0.5540
7 0.6786 05478 0.4992 04739
8 0.5751 0.4786 0.4379 0.4500
9 0.5200 0.4269 0.3921 0.3739
10 0.4646 0.4870 0.3503 0.3404
an 1%
Size Number of samples, m
of sample ‘
3 2.1162 15168 1.3034 1.1965
4 1.2443 0.9541 0.8489 0.7945
5 0.9008 0.7138 0.6449 0.6091
6 0.7183 05790 05277 0.5009
7 0.6024 0.4920 14510 1.4294
8 _0.5128 04311 0.3960 0.3784
9 0.4652 0.3854 0.3555 0.3398
0.4206 0.3500

0.3236

0.3096
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(III) 259%

Size Number of samples, m
of sample T

n 2 | 3 { 4 5 B
3 1.6031 1.2080 l 10640 ; 0.9905
4 0.9912 : 0.7853 | 0.7088 ‘ 0.6697
5 0.7350 1 0.5061 ; 0.5446 : 0.5176
6 0.5941 04877 | 0.4478 i 0.4276
7 0.5024 0.4163 ; 0.3845 | 0.3677
8 0.4302 0.3664 0.3390 | 0.3247
9 0.3920 0.3284 0.3047 | 0.2921
10 0.3555 0.2988 0.2776 | 0.2653

(V) 5%
Size Number of samples, m
of sample T
n 2 3 i 4 5
|

3 1.2705 } 0.9919 0.8889 0.8357
4 0.8144 | 0.6598 0.6023 05723
5 0.6139 | 0.5062 0.4660 0.4449
6 05009 1 0.4166 0.3852 0.3690
7 0.4261 ‘ 0.3572 0.3314 © 03179
8 0.3664 ‘ 0.3149 » 0.2927 0.2810
9 0.3348 0.2828 0.2631 0.2531
10 0.3045 t 0.2576 0.2403 0.2311

Part X. Fiducial inferences from the view point of
successive processes of statistical inferences

§ 1. Fiducial inferences

After reading our previous paper [1], Prof. R. A. FISHER gave me a letter
which, referring to his previous paper in 1935, FISHER [1], said, “In section
IT I seem to be following very much the method you recommend.” Since
then we haye re-read his famous papers on fiducial inferences, and in con-
clusions it seems to us to be indispensable both for fiducial arguments and
for successive processes of statistical inferences to make clear the inter-
relationships between these two formulations.

In his theory of fiducial inferences, FISHER [1] emphasised two points of
view. The first is to distinguish fiducial probability statements from “those
that would be derived by the method of inverse probability, from any
postulated knowledge .of the distribution of 4 in the different populations
which might have been sampled.” The second is to emphasise also that
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“statements similar to those of fiducial probability can only represent the
true state of knowledge derivable from the sample, if the statistics used
contain the whole of the relevant information which the sample provides.”
To the author of the present paper it seems adequate to emphasise that
these two points of view concern themselves deeply with the two sample
theoretic formulations. In current text-books on mathematical statistics the
two sample theoretic ideas of R. A. FISHER developed in Part II in his
paper [1] are not duly treated, and in some of them his fiducial probability
theory is scarcely mentioned.

It is well known that such unfortunate circumstances have been derived
partly from current discussions concerning Behrens-Fisher’s test. If R. A.
Fi1SsHER would formulate this test of significance more accurately and more
throughly from the stand point of the two sample theory, the test would
deserve its relevant interpretations and its due circulations. The author of
the present paper dares to say that the agreements and disputes between
- R. A. FISHER and J. NEYMAN seem to derive from the following circumstances.

(1) R. A. FisHER and J. NEYMAN agree with each othex in the sense that
both of them reject any postulated knowledge of the distribution of para-
meters in different populations which might have been sampled.

