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INTRODUCTION

The development of a robot for an artificial ecosys-
tem of agricultural production demands understanding 
and modeling an agricultural ecosystem.  Damoto et al. 
(2003) reported the Lotka–Volterra equations for the 
competitive relation between crop and weeds.  In this 
study, we will predict the populations of rice plants, and 
superior weeds (Tamagayatsuri (smallflower umbrella 
sedge), and Azena (smallflower umbrella sedge)) in 
paddy field by using models of interactions among three 
species on the agricultural ecosystem of the rice farming 
system in order to develop an intelligent robot which 
executes the tasks of control of weeds and snails in the 
paddy (Figure 1).  Complex ecosystems with many spe-
cies interacting with each other nonlinearly tend to 
exhibit chaotic dynamics (Keeling et al., 2002; Tuda and 
Shimada, 2005; Vano, et al., 2006). 

SPECIES IN COMPETITION IN THE 
AGRICULTURAL PRODUCTION ECOSYSTEM

Two species in competition: rice plants and weed 
The equations in our models for rice plants and 

weed are as follows

              =r1 N1(1–                      )  (1)
 

              =r2 N2(1–                      )  (2)
 

where, N1: density or biomass of rice plants, N2: density 
or biomass of weed, r1: intrinsic rate of rice plants, r2: 
intrinsic rate of weeds, α12: weeds to rice plants competi-
tion coefficient, α21: rice plants to weeds competition 
coefficient, K1: rice plants capacity and K2: weeds carry-
ing capacity. 

To understand the competition dynamics ecological-
ly we examine solutions at equilibrium analytically.  The 
way to accomplish this is to set the two equations equal 
to zero and solve both for N2 as a function of N1 (Gotelli, 
1998).  The results are two equations for straight lines.  
These straight lines are called isoclines (Equations 3 and 
4).  An isocline represents combinations of N1 and N2 for 
which there is no net increase or decrease in population 
growth for each species (because dN/dt=0.) Where the 
lines cross, growth rates are zero for both species.

N1 = K1 – α12 N2    (3)
 
N2 = K2 – α21 N1    (4)

Case 1: The rice plants isocline is above the weed iso-
cline.  In the region below of both of isoclines, the popu-
lations and biomasses of weed and rice plants both 
increase.  In the area of the chart between the two iso-
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Fig. 1.  Agricultural production ecosystem in paddy field.
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clines, the population of weed isoclines decreases where 
as population of rice plants increases.  The black circle at 
this point represents a stable equilibrium.  The conclu-
sion is that the population of weed declines to zero and 
rice plants increases to its carrying capacity (K1).  In this 
case rice plants have competitively excluded weed (Fig. 
2a).

Case 2: Weed isocline is above rice plants isocline.  
In the region below of both of isoclines, the populations 
and biomasses of rice plants and weed both increase.  In 
the area of the chart between the two isoclines, the pop-
ulations and biomasses of rice plants decrease whereas 
the populations and biomasses of weed continue to 
increase.  The result is that the populations and biomass-
es of rice plants decline to zero and weed increases to its 
carrying capacity (K2).  In this case the weed has com-
petitively excluded the rice plants (Fig. 2b).

Case 3: The isoclines of the rice plant and weed 
cross one another.  In this case the carrying capacity of 
rice plants (K1) is higher than the carrying capacity of 
weed divided by the competition coefficient (K2/α21), and 
the carrying capacity of weed (K2) is higher than the car-
rying capacity of rice plants divided by the competition 
coefficient (K1/α12).  In the area below both rice plants 
and weed isoclines and above both rice plants and weed 
isoclines the populations and biomasses increase or 
decrease as in the first two cases, and there is an unsta-
ble equilibrium point where the rice plants and weed iso-
clines intersect.  For the populations and biomasses 
above the weed isocline and below the rice plants iso-
cline, the result becomes same as in the first case: com-
petitive exclusion of weed by rice plants.  In the area 
above the rice plants isocline and below the weed iso-
cline, the result is the same as in the second case: com-
petitive exclusion of rice plant by weed.  The two stable 
equilibrium points are again represented by black cir-
cles.  In this case, the result will depend on the initial pop-
ulations or abundances of rice plants and weed (Fig. 2c). 

Case 4:  The isoclines cross one another, but in this 
case both rice plants and weed’ carrying capacities are 
lower than the other’s carrying capacity divided by the 

competition coefficient.  Again, below both rice plants 
and weed isoclines the populations increase and above 
both rice plants and weed isoclines the populations 
decrease.  In this case, however, when the populations 
and biomasses of the rice plants and weed are between 
the isoclines their vectors always head toward the inter-
section of the isoclines and two species are able to coex-
ist at this stable equilibrium point.  This is the result will 
not depend on the initial abundances (Fig. 2d). 

