
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Successive process of statistical inferences,
(4)

Kitagawa, Toshio
Mathematical Institute, Kyushu University

https://doi.org/10.5109/12955

出版情報：統計数理研究. 5 (1/2), pp.35-50, 1952-09. Research Association of Statistical
Sciences
バージョン：
権利関係：



   SUCCESSIVE PROCESS OF STATISTICAL  INFERENCES, (4)(1) 

                       Tosio KITAGAWA 

                           Contents 
     Introduction 

     Part IX. Applications of ranges to successive process of statist-
   ical inferences. 

      § 1. Modified t-test in the two sample theory. 
      § 2. Successive poolings of data in control charts. 

    Part X. Fiducial inferences from the view point of successive 
   processes of statistical inferences. 

      § 1. Fiducial inferences. 
      § 2. Application of Barnard-Stein method to an interpretation 

   of Behrens-Fisher test. 

                         Introduction 

 In this fourth paper we directed our methods of successive process of 
statistical inferences to somewhat particular problems. In Part IX we shall 
discuss certain applications of ranges to successive processes of statistical 
inferences, which will be useful specially in statistical controls of quality 
such as control chart methods. Indeed it seems reasonable both from the-
oretical and from practical points of view that we should appeal to successive 
process of statistical inferences. 

 On the other hand it may be also urgent demands to simplify as far as 
possible any calculations involved in statistical analysis. In Part X we shall 
proceed to discuss fiducial inferences due to R. A. FISHER from the view 
points of successive process of statistical inferences. Here we shall restrict 
ourselves with an enunciation of certain two sample formulation to the 
famous Behrens-Fisher test in order that the test may be suitably interpre-
tated from our view points. This formulation may be recognised as being 
along the lines due to BARNARD [1] and STEIN [1] . It is to be noted that 
there may be perhaps any other interprepations from the general point of 
view of successive process of statistical inferences. 

      Part IX. Applications of ranges to successive processes 
               of statistical inferences 

 § 1. Modified t-test in the two sample theory 
 We shall first observe 

 (1) Parts IX and X were communicated by the author at the Annual Meeting of Math. 
Soc. of Japan held at Tokyo Univ. in June 6, 1952. 

                           35
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  Theorem  9.1. Let O., and O,, be two independent random samples of 
sizes n1 and n2 respectively drawn from the same normal population. 
Let the sample means of O, be xi (i = 1, 2) . Let W =W (m , n) be the 
mean range defined as mean value of m mutually independent sample 
ranges where each range is defined for a sample of size n. Let us assume 
that w, xi and x2 are mutually independent. Let 1 — a be an arbitrarily 
assigned confidence-coefficient. Then the equation 

 (1.01)Pr. IX, — Bw < < Bw; = 1 — a 

determines a constant B in an approximate form: 

 (1.02)B + n21)1/2 tv (a)/C (m, n) 

where the constant C (m, n) and the v degrees of freedom of t-distribu-
tion are those by means of which w (m, n) can be approximated as 
C (m,n) z, V-1/2 where z„ means the chi-distribution with the v degrees of 
freedom, and t, (a) denotes the significance level of t-distribution with 
the v degrees of freedom. 

 Proof : The assertion that a mean range w (m, n) can be approximated 
by C (m, n) z, 1,-1/2 is established in English authorsw such as PATNAIK [1] . 
Writing yv L,--(112) by s„ we shall have 

 (1.03) (i2 — X1)/iO (m, n) = (x2 — x1)/C (m, n) s, 
                                 (n.-14_n2-1)1/2                   ^ t

(m,n)X2 — X1                     C                                        s„(ncl + n21)1/2 , 

where the second factor of the right-hand side is approximately distributed 
as a t-distribution with the v degrees of freedom. 

 For the sake of applications we have constructed the following Table I, 
which yields us the values of (m, n, a) tv (a)/C (m, n). The a-points 
of t-distribution with the v degrees of freedom, tv (a) , were calculated from 
MERRINGTON, M [11 by quadratic interpolations, except for the low values 
of d.f. u for which interpolations of higher orders were employed. Here it 
is to be noted that the ordinary t-distributions defined for the positive 
integral values of degrees of freedom can be generalised for any positive 
number v as that whose probability density function is 

 (1.04)1 (1 + -12-)  "-21d t 
             1/ v B( 2,2) 