(2°) R. A. FIsHER and J. NEYMAN differ from each other in the sense
that the fiducial inferences of the former concern themselves deeply with
the two sample theoretic formulation while the theories of inductive behavi-
ours of the latter deal entirely with inferences from a sample to its parent
population. I say here “deeply”, because the real features of fiducial argu-
ments depending upon the two sample formulations are not necessarily
apparent. Statistical inferences from a sample to its parent population in
the sense of FISHER [1] ought to be recognised as the limiting case of the
two sample formulation when the size of the second sample 7, becomes
infinity as we have emphasized in Part I in our previous paper (1).

In our point of view there may bz at least two interpretations of Behrens-
Fisher’s test from our successive processes of statistical inferences. One of
our interpretations is essentially due to the argument of BARNARD([1]. It
seems to us, however, necessary to make concrete formulations to this argu-
ment along the method of STEIN[1]. The other interpretations may be
said to be a method of multiple assertions in two sample formulations. Here
the sufficiency of estimations play its essential role as R. A. FISHER empha-
sized it. In the following §2 we shall give the first interpretation. The
second will be discussed in another occasion.

$2. Application of Barnard-Stein method to an interpretation of
Behrens-Fisher test

(1°) Let Omy : (%;, %, - » %mg) and Ong i (31, Y2, = > ¥n,) be two
independent random samples drawn from normal populations N (&, o)
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&

and N, (§,, o) respectively, where ¢, and ¢? (i = 1, 2) are unknown to us.
Let us define as usually the sample means x, and y,

my _ 0
(2.01) xlzgxi/m\): ylz‘glyi/nﬂ)
and estimates of variances

(2.02) s2= z (% — 5 (my— 1),  sF= z<y — 30 (e — 1)

(2°) Having obtained these estimates, we shall make additional indepen-
dent random samplings from each of our populations, which we denote by
Oy 2 (Xmgt1, Xmg+2, *=c--" , Zm)  and  O'nny * (Yngtls Yagtz, == y Ya) TE-
spectively. Here m and # are defined in the following manners

(2.03) m = max ﬂ% m“;:o@ s,z] +1, my + 1}
(2.04) .nzmax{[%@%:;—ngs%:IJI—l, n0+11»,

where %k is an assigned positive number whose meaning will be explained
afterwards.

Since m and »z depend upon s? and s, respectively, they are stochastic
variables. We shall denote by E,,, , the event that these stochastic variables
become assigned values m and » respectively.

(3°) Now let us define a sequence {a,} such that

(1) Sa=1
i=1
(2.051) (2) s al=mok/(my+ ny)
i=] .
(3) g=ay= - = Gn,.

Similarly we may and we shall define a sequence {4,} such that

(1) 3b,=1
J=1
(2.052) (2) s? 3,07 = mok/(my+ m)

(30) b1:b2: et :bno.

The existence of such sequences follows from the fact that, under the
conditions (1°) and (3°) in (2.051), min. s? > a?=m"'s? is not greater
than m & (my + n,)', according to the definition of m in (2.03).

(4°) Let us introduce the statistics
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(2.061) t, = (ﬁi a, x; — 51>/ S {é aiz}l/z
and
(2.062) t, = (g by, — §2>/sz {:Z;i b,-i}l/z.

For the sake of simplicity, let us put
(2- 07) Cl = mgllz/(mo + nﬂ)llz, 02 = —n()”z/(mu + no)uz .

After these preparations, we shall now observe

Theorem 10.1. Let r, and =, (r,<z,) be arbitrarily assigned real
numbers.

Then we have under the hypothesis (1°) ~ (4°) in this paragraph,
(2.08) Pr.{o, m2 Lty + oty < oy k24
| s awanan,
T kD <oyt tegta<tak—C1/2)

where gvi-1 (L) (v, = my, v, = n,) mean the probability density functions
of t-distribution with the v, — 1 degrees of freedom, that are,

I (%) - (1 + {2 )—(vl?.) .

