彷徨エルゴード定理について（2）

河田，敬義
東京文理科大學數學教室

Kawada, Yukiyoshi
Mathematical Institute, Tokyo Bunrika Daigaku

http://hdl.handle.net/2324/12916
寄 书

彷徨エルゴード定理について (2)

河 田 敬 義

東京文教大学数学教室

(昭和 21 年 5 月数学会年会講演 昭和 22 年 12 月 20 日受理)

§ 2.

定理 2'の拡張として

定理 2. "定理 1 において (T ; l ∈ I) がエルゴード系であれば、

(25) \[F_t(x) = \text{常数} = \varepsilon = \int f(x) \, m(dx) \]

とならら、

(26) \[T^k E_0 = E_0, \quad E_0 \ni x^* \]

ならば、

(27) \[m(E_0^*) = 0, \quad \text{又は} \quad 1 \]

となることを証明すれば、

(28) \[F(x^*) = \int f(x^*) \, m^*(dx^*) = \int f(x) \, m(dx) = \varepsilon \]

が成立つ。よってこのことを証明すればよい。

(29) \[m(E_0^* \subseteq E^*) > 0 \]

を満足する集合内で、しかも (22) の如き基本集合の

有限和集合となる \(E^* \) が存在する。集合 \(E^* \) は、

その特性函数 \(f^* \):

(30) \[E^* = \{ x ; f^*(x) > 0 \} \]

が有限集の成分に依って関係しないこと:

(31) \[f^*(x) = f(x, k_m, k_{m+1}, \ldots, k_0, k_l, \ldots, k_m) \]

と表されることによって特徴付けられる。

さて (29) に \(T^* \) 又は \(T^* \) を施すと、(26) により

(29') \[m(E_0^* \subseteq T^* E^*) < \varepsilon \]

を満足する。故に又

\[E_0^* = T^* E^*, \quad E_0^* = T^* - E^* \]

に対しても

(30') \[m(E_1^* \subseteq E_0^*) < 2\varepsilon \]

及び

(30'') \[m(E_0^* \subseteq (E_1^* \cup E_2^*)) < 3\varepsilon \]

となることが分る。

以上のことをから

(31) \[E_0^* = A \times K, \quad A \subseteq X \]

となることが導かれたならば、エルゴード系の定義に

より、(26) より

(32) \[m(A) = 0 \quad \text{又は} \quad 1. \]

従って

(32') \[m(E_0^*) = 0 \quad \text{又は} \quad 1 \]

となるから証明がつったことになる。故に (33) となることを証明すればよい。

(ヘ) \(T^* E^* \) の特性函数を \(f^* \) とすれば

(33) \[f^*(x) = f(T^{*1} x) \]

である。故に (18), (21), (31) によって \(f^*_m \) (は \(x, k_0, k_e \) の他に \(k_m, \ldots, k_{m-1} \) の番号の一つずれたもの)にのみ関係する。

\[f^*_m(x) = f_m(x, k_0, k_{m-1}, \ldots, k_{m-1}) \]

とする。同様に \(E_1^* = T^* E^* \) の特性函数は \(f^* \) は

(34) \[f_m(x) = f(T^{*1} x) \]

となる。同様に \(f^*_m \) (は \(x, k_0, k_e \) の他に \(k_m, \ldots, k_{m-1} \) の番号の一つずれたもの)にのみ関係する。故に

\[f^*_m(x) = f_m(x, k_0, k_{m-1}, \ldots, k_{m-1}) \]
故に又 $E_{v} = T^{*} - E_{v}$ の特性値を $f^{*} = m$ は
(37) $f^{*} = f^{*}(T^{*} x, y)$ となることが分かる。
(38) $f^{*} = f^{*}(T^{*} x, y)$

とすね。これらと X との直積を考えて
(39) $f^{*} = f^{*}(T^{*} x, y)$

とおく。今 X^{*} の上の L に属する函数を K_{1} 上の直積直交系
(40) $p_{j}(k^{(j)}) = \prod_{j=1}^{n} p_{j}(k^{(j)})$

により展開すると、その係数は x の函数となる。これを
(41) $f_{m}(x) = f_{m}(x, y)$

と展開される。ここで x をとれて考えれば、K_{1} 上の
直交系の性質により
(42) $f_{m}(x) = f_{m}(x, y)$

となる。又直積直交 $K_{1} = K_{2}$ に関して
(43) $f_{m}(x) = f_{m}(x, y)$

とせよ。又 $f_{m}(x)$ の特性値を $C_{m}(x)$ とすれば,
(44) $C_{m}(x) = \sum_{n=1}^{N} f_{m}(x, y)$