    2. Successive poolings of data in control charts 
 Let 0, (i = 1, 2,   , m) be a sequence of independent random samples 

of size n, and let rij and u),1 (i = 1, 2, , m) be sequences of sample 

means and sample ranges defined for each of these samples O. In the ter-
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minology of control chart method due to SHEWHART [1] , the sequences { xi} 
and rit-), define x-chart and R-chart, so far as each sample 0, means in-
dependent sample from each of successive lots from the same supply. When 
we have obtained these m samples, we can make use of the pooled data, 
that are, the mean range w (m, n) and the pooled mean X-12-9/1 defined as 
follows : 

 (2.01)w (m, n) = (w, + w, +  + wm)im 

  (2. 02)x.2...,„ = + x2 +   + X7,1) / 

 Under these circumstances, let us assume that a random sample of size 
n2, 02„ will be obtained independently from these m samples. Let y be 
the sample mean defined for O. Then we shall observe 

 Theorem 9.2. Under the general hypothesis to this paragraph 2, let 
us assume that production is statistical controlled and that each lot has 
the same normal distribution. 

 Let 1 — a be arbitrarily assigned confidence-coefficient. Then the 
equation 

 (2.03)Pr. — Xi2 I < (m, n)} = 1 — a 

determines a constant C in an approximate form 

 (2.04)C t, (a) (m n)-' + n21 1/2/C (m, n) , 

where the meanings of C (m, n) and t, (a) are those defined in 
Theorem 9.1. 

 To proceed to successive procedures of poolings which we have discussed 
in Part III in our paper [1] , we should take into consideration the sequences 
of successive means (i = 2,  , m) defined as 

 (2. 05) (Ni-1 x12.. •i-1 Ili xi) / (N + ni) , (i 2, 3,   m) 

where N2_1 = n1 + n2 + •-• + ni_1, and of successive mean ranges w (i, n)} 
(i = 2, ••• , m) such that 

 (2.06) (i, n) (wi + w2+   + wi)/i (i =2, 3,   , m) . 

 Our problem will turn out to calculate the probability 

                                                                        , 

                            lx—.••,,,-3 .- X,              1x2A .xr2 — X3                    X12                           < A3          w (2
, n)(3, n)—w(m, n)" (2.07) Pr. <A,1-                                                                  1 • 

 Since (i, n)} (i = 2, 3,   , m) are not mutually independent, this 

probability can not be obtained directly from the chi-approximation of 
each mean range. 

 On the other hand the similar problem which will treat the successive 

poolings of sample means in stead of the simultaneously successive poolings
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of sample means and sample mean ranges may be solved extremely simply. 
In view of Part III, § 1 in our previous paper [1] , we shall readily observe 

 Theorem 9. 3. Let Ok (k = 1, 2,   , m) be m independent random 
samples of size nk from the same normal population N , 02) , where e 
and ci2 are unknown to us. Let us denote by wk the sample range defined 

for 0,. Let Em be the domain in the n1 + n2 +   + n,„ -dimensional 
sample space such that 

  (2. 08) e„,: lxl - i2 < A2 w2 2 x12 - /31 < A3 W31  7 I X12..•m-1 Xm < Am Wm 

where x12...1 (i = 2, 3,   , m - 1) are those successively pooled means 
defined as in (2.01) . 

  Then we have 
                                                    '1,. 

 (2.09) Pr. H Pr. I xt -                                          -12...i-1 I < Ai wi 
                                 1,1 

                  neI Xi -I              II Pr.„<A,F . 
                         i=1,,1, n, Sva, nj) 

 Proof : This follows from the transformation u, = X,                                                                      - -12 ••i-1 (i 2, 3, 

  , m) which yields us . 

 (2.10)          nt_ )2Nrne + n2 u2nk uk,2                   N
22Nk) 

                     + E, n; N j-1 ui2 . 
                                    J=2 

 After integrating with respect to xi in - 00 < xi< 00 , we reach the first 
equation in (2.08) , which yields the approximate evaluations in view of §1. 

 We have also constructed Tables II and III by means of Table I for the 
sake of applications of Theorem 9.2 and 9.3. 

