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ON THE STATISTICAL INFERENCES
IN FINITE POPULATIONS BY TWO SAMPLE THEORY

Hisao URANISI

(the University of Mercantile Marine)

§1. Introduction. In May, 1951, at the Annual Meeting of the Math-
ematical Society of Japan, T. KITAGAWA [1] has established a method of
statistical inferences on finite populations from the view point of two sample
theory.

He has introduced following assumptions in dealing with these problems:

Assumption I. Considering a grand population /7, the finite population
(N) in his consideration can be recognized as random sample of size N
drawn independently from I/.

Assumption II. The finite population (N), as a sample from the grand
population 77, can be recognized as consisting of two independent random
samples O, : (%, -+, %,) and O, : (¥, -, Yy—n) Of sizes n and N — n re-
spectively, which are drawn from the grand population //.

Assumption III. The grand population /7 is distributed normally accord-
ing to N (¢, ¢%).

Putting
(1.01) %= gxi/n, st = Zl(x — ®)Yn
(1.02) 3= 3 3/(N=n), $*= 3 (95— 9P/ (N =)

(1.03) Z={nz+ (N-m3|/N, =13 (x. - 52+ 5 5, - DYIN,

what we have known from actual sampling are some or all of (1.01), and
what we want to infer are some or all of (1.03). The statistics (1.02)
are auxiliary ones which are indispensable in his formulation, but what are
unknown to us.

T. KiITAGAWAD developped following theorems, which will be of use in
giving confidence intervals associated with statistical inferences about finite
populations :

Theorem 1.1. Under the Assumptions 1, Il and 111, for any assigned «,
0 << a1, the confidence interval for % with confidence-coefficient 1 —a,
which takes the form of (¥ — As, x + As) is given by

(1) Prof. Kitagawa informed me after the preparation of this paper that he found the
same result as to Theorem 1.1 was already established by E. S. Pearson [3] which was not
accessible in Japan until 1951,
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(1.04) 4 bo(@) SN

where t,_, (a) means «a-significance level of t-distribution with n — 1 de-
grees of freedom such that Pr.{|t| >, (a)} =a.

J

Theorem 1.2. Under the same hypothesis to Theorem 1.1, the con-
fidence interval for S’ by means of s*> with confidence-coefficient 1 — «, which
takes the form of {(n/N)s? Bs% is given by

(1.05) _n N-—n N-n |
B= i+ S (o),

where F' " (a) means a-significance level of F-distribution with pair of

a=1

degrees of freedom N —n and n — 1 such that Pr.{F >F. " (a)} = «.

He extends these two theorems to various directions. For examples, the
confidence interval for the differerces of two means %, and %,, and those
for the ratios of two variances S and S of two finite populations can be
obtained in quite similar ways. For this purpose he considers two sets of
two independent samples

Oii) : (xil) Tty xini) and Oéi) : (ytl; Y, zvi—ni)_) (l = 1’ 2)

drawn respectively from the population //,, and he puts for i =1, 2

ng 4 —
(1. 06) Ez = j:z;xij/ni; S‘f = _'IZ:l (xij - xi)z/ni

Nij—nj ="

(1.07) 3= S ya/(Ne=m),  s2= 5 (3= 3/ (N, — )
(1 08) -%‘i = gni}i + (Ni - nl);’ii /Na

ng Ny—ng
(1.09) 82 = {3 (x — 52+ 5 (u— FIY/N..

As in the case of one system of two samples, following theorems® give
him confidence intervals associated with statistical inferences about two
finite populations :

Theorem 1.3. Under the Assumptions 1,11 and 111, when we have o2 = o2,
the confidence interval for %, — %, by means of x,, %,, s and s} with
confidence-coefficient 1 — «, which takes the form of (x, — x, — As, %, — X,
+ As), where

(1.10) st=(n st + n,82)/(n, + n)

is given by

(2) See Kitagawa 1] Theorems 6.3 and 6.4. Slight misprints concerning s?, b; and ¢«
(i = 1, 2) should be corrected as we enunciate in (1.10) (1.13) and (1.14).