は $X^{*} = X^{*} \otimes K_{1}$において、$E_{v}^{*}$ に X^{*} の x 常数によ
る関口の μ 測度である。(42), (43) は夫々 E_{v}^{*} に

(45) $f_{m}(x) = f_{m}(x, y)$

とおけば、(44) の上に成立する関口の x 常数による関口の μ 測度にかかわら
ない。(32), (33) にてば
(46) $f_{m}(x) = f_{m}(x, y)$

である。一方 f_{o}, g_{o}, h_{o} は夫々関口の μ 測度であるか
ら、その値は $[0, 1]$ に属する。故に
(47) $f_{o} - g_{o} = f_{o} - g_{o}$

とおれば、(46) の上に成立する関口の x 常数による関口の μ 測度にかかわら
ない。(32), (33) にてば
(48) $f_{m}(x) = f_{m}(x, y)$

が殆どすべての $x \in X$ に対して成立たねばならない。故に
(49) $f_{m}(x) = f_{m}(x, y)$

とおれば、(38) 式の提案される。さらに、
(50) $f_{m}(x) = f_{m}(x, y)$

定理 3. "必ずしも関口の μ 測度でない一般の
(51) $T^{*} \otimes L^{*}$ に対して、X^{*} 上の保測変換 T^{*} に対する
不変集合 E^{*} は
∫(47) \[
E^* = \mathbb{R} \times K(A \times X) \\
I \cap A = A
\]

の形に表される。同じく一般に \(T^*\) の不変関数 \(f^*(x^*)\):

\[
\int(48) \quad f^*(T^*x^*) = f^*(x^*)
\]

は必ず

\[
\int(49) \quad f^*(x) = f^*(x^*) \quad (\text{治どとすべての} \, l \text{ \,で})
\]

と表される”。

この事から、一般に \(T^*\) の固有値を求めることができる。

定理 4. “(19) によって定義された \(X^*\) の上の保

測変換 \(T^*\) の固有値 \(a\) に対する冪級関数 \(f^*_a(x^*)\) は

\[
\int(50) \quad f^*_a(x^*) = \exp(2\pi ia) \cdot f^*(x^*)
\]

(治どとすべての \(l \in L\) に対して)

を表される。逆に (50) なる \(f^*_a(x^*)\) は

\[
\int(51) \quad f^*_a(T^*x^*) = \exp(2\pi ia) \cdot f^*_a(x^*)
\]

を満足する”。

（証明）今

\[
I = (0, 1)
\]

を中開半開区间とし、そこで保測変換

\[
\int(52) \quad T^*_a = b - a \text{ (mod. 1), } b \in I
\]

を考える。

これから直積変換

\[
\int(53) \quad Y^* = X^* \otimes I
\]

の上の直積保測変換

\[
\int(54) \quad U^*_a(x^*, b) = (T^*x^*, T^*b)
\]

を定義する。この上で \(f^*_a(x^*)\) が (51) を満足するならば

\[
\int(55) \quad f^*_a(y^*) = f^*_a(x^*) \cdot \exp(2\pi ib)
\]

は

\[
\int(56) \quad F_{a,y}(y^*) = f^*_a(x^*) \cdot \exp(2\pi ib)
\]

を満足する。逆に (57) の成立つ \(F_{a,y}(y^*)\) があつたとすれば

\[
\int(58) \quad f^*_a(x^*) = \int_0^1 \exp(-2\pi ib) F_{a,y}(x^*, b) \, db
\]

とおけば

\[
\int(59) \quad f^*_a(T^*x^*) = \exp(2\pi ia) \cdot f^*_a(x^*)
\]

を満足する。一方, (54), (55) と同様に

\[
\int(60) \quad \begin{cases}
Y^* = X^* \otimes I \\
U^*_{a,y}(y, t) = (U^*_a(y, t), S_{a,y})
\end{cases}
\]

として、これから更に

\[
\int(61) \quad \begin{cases}
F_{a,y}(y^*) = f^*_a(y^*) \\
F_{a,y}(U^*_{a,y}(y, t)) = f^*_a(y)
\end{cases}
\]

(治どとすべての \(l \in L\) に対して)

の形になる。故に (58) と同じく

\[
\int(62) \quad f^*_a(x^*) = \int_0^1 \exp(-2\pi ib) F_{a,y}(x^*, b) \, db
\]

とおけば

\[
\int(63) \quad f^*_a(T^*x^*) = \exp(2\pi ia) \cdot f^*_a(x^*)
\]

を満足する。故に (55) と同様に

\[
\int(64) \quad a = 0, \quad f^*_a(x^*) = \text{常数}
\]