              Table 1. (91n, n (a) : (m, n, n (a)(a)/C(m, n) 

                            Pr._I x                              >n (a)}a                               w(m, n) 

                              ( I ) a = 0.5 % 

  SizeNumber of samples, m 
of sample  

 n12345 

   3 9.53702.59792.51162.24032.1011 
   43.42682.05701.77461.65421.5881 

   52.30031.63301.46611.39191.3517 
   61.8536 I 1.4113 1.29071.24301.2137 

   71.5948 I 126951.18331.14381.1215 
   81.42761.15021.10531.07271.1385 

   91.30991.10321.04571.01881.0033 

   10 1.22241.03890.99930.95930.9627
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                              (II)  a  =  1  0/, 

 SizeNumber of samples, m 
of sample   

n12345 

  36.23092.59152.14501.9551 I 1.8536 
  42.67041.75971.55811.47031.4213 

  51.89041.42431.30321.24881.2181 
  61.55681.24411.15791.11951.0973 
  71.35991.12691.06281.03331.0161 
  81.23011.02550.99560.97000.9572 
  91.13760.98690.94400.92370.9119 
 101.0644  0.9405 0.90370.88610.8758 

                           (III) a = 2.5% 

 SizeNumber of samples, m 
of sample  

n12345  1 
.  

  33.62391.96321.70831.59601.5344 
  41.89711.40181.28241.22761.1980 
  51.43141.16221.08841.05461.0352 
  61.21251.0290 f 0.97540.95000.9369 

  71.07920.93990.89930.88110.8702 
  80.98910.86040.84610.83030.8214 
  90.92350.83150.80440.79170.7838 
 100.87330.79500.77150.76030.7505 

                            (IV) a = 5 % 

 SizeNumber of samples, m 
of sample  

n1 

    

1 2345 
  32.41751.55581.4027 i 1.33341.2946 
  41.43951.15181.07751.04331.0238 

  51.13380.97070.92420.90240.8898 
  60.98010.86760.83310.81720.8085 
  70.88400.79720.77160.7593  0.7522 

  80.81760.73270.72730.71690.7110 
  90.76860.71030.69280.68360.6792 
  100.7303 I 0.68080.66510.65810.6537
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           Table 2. Cm,„'(a) : (m, n,cx)--)-Cm,9,(a)---(Pm, u (cc)1±1                                              1 MIZ 22 
                        Pr.1intY1!> win, n ( col= a 

                              w (m, n) 

                             ( I ) 0.5% 

  SizeNumber of samples, m 
of sample  

1112345 

   37.78781.81101.67441.44611.3289 

   42.42311.25961.02460.95510.8698 

   51.45480.8944 1 0.75710.69600.6622 
   61.07020.70570.60840.56740.5428 

   70.85250.5877 , 0.51640.48330.4643 

   80.71380.49800.45120.42400.4409 
   90.61750.4504 : 0.40250.37970.3664 

  100.54670.40240.36490.33920.3239 

                           (II) 1 % 

  SizeINumber of samples, m 
of sample  

n12345 

   35.08811.83251.43001.26201.1723 

   41.88831.07760.89960.82190.7785 
   51.19560.78010.67300.62440.5967 

   60.89880.62210.54380.5110 I 0.4907 
   7 • 0.72690.52170.46380.4367 I 0.4207 
   80.61510.44410.40650.3834 i 0.3707 

   90.53630.40290.36330.34420.3330 

  100.47600.36430.33000.31330.5034 

                             (III) 2.5% 

 SizeNumber of samples, m 
of sample  

n12345 

   32.95921.38821.13891.03020.9704 

   41.34150.85840.74040.68630.6562 

   50.90530.63660.56210.52730.5071 
   60.70000.51450.45980.43360.4190 

   70.57690.43510.39250.37230.3603 

   80.49461.37260.34540.32820.3181 

   90.43530.33950.30960.29510.2862 
  100.39050.30790.28180.26880.2500
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                           (IV)  5  % 

  SizeNumber of samples, m 
of sample 1 

n12345 

   31.97411.10010.93510.86070.8188 
   41.01790.70530.62210.58320.5608 
   50.71710.53170.47730.45120.4359 

   60.56590.43380.39270.37300.3616 
   70.47250.36900.33680.32090.3114 
   80.40880.31730.29690.28340.2754 