Jacobian Matrix for rice plants and weed 
If J(N1, N2) is a fixed point, we can use the equations 

1 and 2 when growth rates are zero and then construct a 
Jacobian matrix.

             =r1 N1(1–                      )  

0 = r1 N1 –               –    (5)
 
 
             =r2 N2(1–                      )  

0 = r2 N2 –               –    (6)

Then we define the system of differential equations 
using the equations 5 and 6.

J(N1 , N2 ) = [                                   ]
And we do linearization in order to find the Jacobian of 
the vector function of the nonlinear system.  We get the 
rendered general Jacobian matrix for rice plants and 
weed in competition as follows,

J(N1 , N2 ) = [                                                                        ]
      (7)

       
Using the isoclines of the equations 3 and 4, we can 
know the general stationary point P1 and P2 

P1 (K1 – α12 N2, K2 – α21 N1 )

P2 (                  ,                  )
 

We could analyze the stability of the system by 
trough the evaluation of the Jacobian matrix in each 

Fig. 2. State space graphs of the populations of rice plants and 
weed.
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fixed points and find the eigenvalues and eigenvectors.  
An eigenvalue of a square matrix is a scalar (λ) and the 
points attracted are negative eigenvalue and the points 
repelled are positive eigenvalues.  An eigenvector is an 
axis of attraction.  If the eigenvalues have negative real 
parts, the fixed point is asymptotically stable (attractor).  
If at least one eigenvalue has positive real part, the fixed 
point is unstable (repeller).  If eigenvalues are pure 
imaginery, the fixed point could be stable or unstable.

Three species in competition: rice plants and 
weeds (Tamagayatsuri and Azena) 

Lotka–Volterra–type competition models that involve 
three superior species (rice plants, Tamagayatsuri and 
Azena) will have the following equations:

Equation for population growth of rice plants.

             =r1 N1(1–                               )  (8)

Equation for population growth of Tamagayatsuri.

             =r2 N2(1–                               )  (9)

Equation for population growth of Azena.

             =r3 N3(1–                               )             (10)

where N1: density or biomass of rice plant biomass, N2: 
density or biomass of Tamagayatsuri, N3: density or bio-
mass of Azena, r1: intrinsic rate of rice plants, r2: intrinsic 
rate of Tamagayatsuri, r3: intrinsic rate of Azena, α12: 
Tamagayatsuri to rice plants competition coefficient, α13: 
Azena to rice plants competition coefficient, α21: rice 
plants to Tamagayatsuri competition coefficient, α23: 
Azena to Tamagayatsuri competition coefficient, α31: rice 
plants to Azena competition coefficient, α32: Tamagayatsuri 
to Azena competition coefficient, K1: rice plants carrying 
capacity, K2: Tamagayatsuri carrying capacity and K3: 
Azena carrying capacity.  The populations of the superi-
or weeds, Tamagayatsuri and Azena were 750 and 496, 
respectively in a lot of 50 m2 with a population of 750 
rice plants and practicing organic agriculture in Kyushu 
University Farm on August of 1996 (Table 1).  A chart 
with the three species (rice plants, Tamagayatsuri and 
Azena) in competition after transplanting on June 20th, 
2006, in an area of 50 m2 is presented in Fig.  3.  In order 
to make the chart, we coded and run a program in 
Matlab and solved the ordinary differential equation sys-
tem by the numerical method of Runge–Kutta.  The data 
considered were: r1 = 0.15, r2 = 0.20, r3 = 0.15, α12 = 0.06, 
α13 = 0.08, α21 = 0.06, α23 = 0.07, α31 = 0.08, α32 = 0.07, K1 = 
750, K2 = 500 and K3 = 200.  The initial conditions for the 
three superior species in the agricultural production 

ecosystem were as follows N1 = 750, N2 = 1 and N3 = 1.  
We can also see from the Fig. 3 that after 20 days after 
transplanting of rice seedlings, the populations of Azena 
and Tamagayatsuri and rice plants are increasing.  In the 
case of rice plants there is minor error due we used 
Lotka–Volterra to model the competition among them.  
The population of rice plants should be almost constant 
over the crop season.  The populations of the three spe-
cies in the same plot on July 30th, 2006 (forty days after 
transplanting) were as follows, N1 = 742, N2 = 476 and N3 
= 38 and the populations of three superior species 
became stable after 60 days after transplanting. 
The general isoclines for three species in competition 
are as follows.