(2.09) g (2) = b — 1

Proof : Since any possible values of m and » satisfy the conditions
m>m,+1 and n>n+1, and E, , and E, . are mutually exclusive
provided that |m — m'| + |#n — n'[>0, we can write

(2.10) Pr.ic B2 et + b, < v k™D
= i i Pr. {Em’ - B 7 < it + ¢ty <7 k‘“’”} .

m=mg+1l n=ngtl
To calculate each summand of the right-hand side, let us notice the fol-
lowing assertion that (1°) for each assigned set of values of s, and s,, the
variables X and Y difined by

m

@11  X=(Sax-4)/{Eed", v= (505 -4)/{Z]

are distributed according to N (0, ¢2s?) and N (0, ¢s?) respectively and
that (2°) X and Y are mutully independent.

To prove (1°) and (2°), let us first notice that {a@} (£ =1, 2, «--- , m),
by (7=1, 2, .- , n), m and n are certain functions of s, and s,. Con-
sequently we should write a; = a; (s,, $2), b,=b,(s;, s;3), m =m(s;, S;)
and # = n(s;,s;), and hence

1/2
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m(sy, 52)

_ m(ryy 83) j 12
(212) X = 3 als, s)x-a)/s | X als, )

m(sy, Sg)

- {;ﬁ'{ai (81, 3?)} (% — &)/s1 i 1; al(sy, 32)“]/2;

according to the condition (3°) in (2.051), and similarly for Y. For each
assigned set of values s, and s,, {x,} (i=my+ 1), {y,} G=n+1), &
and y, are mutually independently distibuted according to normal distribution.
Due to these facts direct calculations of means and variances yield us
what was to be proved.
After these preparatory remarks, we can now give

(2.13)  PrE,, . k9% ety + ¢ty < k™9 oy

= “ fmg-1(S1, 01) frg-1 (52, 02) d s1d 52

_S18; _ L sER sty
N e e =g (F 5 asay,
T1<C1Ztcay<Tg
where we put
mg—~1
_ (m,—1) 2" - (my-1)s?
(2:14) fagri(51, @) =y st emp |- ST
272 1 ( 2 ) a1

and similarly for fa,-1(s2, o2).
Due to the special forms of the integral with respect to (x,y) which are
independent of m and %, we may write, in view of (2.10),

(2_ 15) Pr. {k“”z) 7 < G t1 + ¢ t2 < B/ Tz%

|| Feorisr, o) s 52y sy it
00
$. S, 1 ( s x? sZ y? )'
- ——expl——F(F5— + -l dxd
27 0y 0y » { 2 2 05 k Y
lc-(‘/z)’:1<nln+ﬁ3y<lc—<1/2)12

(e 2 i, )

, V2 g, 4\

k=1/2)z; <cprdogy<k—C1/rgy

(Y «/;:exp{—% sfg}f"oﬂ(sz: 02) dSz) dxdy,
0 2 5

which proves (2.08), rewriting # and y by # and ¢, respectively.

Theorem 10.1 shows one of the inferential behaviours which corresponds
to an axact application of two dimensional #-distributions. Here it is to
be noted that
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(2.16) Gt + gty = {(i a x; — i‘.bjy,- - (& — 52)} k-am -,
=1 j=1

and hence that we may makeuse of the relation (2.08) in statistical infer-
ences about the population difference & — £,. To any assigned «, 0 < a <1,
and to each pair of m, and 7,, we can uniquely determine #, _j, -1 (a)
such that

(2.17) S X gno-1(ty) 8ro-1(3)d td t, = «a,

Pmgy nglad
where the domain of integration Dm,.n, () in (#;, £;) is defined by
(2.18) Doy, no(@) 2 | Mg+ 1)~ VPt — 12 (g + 10) =P8y | = g1, oy (@)

To give a connection between this inferential behaviour and Behrens-
Fisher’s test, we shall adopt approximate values for {a;} and {b,} by defin-
ing, for the set E,,,,

(2.19) @ =m"1, by=n', (=12 -,m; j=12, -, n).

