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INTRODUCTION

The growth analysis of a ruminant animal has a 
mathematical aspect of investigation, because integral 
and differential operations of growth functions are con-
ducted in order to give analytic factors explaining how 
the ruminant animal grows.  It was six years ago when 
we noticed the flavor of basic growth mechanics from 
symmetric properties of the basic growth function in its 
differentiation (Shimojo et al., 2002b).  This basic growth 
function described using the exponential function with 
base e had already originated from the basic growth 
analysis of the ruminant (Brody, 1945).  By consulting a 
textbook on mechanics of motion (Kawabe, 2006), we 
have compared basic growth mechanics with Newton’s 
three laws of motion (Shimojo et al., 2006; Shimojo, 
2007a; Shimojo et al., 2007b, 2007c), which suggested 
an analogy between them.  In November 2007 at Nanjing 
Agricultural University (the People’s Republic of China), 
the first author of this paper talked about the suggested 
analogy on the translation into Chinese by the second 
author.  In that talking, we were asked to give more 
detailed explanation to the analogy between basic 
growth mechanics and laws of motion.  Our attempts so 
far show that there are things left unnoticed, lack of 
explanation, insufficient discussion and misunderstand-
ing about mathematical operations of basic growth func-
tion. 

The present study was designed to investigate math-
ematical properties of basic growth mechanics in rumi-
nant by introducing newly developed viewpoints into 
mathematical operations of basic growth function. 

MATHEMATICAL PROPERTIES OF BASIC 
GROWTH MECHANICS IN RUMINANT

In the present study mathematical operations are 
shown first, and then they are followed by their interpre-
tation from the viewpoint of ruminant agriculture. 

(A) Basic growth mechanics
Applying a series of calculations, mainly differentia-

tion, to basic growth analysis leads to basic growth 
mechanics. 

 
(1/W) · (dW/dt) = RGR,    (1)

where W = weight, t = time, RGR = relative growth rate. 
RGR in equation (1) takes positive, negative or zero 
value from the viewpoint of mathematics, unless what 
value RGR should take is designated. 

The indefinite integral of equation (1) and determin-
ing the integration constant gives 

 
W =W0 · exp(RGR · t),    (2)
 

where W0 = the weight at t = 0. 
The derivative of W gives absolute growth rate (AGR), 

 
dW/dt = AGR
          = RGR · W0 · exp(RGR · t).   (3)

The second derivative of W gives growth acceleration 
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(GA), 

d2W/dt2 = GA
              = (RGR)2 · W0 · exp(RGR · t).   (4)
 
Relating equations (2), (3) and (4) gives
 
                  =                    = RGR.   (5)

Thus, 
 
(dW/dt)2 =W · (d2W/dt2).    (6)

Equation (6) takes a form of differential equation that is 
essential to basic growth mechanics (Shimojo et al., 
2007c). 

The square root of equation (6) is given by 
 
dW/dt = ±   W · (d2W/dt2).   (7)

Inserting equations (2) and (4) into the right–hand side 
of equation (7) leads to

 
dW /dt=±  (W0·exp(RGR·t))·((RGR)2·W0·exp(RGR·t))

          =±  W0
2·(RGR)2·(exp(RGR·t))2

          =±(W0 )·(RGR)·(exp(RGR·t)).   (8)
 

In our previous report (Shimojo et al., 2006) positive 
and negative signs (±) were given to each of the first 
and second terms in the right–hand side of equation (8), 
because we assumed that the equation in which the third 
term was given signs was the same as the equation with 
the first term given signs.  In this paper, however, we 
will also give signs to the third term in order to investi-
gate what will occur mathematically.  

(B) Giving positive and negative signs to each of 
three terms in equation (8)

Signs to the first term is given by
 
dW/dt = (±W0) · (RGR) · (exp(RGR · t)). (9)

If equation (9) exists, then this requires the following 
modification of equation (2) in order to conserve the dif-
ferential principles, 

 
W = (±W0) · exp(RGR · t).              (10)

Equation (10) shows that wherever there is a positive 
weight (W0), there is a corresponding negative weight 
(–W0), a concept of energy conservation. 