Isocline 1.

N1 = K1 – α12N2 – α13N3                   (11)

Isocline 2.

N2 = K2 – α21N1 – α23N3                   (12)

Isocline 3.

N3 = K3 – α31N1 – α32N2           　　　          (13)

N1+α12N2+α13N3

K1

N2+α21N1+α23N3

K2

N3+α31N1+α32N2

K3

dN1

dt

dN2

dt

dN3

dt

Table 1. Results of researching on kind and population of 
superior weeds in lowland paddy field at Kyushu 
University farm on August 12th, 1996 

496   

0      

38 

0

a. Organic Agriculture
    Without chemicals
b. Habitual Practice
     (Herbicide)

Tamagayatsuri: smallflower umbrella sedge (Cyperus dif-
formis L.)
Azena: common false pimpernel (Lindernia procumbens 
(Krock.) Borbas → [Lindernia pyxidaria L.] )
The weeds were researched on August 12th, 1996 in an 
experimental site of 50 square meters.

Experiment Site  Tamagayatsuri Azena
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Fig. 4. Isoclines of the competition model among three species (rice plants, 
Tamagayatsuri and Azena)  

Fig. 3. Populations of three superior species in competition (rice plants, Tamagayatsuri and 
Azena) after transplanting of rice seedlings in a lot of 50 m2 in Kyushu University Farm on 
June 20th, 2006.  

Fig. 3. Populations of three superior species in competition (rice 
plants, Tamagayatsuri and Azena) after transplanting of 
rice seedlings in a lot of 50 m2 in Kyushu University Farm 
on June 20th, 2006. 
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The Fig. 4 shows us the three isoclines of the competi-
tion model among three superior species (rice plants, 
Tamagayatsuri and Azena).  In Lotka–Volterra model the 
three species have same populations and coexist in an 
equilibrium point, Pe in natural ecosystems.  However, in 
the agricultural production ecosystem of paddy, the 
period of the crop season is much shorter and farmers 
do several farm works such as: irrigation, remove of 
weeds and snails, so the Pe is not reached.  The Fig. 5 
shows the directions of vectors fields of the three spe-
cies in the competition model in the agricultural produc-
tion ecosystem of paddy.  A phase portrait between rice 
plants and Tamagayatsuri is showed in the Fig. 6, where-
as the Fig. 7 shows us a phase portrait among three spe-
cies in competition (rice plants, Tamagayatsuri and 
Azena).

Jacobian Matrix for rice plants, Tamagayatsuri and 
Azena 

If J(N1, N2, N3) is a fixed point, we can use the equa-
tions 8, 9, and 10 when growth rates are zero and then 
construct a Jacobian matrix.

             =r1 N1(1–                               ) 

0 = r1 N1 –               –     –              (14)

             =r2 N2(1–                               ) 

0 = r2 N2 –               –     –              (15)

             =r3 N3(1–                               ) 

0 = r3 N3 –               –     –              (16)

Then we define the system of differential equations 
using the equations 14, 15 and 16.

J(N1 , N2 , N3 ) = [                                                    ]
And we do linearization in order to find the Jacobian of 
the vector function of the nonlinear system.  We get the 
rendered general Jacobian matrix for three species in 
competition as follows,

J(N1 , N2  , N3 ) = [                                                                 ]
                  (17)

Fig. 4. Isoclines of the competition model between three species 
(rice plants, Tamagayatsuri and Azena). 
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Fig. 5. Directions of vector fields of the three species (rice plants, 
Tamagayatsuri and Azena) in competition model in the 
agricultural production ecosystem of paddy. 
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where 

a11 = r1  – 2        N1 –             N2 –             N3

b22 = r2  – 2        N2 –             N1 –             N3

c33 = r3  – 2        N3 –             N1 –             N2  
       
 
Using the isoclines of the equations 11, 12 and 13 we can 
make the general equation of the stationary points P1, P2 
and P3

P1 (K1 – α12 N2 – α13 N3 , K2 – α21 N1 – α23 N3, – α31 N1 – α32 N2 ) 
                  (18)

P2(                         ,                          ,                           )                        

                  (19)

P3(                         ,                          ,                           )                        

                  (20)

To analyze the stability of the agricultural production 
ecosystem, we should evaluate the Jacobian matrix for 
rice plants, Azena, and Tamagayatsuri in each fixed 
point and obtain the eigenvalues and eigenvectors.  The 
following is the analysis of the agricultural production 
ecosystem considering the stationary point P1 of the 
equation 18 and the Jacobian matrix of the equation 17