   90.36230.2900 0.26670.2548 j 0.2480 
  100.32660.26370.24290.23270.2264 

       Table 3. T'm, n (a) : (m, n, ce),-+V'm1, n (a) = <Pm, n (a)(m - 1) n + n 

                               (I) 0.5% 

  SizeNumber of samples, m 
of sample  

n2345 

  32.12141.77601.49351.3563 

  41.45451.08670.95510.8878 
  51.03280.80300.7188 I 0.6759 

  60.81490.64540.58600.5540 

  70.67860.54780.49920.4739 

  80.57510.47860.43790.4500 

  90.52000.42690.39210.3739 
  100.46460.48700.35030.3404 

                           (II) 1% 

  SizeNumber of samples, m 
of sample  

 n23 i 4 , 5 

  32.1162I 1.51681.30341.1965 
  41.24430.95410.84890.7945 

  50.90080.71380.64490.6091 

  60.71830.57900.52770.5009 

  70.60240.49201.45101.4294 

  80.51280.43110.39600.3784 

  90.46520.38540.35550.3398 

  10 , 0.42060.35000.32360.3096
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                               (III) 2.5 % 

  SizeNumber of samples, m 
of sample  

 n23 I45 

                                           1  

   31.60311.20801.0640 . 0.9905 
   40.9912 , 0.78530.70880.6697 

   50.73500.5061 , 0.5446 0.5176 
   60.59410.4877 , 0.4478 , 0.4276 
   70.50240.41630.3845 j 0.3677 
  80.43020.36640.33900.3247 

   90.39200.32840.3047 j 0.2921 
  100.35550.2988 ,                                  0.27760.2653 

                           (IV) 5 % 

  SizeNumber of samples, m 
of sample  

n2345 

  31.27050.99190.88890.8357 
  40.8144 I0.65980.60230.5723 

  50.61390.50620.46600.4449 
  60.50090.4166 j 0.38520.3690 

  70.42610.35720.33140.3179 
  80.36640.31490.29270.2810 
  90.33480.28280.26310.2531 
  100.30450.25760.24030.2311 

       Part X. Fiducial inferences from the view point of 

                 successive processes of statistical inferences 

  § 1. Fiducial inferences 
 After reading our previous paper [1] , Prof. R. A. FISHER gave me a letter 

which, referring to his previous paper in 1935, FISHER [1} , said, " In section 
II I seem to be following very much the method you recommend ." Since 
then we have re-read his famous papers on fiducial inferences, and in con-
clusions it seems to us to be indispensable both for fiducial arguments and 
for successive processes of statistical inferences to make clear the inter-

relationships between these two formulations. 
 In his theory of fiducial inferences, FISHER [1] emphasised two points of 

view. The first is to distinguish fiducial probability statements from " those 
that would be derived by the method of inverse probability , from any 
postulated knowledge .of the distribution of itt in the different populations 
which might have been sampled." The second is to emphasise also that
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"statements similar to those of fiducial probability can only represent the 

true state of knowledge derivable from the sample, if the statistics used 
contain the whole of the relevant information which the sample provides." 
To the author of the present paper it seems adequate to emphasise that 
these two points of view concern themselves deeply with the two sample 
theoretic formulations. In current text-books on mathematical statistics the 
two sample theoretic ideas of R. A. FISHER developed in Part II in his 

paper  [1] are not duly treated, and in some of them his fiducial probability 
theory is scarcely mentioned. 

 It is well known that such unfortunate circumstances have been derived 

partly from current discussions concerning Behrens-Fisher's test. If R. A. 
FISHER would formulate this test of significance more accurately and more 
throughly from the stand pOint of the two sample theory, the test would 
deserve its relevant interpretations and its due circulations. The author of 
the present paper dares to say that the agreements and disputes between 

R. A. FISHER and J. NEYMAN seem to derive from the following circumstances. 

 (1°) R. A. FISHER and J. NEYMAN agree with each other in the sense that 
both of them reject any postulated knowledge of the distribution of. para-
meters in different populations which might have been sampled. 

 (2°) R. A. FISHER and J. NEYMAN differ from each other in the sense 
that the fiducial inferences of the former concern themselves deeply with 
the two sample theoretic formulation while the theories of inductive behavi-
ours of the latter deal entirely with inferences from a sample to its parent 

population. I say here "deeply", because the real features of fiducial argu-
ments depending upon the two sample formulations are not necessarily 
apparent. Statistical inferences from a sample to its parent population in 
the sense of FISHER [I] ought to be recognised as the limiting case of the 
two sample formulation when the size of the second sample n2 becomes 

infinity as we have emphasized in Part I in our previous paper (1) . 
 In our point of view there may be at least two interpretations of Behrens-

Fisher's test from our successive processes of statistical inferences. One of 
our interpretations is essentially due to the argument of BARNARD [1] . It 
seems to us, however, necessary to make concrete formulations to this argu-
ment along the method of STEIN [1] . The other interpretations may be 
said to be a method of multiple assertions in two sample formulations. Here 
the sufficiency of estimations play its essential role as R. A. FISHER empha-
sized it. In the following § 2 we shall give the first interpretation. The 
second will be discussed in another occasion. 