Statistical Inferences in Finite Populations by Two Sample Theory 11

(1.11) A = w2 (@) Ty N mA R Ny—ny
Vin b n,—2 n N, n, N,
Theorem 14. Under the Assumptions 1, Il and 111, the confidence interval
for the ratio S;2/S? by means of si* and s with confidence-coefficient 1 —a,
which takes the form of §B(szz/s12) C(szz/s 2)} can be given by

(1.12) 1~a=Pr.{B~§%< . <c 5
1

= Sg th—nz‘ n9—1 (G) hﬂ’l—rzl, ny—1 (L) d G d L s

bL+b<G<¢,L+c
where h;(H) means the F-distribution with degrees of freedom (i, j)
and he has put

. _g. MmN Ni—m nm—1 — 1N
(1.13) bl_B nzN Ng——”z ) nl——l’ b B Nz‘ n2<nle 1)

. mN, N—mn m-—1 _m—1 /N,
(1.14) ¢ =C- mN, Ny—mn, n—1’ cZ_N—n2<nZNlc 1)'

In this paper we shall study the effects of non-normality, when we remove
the normality assumption III in these theorems.
§2. The effects of non-normality.
Instead of the Assumption III of normality, we shall put the following

Assumption 1I1V. The grand population II is distributed according to
the GRAM-CHARLIER Type A, that is, according to

e~ {1 + ay Hy (2)

+a,H,(2) + a;H; (2) + asHe (2)} d 2
where z = (x — &) /o is the standardized variate, and we have put

=t A a= gy (B -3 =g ()

(2. 02) a; =

s —,LQ;”z /'3

T 12008 % =750 (P

The joint distribution of x and s drawn from this population was obtained

in the previous paper {2]. By the use of the result and following KITAGAWA’s
formulation, we can derive the following

Theorem 2.1. Under the Assumptions 1, Il and ', and neglecting the

— 1503, + 30).

. . - N
higher powers of a;, a,, a; and a;, the distribution of == —_ I/N_ n

is given as follows:
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for any assigned +(=0), putting u= (1 + ) and m =N — n,

(2.03) Pr.i|c|>z} =1, (iz_i, %) + (B — 3) Py (u)

1
+ 10 (% —153; + 30) P (u) + 3, Py, 5 (),

(2.04) Pr.{r >} = %Pl‘. Hrl >l + &3Py () + a;P; (u),

where 1, (p,q) means the ratio of the Incomplete Beta Functions 1, (p, q)
=B. (p, 9)/B (0, q), and

B n—1r6 ’ n—1 1
(2.05) P4(u)_———24nmN[n{2m —2nm—n(n—3)L( 5 o)
+1 1
—2{(2n+4)m2—2n(n—1)m—n2(n—1)}lu(n2 , o)
n+3 1
+{(2n+8)m2—2n(n—2)m—n2(n+1)§Iu< 5 ,7”
(2.06) P (u)=Ll——[n§8(2n—1)m5+30n(n—1)m4
’ 6 7212 m? N3
2 _ _.’_Z.—f_]; _1_
— 150 (n — 1) + ' (n 3)(n~5)§1u( 5 ,2)
—3(n—1){16(n+ 2)m° + 10n (3n + 8) m*
+ 60mtm3 — 1573 (n — 1) m? + w° (n — 3)} 1, (ﬁ_g‘_l, _];_)
+31{8(n+ 4)(2n — 3) w5 + 10n (3n® + 13n — 20) m*
+ 1201 (1 — 1) ma® — 150° (n — 1) + w5 (2 — 1;1,‘(’1—;—“—3, —})

— {16 (n+6)(n—2) m°+30n (#?+ Tn—12) m*+ 1802 (n—1) msd

— 15w (n = 172 m2 + w(n + D(n+ 3)| L (252, )]

_n=1
72n* m*> N3
+n? (13n*—26n+15) m*+ 3n? (21n° —51°+5 Ym?