J(P1 ) = [                                    ]
where

a11 = r1  – 2        (K1 – α12 N2 – α13 N3 ) –           (K2 – α21 N1– α23 N3 )

          –           (K3 – α31 N1– α32 N2 )

a12 =            (K1 – α12 N2 – α13 N3 ) 

a13 =            (K1 – α12 N2 – α13 N3 ) 

b21 =            (K2 – α21 N1 – α23 N3 ) 

b22 = r2  – 2        (K2 – α21N1 – α23N3 ) –           (K1 – α12 N2– α13 N3 )

          –           (K3 – α31 N1– α32 N2 )

b23 =            (K3 – α31 N1 – α32 N2 ) 

c31 =            (K3 – α31 N1 – α32 N2 ) 

c32 =            (K3 – α31 N1 – α32 N2 ) 

c33 = r3  – 2        (K3 – α31N1 – α32N2 ) –            (K1 – α12 N2– α13 N3 )

          –           (K2 – α21 N1– α23 N3 )

The characteristic equation is given by 

det([A] – λ[I]) = 0

If [A] is a nxn matrix, then [X] ≠ 0 is an eigenvector of 
[A] if [A][X] = λ[X] where λ is a scalar and [X] ≠ 0.  The 
scalar λ is called the eigenvalue of [A] and [X] is called 
the eigenvector corresponding to the eigenvalue λ.

det [                                         ] = 0

det = A + B + C = 0

A = –λ3 +(a11 + b22 + c33)λ2 – (a11b22 + a11c33 + b22c33 – b23c32)λ 

      + a11b22c33 – a11b23c32

B = a12b12λ – a12b12c33 – a12b23c31

C = a13c31λ – a13b12c32 – a13b22c31

C = a13c31λ – a13b12c32 – a13b22c31

det = –λ3 +(k1)λ2 –(k2)λ + k3 = 0

where

k1 = a11 + b22 + c33

k2 = a12b12
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Fig. 7. Phase portrait between three species in competition (rice plants, 
Tamagayatsuri and Azena). Fig. 7. Phase portrait between three species in competition (rice 
plants, Tamagayatsuri and Azena).
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k3 = a11b22c33 – a11b23c32 – a12b12c33– a12b23c31– a13b12c32 – a13b22c31

We get the following equation

–λ3 +(k1)λ2 –(k2)λ + k3 = 0 　　　 　　　(21)

The equation 21 has three cubic roots, which are the 
eigenvalues.  If we also consider the following data: N1= 
742, N2= 1, N3= 1, r1= 0.15, r2= 0.2, r3= 0.15, a12= 0.06, 
a13= 0.08, a21= 0.06, a23= 0.07, a31= 0.08, a32=0.07, K1= 
750, K2= 500 and K3= 200, we can get the Jacobian 
Matrix as follows,

J(P1  ) = [                                                              ]
We evaluated the Jacobian matrix in the point P1 (750, 
455, 141) and got the following eigenvalues: λ1= –2.85, 
λ2= 0.18 and λ3= 0.89, therefore P1 is unstable. 

DISCUSSION 

The farm works such as: tillage, paddling, trans-
planting and irrigations produce different initial condi-
tions of the populations of rice plants and weeds such as 
Tamagayatsuri and Azena.  The models, as an integral 
part of the development of an intelligent robot for an 
agricultural production ecosystem, estimate quantita-
tively the populations or biomasses of superior species 
over the time of the crop season.  The prediction equa-
tions or models generated will be introduced into the 
memory of the agricultural production ecosystem robot 
in order to make decisions, in the different phases of the 
crop season, about the number of snails to be removed 
from paddy and we can change a harmful snail to a use-
ful mollusk eating the weeds which are a constraint of 
both conservation agriculture production and the bal-

ance preservation of the rice agricultural ecosystem. 

CONCLUSION 

The stability of the competition among these three 
superior plants of rice production ecosystem is predicted 
by through of the eigenvalues of fixed points considering 
different farm works or phases of paddy.  From our anal-
ysis of the competition among three superior plants (rice 
plants, Tamagayatsuri and Azena) without predation by 
golden apple snail, we can predict they coexist at a sta-
ble equilibrium point.  It means the system is not chaotic 
but stable.  The models generated will be introduced 
into the agricultural production ecosystem robot; there-
fore the robot can make decisions about the number of 
snails to remove from paddy.  It is also necessary to con-
sider factors, such as temperature, light and water depth 
dependency, which influences the snail’s activity.
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