   2. Application of Barnard-Stein method to an interpretation of 
      Behrens-Fisher test 

  (1°) Let ON : (x1 , x„   , xmo) and Ono Y2/  , AO be two 
independent random samples drawn from normal populations N 0-12)
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and N2  (  4"2 622) respectively, where E, and .6,2 (i = 1, 2) are unknown to us. 
Let us define as usually the sample means XI and SI, 

        m11nn 

 (2.01)                    = E xi/mo Yi = 

and estimates of variances 

  ntOnO 

 (2.02) s12 = E (xi — x1)2/(mo — 1) , s22 = E (y, — 57,)2 / (no — 1) . 
                       i=1 

 (2°) Having obtained these estimates, we shall make additional indepen-
dent random samplings from each of our populations, which we denote by 
0`m-m0 : X7n01-1 Xm01-2   x.) and Oin-no (Yn01-1 Yno-1-2 y,i) re-
spectively. Here m and n are defined in the following manners 

 (2.03) m = max1  mo + nok+1, mo + 
                                  nzo 

                       1  mo+ no   (2.04) nmaxn osil+ 1 , no +, 
where k is an assigned positive number whose meaning will be explained 
afterwards. 
 Since m and n depend upon s12 and s22 respectively, they are stochastic 

variables. We shall denote by E., „ the event that these stochastic variables 
become assigned values m and n respectively. 

 (3°) Now let us define a sequence /ad such that 

                ( 1°) a, = 1 

 (2. 051 )( 2°) s12 ma kl(nio + no) 
                                                i=1 

              ( 3°) a1 =a2= a2 amo • 

 Similarly we may and we shall define a sequence b2j such that 

               ( 1°) = 1 
                                                      .9=1 

 (2.052)( 2°).922tb= no k Anzo + no) 

                  ( 3°) b1= b2  =bno 

 The existence of such sequences follows from the fact that, under the 
conditions (1°) and (3°) in (2.051), min. s12 E ai2 ni-1 -12                                                  is not greater 
than mo k (mo + n0)-1, according to the definition of m in (2. 03) . 

 (4°) Let us introduce the statistics
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 (2.  061)ti = a, x i)/ s1.71±Or2 
           i=1i=1 

and 

 (2. 062)t2)1sb321.1/2-2/2 .7_1•                                               .1=1 

 For the sake of simplicity, let us put 

  (2.07) mo1/2/(mo n0)112, c2 _no1/2/(mo no)112 

 After these preparations, we shall now observe 

 Theorem 10. 1. Let ri and r2 (r1 < r2) be arbitrarily assigned real 
numbers. 

 Then we have under the hypothesis (1°) (4°) in this paragraph, 

  (2. 08) Pr. r1 /C.(112) < C1 t1 + c2 t2 < r2 k-al"i 

                                g„,0-1 (t1) g7,0_1 (t2) d t1 d t2, 
                                        kk-C112)<cltltc2t2<-c2k-CI/2) 

where gvi_1(t1) (vi = V2 = n3) mean the probability density functions 
of t-distribution with the vi — 1 degrees of freedom, that are, 

                L)2j2-0,/2)  (2. 09) gv_1(t) =-( 1 +   
                    1,2v —1                         )1/v1/7r1 ) 

 Proof : Since any possible values of m and n satisfy the conditions 
m> mc, + 1 and n> no + 1, and Ein,„ and are mutually exclusive 
provided that lm — m' + j n — n' > 0, we can write 

  (2.10) Pr.T1k--(112) < c1 t1 + c2 t2                                                  r2 k--(112) 

                     f, E Pr..Em,„,k--)112) r1 < C1 t1 + c2 t2 < T2 k-(1/2)} . 
                                m=m01-1 2}..014 

  To calculate each summand of the right-hand side, let us notice the fol-
lowing assertion that (1°) for each assigned set of values of sl and s2 , the 
variables X and Y difined by 

  (2.11)               (t a, x,){„..2}1/2yic72\b)21.1/2 
             \i=1`,1142,                                  \j=1I li=1 

are distributed according to N (0, cf12 s12) and N (0, 022 s22) respectively and 
that (2°) X and Y are mutully independent. 