ならばいよいよ実現することができる。
例1. \(L = (0, 1) \), \(T_0 \) と \(T_1 \) と二つの辺のぽあいは、引くに携ねばあてで、定理 14, 20 は共り定理 1, 2 の場合もあやせざるをえあたる。このぽあいたけには、\(L = (0, 1) \) において、綱合 \(0 \), \(1 \) の \(\nu \) 漩渦は共り 1/2 であるのだが、これを共り \(p, g (p + g) \) としてもよけ。そのとき \(0, 1 \) の数の二進法通開に至って見られられる温度は普通の Lebesgue 測度でなく、これと互に平行な測度になるものとなる。

例2. \(L = (1, 2, \ldots, h) \), \(\nu(i) = p_i > 0 \),

\[\sum_{i=1}^{h} p_i = 1 \]

であったとき、\(T_0, \ldots, T_h \) なる \(h \) 個の \(X \) 上の保証係数が持たされる。よって、\((T_0, \ldots, T_h) \) が可測系であることを、各 \(T_j \) が可測であるがれば自然成立する。これに \(\nu \) がレーベル測度であるため、\(T_0 \) に共通で不変係数は常数以外にないことであり、測量普通変数であるため、各 \(T_j \) に共通で同一変数に並立する必要があることを必要十分である。特にこの一つの \(T_j \) が共り \(X \) 上のレーベルの保証係数であると、\(T_0, \ldots, T_h \) が共り \(\nu \) が保証変数で保証変数型である。このぽあいに \(t, p_0 \) でれば従来の形は同一である。

例3. 例1 で \(T_0 = I \) （恒等変換）と \(T_2 = T \) とを考える。\(T \) が \(\nu \) の一歩の変換であると仮定して \(I, T \) なる基は \(\nu \) が \(\nu \) の変換であると仮定して \(I, T \) なる基は \(\nu \) が \(\nu \) の変換であると仮定して \(I, T \) なる基は \(\nu \) が \(\nu \) の変換であると仮定して \(I, T \) なる基は \(\nu \) が \(\nu \) の変換であると仮定して \(I, T \) なる基は \(\nu \) が \(\nu \) の変換であると仮定して \(I, T \) なる基は \(\nu \) が \(\nu \) の変換であると仮定して \(I, T \) なる基は \(\nu \) が \(\nu \) の変換であると仮定して \(I, T \) なる基は \(\nu \) が \(\nu \) の変換であると仮定して \(I, T \) なる基は \(\nu \) が \(\nu \) の変換であると仮定して

\[k = (\ldots, 0, 0, \ldots, 0, 1, 0, 0, \ldots, 0, 0, \ldots) \]

であると仮定する。

\[\rho(0) = p_0, \quad \rho(1) = q = 1 - p_0 \]

とすれば \((1, 2, \ldots, n, \ldots) \) なる値を夫々 \(\rho(n) = g p_0^{-n} \) （\(n = 1, 2, \ldots \)）とされる確率である確率変数 \(n \) に対して、\(n_j \) （\(j = 0, 1, 2, \ldots \））が独立変数であるものと見なして

\[\sum_{i=1}^{n_j} \nu(T_i) = \sum_{i=1}^{n_j} \frac{1}{N} \sum_{i=1}^{N} \psi_i(T_i) \]

の存在を主張するのが定理 1 である。このぽあいは然し乍ら既に知られた結果である。

例4. （角谷氏の如きもの）

\(X = \{ z_1, z_2 \}, \quad m(z_1) = m(z_2) = 1/2, \)

\(T_0 = I, \quad T_1 = I, \quad T_{z_1} = z_1, \quad T_{z_2} = z_2 \)

なる特定の変換を考える。例えば

\[k = (\ldots, 0, 1, 0, 0, 1, \ldots) \]

に対しても

\[T_{(1)} z_1 = z_1, \quad T_{(1)} z_2 = z_2, \quad T_{(0)} z_1 = z_1, \quad T_{(0)} z_2 = z_2 \]

であるから、\(f(z_1) = 1, f(z_2) = 0 \) なる \(f \) に対して

\[\frac{1}{N} \sum_{i=1}^{N} f(T_i) = \sum_{i=1}^{n_j} \nu(T_i) \]

は二進数列 \(k \) に対する \(z_2 \) の相対頻度を表している。よってこのぽあいには彷徨 \(\nu \) の変換は通常の \(\nu \) の変換である。

中野秀五郎氏例は1, 12 2等のぽあいに、定理 1 の "殆どすべての \(k \) に対しが "すべての \(k \) に対して "と直し得んかとの問題を提出されたが、この角谷氏の例は、そのことが一般には成立たないことを示すものである。

例5. \(L = (0, \infty) \) 上で \(\nu \) が定義され、保証変換
統計数理研究 第2巻 第2号

24

統計数理研究 第2巻 第2号

が群の性質

\[T_1T_2 = T_{1+2} \quad (I, I_2 > 0) \]