Signs to the second term is given by
 
dW/dt = (W0) · (±RGR) · (exp(RGR · t)).           (11)

The contradiction observed in equation (11) will be cor-
rected by introducing equation (12), 

 
W =W0 · exp((±RGR) · t),               (12)

and thus its derivative gives
 
dW/dt = (W0) · (±RGR) · (exp(±RGR · t)).         (13)

Equation (12) shows that there is not only a positive 
rate of relative growth (RGR) but also a corresponding 
negative rate of relative growth (–RGR). 

Signs to the third term is given by

dW/dt = (W0) · (RGR) · (±exp(RGR · t)).           (14)

If equation (14) exists, then this requires modifying 
equation (2) as follows, 

 
W =W0 · (±exp(RGR · t)).               (15)

Equation (15) shows that wherever there is a gain 
[exp(RGR · t)], there is a corresponding loss [–exp(RGR · 
t)].  In the present report, we will pay attention to the 
difference between equations (15) and (10). 

(C) Equations derived from combining equations 
(10), (12) and (15)

Combining equations (10), (12) and (15) gives the 
following eight equations. 

 
W1 =W0 · exp(RGR · t),          (16–1)

−W1 = (−W0) · exp(RGR · t).          (16–2)

W2 =W0 · (−exp(RGR · t)),          (17–1)

−W2 = (−W0) · (−exp(RGR · t)).         (17–2)

W3 =W0 · exp((−RGR) · t),           (18–1)

−W3 = (−W0) · exp((−RGR) · t).          (18–2)

W4 =W0 · (−exp((−RGR) · t)),           (19–1)

−W4 = (−W0) · (−exp((−RGR) · t)).         (19–2) 
 

These include four more equations (17–1), (17–2), (19–1) 
and (19–2) in addition to those reported by Shimojo et 
al. (2006). 

(D) Interpreting relationships between equations 
(16–1) and (16–2)

Equations (16–1) and (16–2) form a symmetric pair 
(W1 versus –W1), an inseparable relationship from the 
mathematical viewpoint.  This phenomenon will be 
applied to the forage–based ruminant agriculture.  If W1 
in equation (16–1) shows the ruminant body weight, 
then –W1 in equation (16–2) is interpreted as the forage 
whose volume is expressed as the ruminant body weight 
(W1), not the actual weight of the forage.  The negative 
sign of –W1 shows the situation of the forage that is har-
vested from the field for the consumption by the rumi-
nant.  The phenomena over the interval t0 to t1 are given 
by

 
W1−W0 = increase in ruminant body weight,  (16–3)
−W1 − (−W0) 
    = forage consumption expressed as ruminant 
       body weight increase.          (16–4)
 

Introducing feed conversion ratio (FCR: the weight of 
the feed eaten divided by the body weight gain) into 
equation (16–4) gives the actual forage weight used to 
increase the ruminant body weight, 

 
 (−W1 − (−W0)) · (FCR)
    = actual forage weight used to increase ruminant 
        body weight.                                             (16–5)

Equation (16–3) and equation (16–4) are described 
mathematically on the positive side and the negative side 

dW/dt
W

d2W/dt2

dW/dt 

√

√

√
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of the same coordinate axes, respectively.  Therefore, 
there will be an interpretation from the viewpoint of 
ruminant agriculture that both the ruminant and the for-
age are related with the same field.  This is considered 
to be one of the mathematical proofs of field–forage–rumi-
nant relationships, an issue of importance to the self–
supporting ruminant agriculture.  In Japan, however, 
there are many cases where cattle are fed feeds import-
ed from foreign countries.  Might this feed import, if math-
ematically described, be related to translations along 
coordinate axes or coordinate planes? 

The analytic method taken in this paper to relate the 
ruminant with the forage is different from the two meth-
ods suggested by us previously, where the concept of 
intersection of ruminant production and forage produc-
tion was introduced (Shimojo et al., 2002a) and the 
complex representation using Euler’s formula was intro-
duced (Shimojo et al., 2003a, 2003b) in order to show 
field–forage–ruminant relationships. 