  To prove (1°) and (2°), let us first notice that (i 1, 2,   m) 

11), (j 1, 2, ------ , n), m and n are certain functions of sl and s2. Con-
sequently we should write a, = a, (s1, s) , b,==b (s1, 52) , m = m (s1, s2) 
and n n (s1, s2) , and hence
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          m(si, s2)m(,1, s2) 112 

  (2.12) X = E a, (s1, s2)(X, — 1)/s1 E, a, (s1, s2). 
       2=m0-1-11=1 

                                             rsi, 82),\1.1/2                   i=1(s1-\i — -1)/S1ai2(si, S2)s2(--                                                                          i=1 

according to the condition (3°) in (2.051) , and similarly for Y. For each 
assigned set of values s1 and s2, I xi 3 (i mo + 1) , 3 yj 3 (j no + , 
and y, are mutually independently distibuted according to normal distribution. 

  Due to these facts direct calculations of means and variances yield us 
what was to be proved. 

  After these preparatory remarks, we can now give 

  (2. 13) Pr. 1 E„„ „,k-(1/2) Ti < C1 t1 + c2t2<k-0/2) 721 

                = fm0-1 ( S1 al) fno-i ( S2 , 62) d si d S2 
                             fern, „ 

                       S1 Sr)1  (  s12x2  
                  exp+ S2Y2— dxdy,             •

Gir(11 (722k(7120.22 
                                    1-,2v<T2 

where we put 

                                                                  mo-I 

  (2. 14) 
                   (M01)(m

261) .3121.     fino_1(si ,=_exp°
%2          -01l—--1mo—1  

          2 2 I u                    2) 
• and similarly for f(A                         no-1k-2 , 02) . 

 Due to the special forms of the integral with respect to (x, y) which are 
independent of m and n, we may write, in view of (2.10) , 

  (2.15) Pr. Ik-um r1 <C1 ti + c2t2<k-w2) 

                           at) fno-1 (S2, 02) d Sid S2 
                 0 JO 

                             1 ( s_2  +x2s_2v2)) 
•.                                        dx dy               2:1,s2exp,22.cri2a2 

             k--(1/2)21<eix-Fe2y<k-(1/2)T2 

                                  1  s,2 x21 

 di exp26,42[ fno-1 ( S1 , ) ds,) 
         k-(1/2).ri<c1x-1-c2y<ic-(1/2)T2 0 

                         S2
exp1 s22y4.                                       2 092no-1 ( S2 , 02) ds2)dx dy ,                                  0**A/ 27r0'2 

which proves (2.08), rewriting x and y by t1 and t2 respectively. 
 Theorem 10.1 shows one of the inferential behaviours which corresponds 

to an axact application of two dimensional t-distributions. Here it is to 
be noted that



                  Successive Process of Statistical Inferences (4)47 

 (2.16) c1  t1  + c2 t2 = (2 a, x, — E                                             $2)j. k-(1/2) 
                 i=1i=1 

and hence that we may make use of the relation (2.08) in statistical infer-
ences about the population difference E1 — . To any assigned a, 0 < a < 1, 
and to each pair of mo and no, we can uniquely determine tino_i,„3-1 (a) 

such that 

  (2.17) gmo-i(ti) gno_i (t2) d tld t2 = a, 
           D(c6)                     mo

, no 

where the domain of integration Thno, no (a) in (t1, t2) is defined by 

  ( 2. 18) D7„0, no(a) 1)13112(mo+ no)-(1/241—np2(mo+no)-(i/242 I tmo-1, no-1 (a) 

 To give a connection between this inferential behaviour and Behrens-
Fisher's test, we shall adopt approximate values for /ad and by defin-
ing, for the set Eni,„, 

  (2.19) a, = m-1 , bi = n-1 , (i = 1, 2, •-•, m; j = 1, 2, •-•, n) . 