があつて、これがベクトルの群に拡張され、可測
の流れを作りたいと考える。

定理 8. “例 5 において、保測度換算 \(T_1 \leq I > 0 \)
がエルゴード的であるための十分条件として
(1) \(T_1 \) がエルゴード的で、\(\mu^* \) が \((0, \infty) \) 上の
Lebesgue 測度に対して絶対連続であるばあい
(2) \(T_1 \) が保測度混合型のばあい（\(\mu^* \) は任意）
(3) のばあいには \(T_1 \) は保測度混合型をなす”。

（証明） 安西善吉氏の定理（紙上談話講義）によれ
ば、\(T_1 \) がエルゴード的であつて、高々可積分の \(I \)
を除いて \(T_1 \) はすべてエルゴード的となり、\(T_1 \) が保
測度混合型であるばば、すべての \(I \) に対して \(T_1 \) は保測度
混合型となる。この結果を §2 の定理にあてはめればよ
い。

定理 8 は実際の定理順序において考察すると、面
白いことであるように思われる。

 пара エルゴード変換の保測度及び保連続に関して、更に
適當な議論に述べたいと思うが、今回はこれでまとめておく。

文 献

吉田耕作 [1]. エルゴード変換、数理会議, 15 報 (1939).

最尤推定値の独立性及びその自由度の関係について (2)

坂 元 平 八

統計数理研究所

(昭和 22 年 12 月 20 日受領)

(IV) 最尤推定値の独立性及びその自由度の関係
に就て（一部の場合）

(IV) 最尤推定値の独立性及びその自由度の関係
に就て（一部の場合）

次の様な有限性検定は正規同調の理論でよく起る問
題である \((y_1 + x_2, y_2, \ldots, y_n, a=1, 2, \ldots, n \geq k)

を分布法則 \(N \left(\sum_{p=1}^{k} a_p, \sigma^2 \right) \) なる母集団から取ら
れた大いさ \(n \) の標本とする。次の方程式 \(a_1, a_2, \cdots, a_n,

が何なる値をとるに際らず \(a_{r+1}, a_{r+2}, \cdots, a_k \)

(\(r < k \)) が夫々ある特定の値 \(a_{r+1}, a_{r+2}, \cdots, a_k \)

なる値を取るか否かという仮説を検定したい場合であ
る。この場合も第三節の如く

\[y = x + \theta + 3 \]

で示され、\(y \) は同時分布法則

\[\left(\frac{1}{\sqrt{2\pi}} \right)^n \exp \left\{ - \frac{1}{2\sigma^2} (y-x)^2 \right\} \frac{dy}{2} \]

で説明される。\(y \) は同時分布法則

\[P(y | x, \theta) = \left(\frac{1}{\sqrt{2\pi}} \right)^n \exp \left\{ - \frac{1}{2\sigma^2} (y-x)^2 \right\} \]

と置く事にする。ことに \(\theta = (\theta_1, \theta_2, \cdots, \theta_n) \) とす
る。\(y \) を \(\sigma > 0, -\infty < \theta < \infty, p=1, 2, \cdots, K \) なる

(\(K + 1 \)) 次元の母数空間とし \(\omega \) を \(a_1 = a, a_2 = a_2, \cdots, a_k = a_k \)

なる仮説を検定したい場合である。了る時 \(\theta \) が検定すべき仮説
であると思えば \(\theta \) は真の母数が \(\omega \) の部分空間 \(\omega \) に

の中に横にあるという仮説が適用される。\(\theta \) を検定する際

の尤度比 \(\lambda \) は

\[\lambda = \frac{\max \lambda (\theta, \omega, \sigma)}{\max \lambda (\theta, \omega, \sigma)} \]

で説明される。この尤度比を求めるに第四節両極値

で極大化することを示し、尤度比 \(\theta \) を計算すると

\[\theta = \left(X^2 - X^2 \right)^{-1} \theta \cdot \hat{\theta} = \left(X^2 - X^2 \right)^{-1} \theta \cdot \theta \]

\[\theta = \frac{1}{n} \left(\left(X - X^2 \right)^{-1} Y \right) \]

\[\theta = \frac{1}{n} \left(\left(X - X^2 \right)^{-1} Y \right) \]

\[\theta = \frac{1}{n} \left(\left(X - X^2 \right)^{-1} Y \right) \]

これより \(\lambda (\theta, \omega, \sigma) = \frac{\lambda (\theta, \omega, \sigma)}{\lambda (\theta, \omega, \sigma)} \) を得る。

尤度比 \(\theta \) の尤度比 \(\theta \) と最大になる母

関係を \(\theta \) とする。