(2.07) Py 5 (u) = [n {2 (272— 3n+4) m5+6m (20— dn+5) mt

+n' (n—3)(n—5)(m—1)} L, ("—;i %)

—3{2(2n® — 3n* + 16) m® + 2n (61° — 8n% — 5n + 40) m?
+ n* (13 — 672 — 257 + 60) m® + #° (61 + n® — 161 + 15) m?
7+l 1)

+w(n=1(n=-3)(m= DL ("5,
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+3 42 (21— 31— 8n+48) m°+2n (6n°—4n>—33n+100) m'
+ 72 (137° + 14912 — 657 + 120) m* +#* (61° + 171> —16n+15) m?

2 7 2
— {2 (23 —3n*—20n+96) m°+ 67 (21— 231+ 60) m*
+ 7 (1393 + 341> — 1052 + 180) m2* + 3n* (21 + 1192 +-5) ma?

+7° (B —1)(m—1)} 1, ('n—ti 1 )

s n+5 1
+#° (n+1) (n+3) (m—1)} L (5, —2—)]
1 n—1
(2.08) Py(n) = — 7m[§(2n —D)m+n(n - 2N L (%5, 1)
—(n—-1)2m+n)L, (ﬁgi 1)]
(2.09) P, (u) = ,75717;1\7 [g3 (2n—2n+1) m'+10m (n—1)(2n—1) ms

+15% (n—12 mP—mt (n—2) (n—4)} L, (i;ﬁl 1)
—2(n—1) 16 (n—2)m'+5n (4n—5) mP+ 1502 (n—1) m?

—nt(n—2)11, (’%i 1)

+(n—1) {6 (n—4) m*+20m (n—2) m?

+ 1502 (n—1) m—n* (n+ 1)} L, (12—;‘—3— 1)]

Corollary. Under the same hypothesis to Theorem 2.1, if we use the
same confidence interval for % obtained by Theorem 1.1, the confidence-
coefficient is approximately given by

(2.10) 1—a~ (%~ 3)Py () ~ 70 (F — 155 + 30) Pa (o) — 1Py, (1),

Mﬁl}“l .

where we have put wu, = {1 + —

The evaluation of the values of P,(u;), Ps(2%) and P, ;(2%,) can easily
be done by the use of the PEARSON’s Tables of the Incomplete Beta Func-
tions. For examples

in the case « = 0.05

1 Py (uo) Pg (2p) P33 (u0)

N= 10, n=5 —0.0050 0.0088 0.0156
N= 100, n=10 } —0.0018 0.0015 00145
N= 100, n=25 1 0.0004 —0.0003 0.0083
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in the case « = 0.01

‘ P, () Pg (up) P35 (u0)
N= 100, n=5 | —0.0020 0.0042 0.0056 ‘
N= 100, »=10 { 0.0001 0.0020 0.0082 |
N= 100, n=25 } —0.0002 0.0002 00062
N=1000, n-=25 [ —0.0008 0.0005 0.0063

The effects of non-normality seems to be small in these cases.

Theorem 2.2. Under the Assumptions 1, 1 and 11T, and neglecting
the higher powers of a;, a,, a; and a,, the distribution of
n—1

ns?

F={s?+ 2 (x— 37} -

is given as follows :

For any assigned F,(>0), putting u = (1 B ZZ fF“>

n—1 N
2 >

(2.11) Pr.{F>Fyf =L ( 5 ) (=3 Q@)

1
+ ﬁ(/ﬂ =153, + 30) Qs () + 51 Q;,5 (%),
which turns to

212) Prif <=2 (1+Y22R)

1L TN s -naw

+ 9 (= 158 +30) Qg () + A Qy ()},
where
n—1
(2.13) Q) =g ,:,,,,)[{( —1)N2—2n N
~1 N-
+ e+ DIL (5, B