(E) Relationships between equations (17) and 
equations (16)

Although attention is paid to the difference between 
equations (17) and (16), equation (17–1) leads conse-
quently to the same form as that of equation (16–2), and 
likewise equation (17–2) leads to equation (16–1).  In 
these processes there are mathematical transformations: 
W0 → –W0 in the former case, –W0 → W0 in the latter 
case. They are mediated by

 
−exp(RGR · t).                (20)

It is the negative sign of equation (20) that gives mutual 
transformations between W0 and –W0.  In the forage–
based ruminant agriculture, components of the ruminant 
body (W0) are originally reduced to the forage (–W0), 
and the forage (–W0) is transformed into components of 
the ruminant body (W0).  Therefore, equation (20) plays 
an essential role in inseparable relationships between 
the ruminant and the forage. 

(F) Interpretation of equations (18) and (19)
Equations (18) and (19) are the case of the decrease 

in ruminant body weight and the corresponding forage 
consumption expressed as the ruminant body weight 
decrease. 

(G) Mathematical operation of time reversal prob-
lem

The main object of the present study is to investi-
gate how the negative sign is interpreted when given to 
various factors analyzing growth phenomena.  There is 
one more factor that will be given a negative sign, name-
ly time (t).  In this paper, the negative sign is given to t 
in both equations (16–1) and (18–1) in order to investi-
gate mathematical operations of the time reversal prob-
lem. 

 
W1 = W0 · exp(RGR · t),           (16–1)

1W =W0 · exp(RGR · (−t)).       (16–1–1)

W3 = W0 · exp((−RGR) · t),           (18–1)

3W = W0 · exp((−RGR) · (−t)).       (18–1–1)
 
The time reversal equations (16–1–1) and (18–1–1), 

since they are prohibited from appearing, should be cor-
rected in order to recover equations (16–1) and (18–1), 
respectively.  We will try to make RGR absorb the nega-
tive sign from –t in order to correct the time reversal 
problem.  Thus,

 

1W = W0 · exp(RGR · (−t))

      = W0 · exp((−RGR) · t),

and then, –RGR should also be corrected as follows to 
recover equation (16–1), 

 
W0 · exp((−RGR) · t)

　  → W0 · exp((−RGR) · t) · exp(2RGR · t)

                   = W0 · exp((−RGR + 2RGR) · t)

                   = W0 · exp(RGR · t)

                   = W1.           (16–1)
 

In the case of equation (18–1–1), likewise, recovering 
equation (18–1) requires the following mathematical 
operations, 

 
 3W = W0 · exp((−RGR) · (−t))

       = W0 · exp((−(−RGR)) · t)

       = W0 · exp(RGR · t)

　  → W0 · exp(RGR · t) · exp((−2RGR) · t)

                   = W0 · exp((RGR − 2RGR) · t)

                   = W0 · exp((−RGR) · t)

                   = W3.            (18–1)
 
These mathematical operations make us notice the 

following two phenomena that will occur.  On the recov-
ering way to equation (16–1) from equation (16–1–1) 
there occurs a calculation for correction (–RGR + 2RGR 
= RGR), a new introduction of 2RGR to absorb –RGR.  
This suggests a phenomenon that the ruminant body 
weight increases when the synthesis of body compo-
nents (2RGR) exceeds the degradation of them (–RGR).  
On the recovery way to equation (18–1) from equation 
(18–1–1) there is a corrective calculation (RGR – 2RGR 
= –RGR), where –2RGR is newly introduced in order to 
absorb RGR.  This suggests that there is a decrease in 
ruminant body weight when the degradation of body 
components (–2RGR) exceeds the synthesis of them 
(RGR).  However, these two estimates are far from the 
accuracy and might be slightly improved if modified as 
follows, 

 
−RGR + 2RGR = −α · RGR + β · RGR

     = (−α + β) · RGR

     = RGR,        (16–1–2)

where –α = degradation coefficient, β= synthesis coeffi-
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cient, –α +β = 1, α < β. 
 
RGR − 2RGR = γ · RGR − δ · RGR

                        = (γ − δ)RGR

                        = −RGR,        (18–1–2)
 

where γ = synthesis coefficient, –δ = degradation coeffi-
cient, γ – δ = –1, γ < δ. 