 If we shall make use of exact solutions aj and IbA satisfying (2.051) 
and (2.052), we obtain 

                                 \1/2( 
  (2.20) c1-             ,m0112(m0nor.(1,2) =s1/a29-at2+ s22ib,2)-"/2)                          1) 

                             4.13=1 

  (2.21)c2=—n0112 (m0 + n0)-(1/2) ,(                                S2(ibi2)1/2a2+ s2 2bj2\-(112) 
                     J=13,1j=1 

  Now the approximate solutions (2.19) will give us approximately 

                         sl  S12 S22-(1/2) 

  (2.22)----m112 k mn= cos 0 , say, 

  ( 2. 23 )2—Si% 
                                   s2 522\-(1/2) 

     C n) =—sino 

  (2. 24) c1 t1 + c2 t2 t1 cos 0 — t2 sin 0 
      .Id9A 

  (2.25) E a,x,i,                                            Yi =-Y •        i=13=1 

  On the other hand, since we have 

  (2.26)c1 t1 + c2 t2 (E a, x, — bj y;) k--(112) 
                       i=1.1=1 

for exact solutions ka,1 and , we shall reach the following approxi-
mate relations: 

  (2.27) a Pr + c2 t2 1 .0-1 (a) 
            = Pr.I t1 cos 0 — t2 sin 0t                                                  ..m0-1,(a) 

            ----Pr.— =2) Itme-1, no-1 (a)22 .
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  Thus in order that we may obtain a confidence interval for the difference 
of the population means $1— $2, with an approximate confidence-coefficient 
1 — a whose length is 1, it will suffice us to define k112 = //2/.                                                                                     ..m0-1, no-1 ( a) . 

  It is useful to enunciate our results just obtained in the following 

  Theorem 10. 2. Let Om,: (x1, x2,   , xmo) and Ono :Yno)                                               (y1 Y2   
be two independent random samples drawn from normal populations 
N a12) and N ($2, aZ) respectively, where Ei and a, (i 1, 2) are un-
known to us. Let us define Xi, yl, 512, s22 and m and n as given in (2.03) 
and (2.04). Let O'n,--mo : (xmoti ,   , xm) and O'n-mo: (ynoti,•• , yn) be 
two independent random samples defined as in (2°) . Let us define x, y 

   t2 and cos 0 (hence sin 0) by 

 (2.28) x = m-1 y =n-1 y 
         i=1J=1 

  (2.29) t1 = m112 (x — El) scl , t2 = n112 (Y — $2) S2-1 

  (2.30) cos 0 = slm-(112) (s12 m-1 + s22 n-1) 

  Then we have 

  (2.31) Pr.lti cos() — t2 sin01<T} 

                              fm0-1 (S1 / 61) fn0---1 ( S2 c2) dS1 dS2 
                        m.mo-t-1 n=no-1-1 K

m, 2, 

                        m1/2 n1/2                  exp -1m (x—2el)2n (y—)2)  •-                                                           22.dxdy,         27alC7226
2                D

m, n 82) 

where f;,_1 ( = mo, no) and Em,„ are as such defined in (2.14) and (2°) 
respectively and the domain of integration in (X, y) is defined by 

  (2.32) D„„ n(51, 52) i(x — (y — $2) I < r ( S121 + s22 n-1)112 

 Further we have an approximate evaluation to the effect that 

  (2.23) Pr. ti cos 0 — t2 sin 01 < 

                           g„,o_i (t1) g„o_i ( t2) dti dt2 , 
                                     elt11-^2t2 

where c1 and c2 are such as defined in (2. 07) . 

 It will be sufficient to show how the approximate evaluation given in 

(2.33) may be obtained from (2.31). 
 For any m and n except when m = mo or n = no we have, in Em,„, 

 (2.34)m> mo-.1 (ma + no) s12 > m — 1 

 (2.35)n> k--1 no (mo + n0) s22 n — 1, 

which yield us that
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  (2.36)  s12  (m  1)-1  +  s22  (n  _ 1)-1 > si2 m-1 + s22n-i, 

and that 

  (2.37) mo-1 (mo + no) si2 + 1 0.1-2 (z „S-02 

                    ^k-1 n01 (m0 + 120) .322 + 1 022 (5, t2)2 

                 m (i El )2 a1-2 n (y- _ $2)2,22 

                  k-1 (m0 + m01(i _zi)20.1-2 

                    ^k-1 ( m0 +no-i(37, — e2)2 (722 • 

 Let us now define X and Y by 

  (2. 38) x = k- "2) mi-(1/2) (m0 + n0)1/2 ( 

              Y k-(112) n0-(1/2) (m0 + n0)1/2 (-5, 2) 

and let us replace s12 m-1 s22 n-1 and m (-x- — $1)2 01-2 n (y- — $2)2 (7Z by k 
and the last terms in (2.37) respectively for all m mo and n no. Then 
we shall readily reach (2.33) , which was to be proved. 
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