"2{(”—1)N2—2N—(n+1')}1,‘(”‘2*1 , L;ﬁ)
+ i(n—l)N2+2(n—2)N_3(n+1)”u<n42-3’ N2—n>]

_ —5(n - 1)
24 N*(N—n+ 2 N—n+ 4)

—2(n—17%(n—-2)N?+ (4»’ —-13n>—2n + 3) N

(2.14) Q, (%) [(N—1)g(n—1)2N3
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n—1 N-n

—2n(n+1)(n—3);L( 5 g )

—3(n—-—1)(N+1D){(n -1)N* -2 (n?— 2n + 3) N?

n+l1l N-—=n

2 7 2

+3{(n—12N*— (203 — Tn? + 16n — 11) N?

— (21} — 1102 + 40 — 39) N?2 + (10m® — Tn* —32n + 45) N
n+3 N-—n

2 72 )

— {(m =12 N*— (2n® — Tn® + 20n — 15) N*®

— (673 — 1512 + 64n — 71) N2 + (18n* + 17n% — 76n + 105) N

]

+ (47 =31~ 9) N — 2n (n + 1)} L (

—6n(n + 1)2;1u(

—10n(n+1)(n+3)}L(

n—1
(2.15) Qo) = Sy s 2y = dy [N~ DI

— 6n + 5) N%— (33 — 18%° + 25m — 20) N2 + (15% — 49m?

+11n + 15) N — 10 (n + 1)(n—3)§L< -1 N2 %)

— 3(N +1){(3n2 — 61 + 5) N°— (3n* — 162 + 297 — 30) N*

+ (17w — 23 — 15 + 45) N — 10m (22 — DL (* 5 1, N

+34(3n2 — 6m + 5) N* — (3% — 23 + 5z —- 55) N

+5(20 + 9n® — 28n + 39) N2 + (47 — 11n? — 133n + 225) N
n+3 N-n

—30n(n + 1241, (M=, ST

— (31 — 6n + 5) N* — (313 — 27n% + 67n — 75) N3

+ (67 + 89n? — 252n + 355) N2+ 5(19#° + 21%n% — 73n + 105) N

n+5 N—n)]

—50n(n+ 1)(n + 3N L (75—, Ty

Corollary. Under the same hypothesis to T heorem 2.2, if we use the
same confidence interval for S° obtained by Theorem 1.2, the confidence-
coefficient is approximately given by

(2.16) 1- a — (B2 —3)Qq(uy) — T10 (Ba — 153, +30) Qs (15) — B Qs, 3 (15)

where we have put wu,= {1 + N— F::l (a )}

The evaluation of the values of Q‘(uJ), Q;(u,) and Q,, ; (#;) can also be
done, For examples, -
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in the case « = 0.05

| Qi () Qs (0) Qs, 5 (at0)

N=9, =n=25 I* 0.0155 —00176 0.0115

| N=100, n=10 | 0.0254 —0.0239 0.0156
N=100, n=16 | 0.0306 ~0.0220 0.0152
N= 99, n=2 | 00344 —0C172 0.0131

in the case «a = 0.01

‘ Q, (1) Qs (2) Qs, 5 (%)

N=99, #n=5 [ 0.0036 —0.0044 0.0029
N=100, n=10 | 0.0069 ~0.0076 0.0051
N=100, n=16 | 0.0090 ~0.0080 0.0057
N=9, =n=25 ' 0.0116 —0.0082 0.0067

In these cases, the effects of non-normality due to kurtosis seems to be too
large to neglect. ) .