If we shall make use of exact solutions {a;} and {b,} satisfying (2.051)
and (2.052), we obtain

-1/2)

m 1/2 m 7
(2.20) c,=md (my + m)" 2 =5, (S07) (5130 + 57 307)
i=1 i=l J=1

1 —(1/2)

n 2 e n
(2.21) cy=— ng? (my + 1))~ ? =— s, <§i b,?) <Sl é al+ s% Jg,lbf)

Now the approximate solutions (2.19) will give us approximately

~_ S (8P sE\a?
(2.22) €= <m + n) = cos 0, say,
s s §2 \~ai> .
(2.23) Cy = — nf/i (*é{ + -’Zz‘\) = —sin 0
(2.24) bt + Ct, =t cost — t, sind
(2.25) 205 =%, Z.Lbjy,-:?-

On the other hand, since we have
(2.26) gty + 6t = (i‘, a X, — ;i‘ibj y,-) k42
i=1 =
for exact solutions {@,;} and {b;}, we shall reach the following approxi-
mate relations:
(2.27) a=Pr.§|61t1+ Cth'Ztmo—l,no—l(a)§

= Pr.{|t, cos0 — t, sin 0| = tmy-1, np—1 (@)}
= Pr{|%— 9 — (& — 2) | = B bugmi ng-1 ()1
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Thus in order that we may obtain a confidence interval for the difference
of the population means £ — &,, with an approximate confidence-coefficient
1 — « whose length is /, it will suffice us to define kY2 = I/2¢fm,-1, g1 ().

It is useful to enunciate our results just obtained in the following

Theorem 10.2. Let O, : (%, %, -+~ » Xmg) GNA Ony 2 (Y12, = , Yng)
be two independent random samples drawn from normal populations
N (&, o) and N (§,, o) respectively, where &, and o, (i =1, 2) are un-
known to us. Let us define x,, y,, s?, s> and m and n as given in (2.03)
and (2.04). Let O'n-my: (Xmgr1, -+ y Xm) and O'n-mg i (Png+1, -+ , Yu) be
two independent random samples defined as in (2°). Let us define %, y,
t,, t, and cos 0 (hence sint) by

(2.28) E=miRx, y=nidy,

=1 ji=t
(2.29) L=m"?(x—§&)s, ty=n"(y — &) s;7!
(2.30) cos 0 =s;m AP (stm1+ s4,nl).

Thern we have
(2.31) Pr.§|t cost — t, sinf|<<z}
= i i Sg Jmo=1 (S1, 01) frg—1 (83, 03) ds,ds,

= n=mn v
m=mgy+1 otl Em, »

S M2 g2 {__—l__<m(5—§,)2 + n(J’—z 52)2>}dxdy,

27 0y 0y 2 a? ay

D’m, n (S1y s,)
where f,_, (v =my, n,) and E,, , are as such defined in (2.14) and (2°)
respectively and the domain of integration in (%, y) is defined by

(2.32) D,, (81, 8) :[(x—5) = (y = &)<z (sPm™ + s7n 1),
Further we have an approximate evaluation to the effect that
(2.23) Pr.{|t, cos — t, sind| <z}
~ g S o1 (21) &ny-1 (82) di,dt,,
[ertytagta} <t
where ¢, and c, are such as defined in (2.07).

It will be sufficient to show how the approximate evaluation given in

(2.33) may be obtained from (2.31).
For any m and » except when m = m, or n = n, we have, in E,,_,,,

(2.34) m=k7img (my ) sp=m— 1
(2.35) n=k'nyl (my+my)sti=n—1,
which yield us that ‘
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(2.36) stm—-—D1+st(n—1)"=k=sfm !+ s2n?,
and that
(2.37) SR Ymy ™ (my + my) s+ 1 072 (2 — £))?
+ (R g (my + 1) 8P+ 1} 0 (3 — &)?
=m(x— &Vt n(y—§) o™
=k (my + my) my (X — £)? 0,77
+ B (my + ) ng 7 (Y — §)P o
Let us now define X and Y by
(2. 38) X — k—(]/2) m‘]—(IIZ) (m() + no)uz (E _ Ei) ,
Y = B gD (g 4 pg)12 (3 — &),

and let us replace s2m™ + sZn ! and m (X — §)?o; 2+ n(y — &)*0, 2 by k
and the last terms in (2.37) respectively for all m > m, and > #n,. Then
we shall readily reach (2.33), which was to be proved.
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