Following K1TAGAwWA’s Theorem 1.3 which gives the confidence interval
for the difference of two means %, and %, that are recognized the population
means of two finite populations, by means of sample means %,, x, and
sample variances s? and s, we can derive the following

Theorem 2.3. Under the Assumptions 1, 11 and N, when we have
o = o = o*, neglecting the higher powers of a®, a®, af® and a®,
(i =1, 2), the distribution of

Ez—?cl——(ffz—fcl)/l/nl—i—n,.Nl—n, ity Ny—mny

= +
‘ s n, N, n, N,

is given as follows:
for any assigned ,(>0), putting u= (1 + z2)!

n + n, — 2 1 TR (2)
(2.17)  Prile|>wd =L(P7 50, ) + B Q@ (a)

2 2
+ (A0 =D RO () + 575 (A ~ 155 + 30) P (w)

2 : ‘
+ 2/ PG (u),

i=1

where we have put s> =(n,s?+ n,8%)/(n + n,)

(2.18) PP (u) = 511 [Aj" {L‘ (”14‘#2_, %>

o (B %) + L (ﬁigz_+é, ,},)}
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— B® {(nl.,_nz_z)lu(ﬂ_%t“_z_, %) —2(n

rm - DL (B, %) + (m + m) L, (’—’1—%*—2 é)}

+ C4(t) {(”1 + nZ - 4)Iu (&‘+_;22;§, %‘) - 2 (nl + 122

oL (BE, L) ey (BRSO

(2.19) P (u) = %21_ [A@ E — B F + C G — D& H)
(2.20) PG (w) = - [ABE + BSF + CAG + DSH)

(2.21) QW) = 55~ [BF — GG + D, HJ,

where, putting K, =n, N;(N,—n,) for i, j=1,2,(i #j)

AP = 3(n,— 1)*/n,
B = 6K, (N, — n,)(n, —1)/[n N, (K, + K;)]
C® = K¥(m'+n,—2){n?— n (N, —n)
+ (Ny — )% /[ N (N, — n) (K + K)?)
A = 15(m, — 1)*/n?
B = 45K, (N, — n;)(n,—1)*/[n?N, (K, + K,)]
C == 15K2 (N, — n,)* (n, — 1)/ [nZ N2 (K, + K,;)*]
De(i) = Ki3(n1 + 0 — 2){”55 + (N‘- - ni)si/[nz-z (N-i - ”i)zNi3(K1 + K2)3]
A = 3 (m, — 1)(3n; — 6m, + 5)/n}
B = 9K, (N, — n))(n, — 1)(n? — 4n, + 5)/ [0 N, (K, + K;)]
C% = 3K2(n, — 1){2n? — (2n, — 5)(N, —n.)*}/[n2 N? (K, + K;)
DS = K& (m + n, — 2) [ (N; = n){(N; — n,)* — ni}®
— {nS + (Ny — n,)°1)/ (0% (N: — m,)! N3 (K; + K)°]
B; = 9 (N, —n)(N,— nm)(n — 1)(n, —1)/(K, + K;)
C; = 3{K (N, —2m) (N, — m)(m, — 1)
+ K, (Np — 2m,)(Ny — m)(m, — 1)} /(K + K,)*
D, = KK, (Nx — 2n;) (N, — 2my)(my + my — 2)/(K; + K3 )?

B (MR L) (M )
Mt t+ 2 %) _Iu(nl+nﬂ 1)

+ 3L (5 )
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F = e (5 )20 (552,

s D () w0 ]

G = (”1+nz—2)(n1+n2—4)1u(’ﬁ+;’2“‘2, %)

—3(n1+n2—2)(n1+n2—%)1“(n1-zl—nz,—L)
B (nrpet )
n +n+ 4

2 *

H = (n1+n2—4)(nl+n2—6)1u(”‘—Jr”2_‘2, -L)

2)

1
2
m+n+2 1
)

+ 3(m + nz)(n1 + n, —

— (m + m)(m +m+ 2) L (

=3 (m ot —2)(m + m— L (M

+3(n1+n2—2)(n1+n2)lu( 5 ,
— O m) (2 L(BEREL )

1 1 2 u 2 > 2 .
Corollary. Under the same hypothesis to Theorem 2.3, if we use the

same confidence interval for %, — %, obtained by Theorem 1.3, the confidence-
coefficient is approximately given by

(€8]
(2.22) 1—a- L8 5’3 Q9 () — z (B — 3) P® ()

— S (A~ 155 + 30) P () — 315 P ()

+ ﬁlj‘ng—z(a) }_
n o+ ny,— 2
The evaluation of the values of Q;%} (%), P/ (u,), Pe® (#,) and P, (1,)
can easily be done by the use of the PEASON’s Tables of the Incomplete
Beta Functions. For examples:
in the case N, = N, =100, n, = n, = 10,

where we have put wuy, = 11

\ @ =005 | a =001

PiD (o) = P4 () | —0.0003 | 0.0004
PeD (o) = Pe () | " 000004 | 00003
P, (uo) = Py R (u0) [* 0.0023 ' 0.0016
Q% (%) ! —00047 - ] ~0.0034
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in the case N, = N, =100, n, =5, n, = 15,

i o = 0.05 o =001

PyD (uy) —0.0028 —0.0012
Py® (uy) 0.0030 0.0012
PeD (uo) 0.0013 0.0006
Ps® (uy) ~0.0013 —0,0006
P30 (uo) 0.0004 0.0001
P32} (o) 0.0022 0.0018
QY () ~0.0040 { —0.0018

The effects of non-normality seems to be negligible small in these cases.

Theorem 2.4 Under the Assumptions 1, Il and 1IU, and neglecting
the higher powers of a®, a,®, a® and ag®, the simultaneous probability
density of
- 7N¢Si2_ngs; 3 nL
F= K "N, —n,

',(l—l 2)

is given by
(2.23) p(F\, F3) = Ryponyy 1 (F1) Bayng, nge1 (F2)

1+ é(‘@zm —3)p + 2—116 (B — 158,% + 30) pe®
+ Z 72 b3,

. — . -1
where, putting G, = ( 1+ Jg“:’ff Fi) and omitting the suffix i in both
i

sides of the following equations

(2.24) ps=

8N(N—n+2)[(” W(n—1)N— (n+ 1)}

AN+ DG i(n—1)N - (n+ 1)}
+ —2’{—11623(;1— N2 +2(n—2)N—3(n+ 1)}]
_5(N-1
(2.25) pe= 24n2N2(N—15+2)(1)V—n+4) [ = Ditn— 1y
—2(n—1)(n—2)N2+ (43— 1312 —2n +3)N—2n(n+1)(n—3)}
—3(n-1)(N+1)G{(n—1)N*—2(#n2— 21+ 3) N2+ (4’—3n—9)N

—2n(n+ i+ 2D Gy

— (20— 115+ 40n — 39) N2+ (10%° — Tri*— 320 + 45 )N — 6n(n + 1 )%}

§{(n—1)N1= (21— 71+ 16n—11)N®
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- ({ZZ ii%»&fﬁo’%@g (n—1)2N*— (2037w + 20n—15) N?

— (643 — 1502+ 64n—T1) N2+ (18%+ 1702 — T6m+105)N
——10n(n+1)(n+3)§]

. N-1
(2.26) Py, = 24N (N —n+-2)(N—n+4)
— (313 —18n+ 25n—20 ) N2+ (15m3— 4992+ 11n+15)N
—10n(n+1)(n—3)}
—3(N+1)G{(3%—6n+5)N3— (35— 161+ 29 — 30)N?
+ (17n3— 2322 — 150+ 45)N — 10m(n*— 1)}

[(n—1)g(3n2—6n+5)N3

+ %G%(Snz—ﬁwk S5)N4—(3n%—23n2+51n—55) N3

+ (107 + 4512 — 140n + 195) N2+ (47n* — 1112 — 1331+ 225)N

—-30n(n+1)%

_!LV'i‘l)(N‘*‘S) 3 2 __ 4__ 3 2 3
(n+1)(n+3) G*{(3n*—6n+5)N‘— (33— 27Tn2+67n—-T5)N

+ (67%+ 89m% — 2527 + 355) N2+ 5( 1973+ 2102 — 730+ 105)N

—50n(n+1)(n+3)}].
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