From the mathematical viewpoint, these phenomena 
result from conserving the form of basic growth function 
by correcting the time reversal problem.  However, these 
mathematical operations imply the metabolic turnover 
(Kleiber, 1975; Schmidt–Nielsen, 1984) of body compo-
nents of the ruminant, despite inappropriate approaches 
from the viewpoint of ruminant nutrition. 

(H) Dynamic equilibrium occurring in body weight 
when RGR = 0

In sections (A)〜(G) we have investigated mathe-
matical properties of basic growth mechanics in the case 
of RGR≠0.  In this section (H) we will investigate dynam-
ic equilibrium that occurs in body weight when RGR = 0. 

Equation (12) is used here instead of equation (10) 
for the simple investigation, and thus inserting RGR = 0 
into equation (12) gives 

 
W = W0 · exp((±RGR) · t)

    =W0 · (exp(0 · t))

    =W0 · 1

    =W0.                (21) 
 

Equation (21) shows that W0 is kept constant with the 
passage of time owing to RGR = 0.  However, this is an 
apparent phenomenon, because there is a feed consump-
tion by the ruminant even when its body weight is kept 
constant.  Therefore, what will occur when the ruminant 
eats nothing should be investigated.  If there is no feed 
consumption, then there is a decrease in body weight.  
The description of body weight decrease is given, for 
example, by –RGR as shown in equation (18–1), 

 
W3 = W0 · exp((−RGR) · t).            (18–1)

Correcting equation (18–1) to recover equation (21) 
requires the following mathematical operation, 

 
W3 = W0 · exp((−RGR) · t)

　  →W0 · exp((−RGR) · t)·exp(RGR · t)

                   = W0 · exp((−RGR + RGR) · t)

                   = W0 · exp(0 · t)

                   = W0               (21) 
 

On the recovering way to equation (21) from equation 
(18–1), there occurs a corrective calculation (–RGR + 
RGR = 0), where new RGR is introduced to absorb –RGR.  
This suggests that the body weigh is kept constant when 
the degradation of body components is compensated by 
the synthesis of them through feed consumption by the 
ruminant.  This estimate might be slightly improved by 

the following modification, 
 
 −RGR + RGR = −ε · RGR + ε · RGR

    = (−ε+ε) · RGR

    = 0,              (21-1)
 

where –ε = degradation coefficient, ε = synthesis coeffi-
cient, –ε + ε = 0. 

The present mathematical operation does not seem 
to be far from the nutritional approach, when compared 
with the case in section (G) in which correcting the time 
reversal problem implies relationships between degrada-
tion and synthesis of body components.  Compensating 
the degradation of body components by consuming main-
tenance requirements keeps the body weight constant 
under a dynamic equilibrium.  It is well known that the 
metabolic turnover of protein is of great importance to 
maintaining the homeostasis of animal body including its 
weight (Nagata, 2008). 

(I) Suggested analogies to laws of motion
We suggested in our previous report (Shimojo et al., 

2006) that there were analogies between basic growth 
mechanics and Newton’s three laws of motion.  In the 
present study, we will take up this issue again, because 
there are newly develped viewpoints in order to investi-
gate suggested analogies more deeply.  We choose the 
following four equations for basic growth mechanics that 
have been taken up in this paper. 

 
W = W0.                  (21)

(dW/dt)2=W · (d2W/dt2).   (6)

dW/dt = ± (W0) · (RGR) · (exp(RGR · t)). (8)

dW/dt = (±W0) · (RGR) · (exp(RGR · t)).  (9)
 
 

(I–1) Suggested analogy to the law of inertia
Equation (21) shows that the ruminant body weight 

will be kept constant with the passage of time under a 
dynamic equilibrium, as shown in section (H).  This 
apparent constant suggests an analogy to the law of iner-
tia, Newton’s first law of motion where an object will 
keep the linear motion with the constant velocity or will 
keep the state of rest if there is no external force acting 
on it (Kawabe, 2006).  However, the trouble with growth 
mechanics is that there is a dynamic equilibrium that 
hides behind the apparent constant body weight.  To tell 
the truth, therefore, this shows a conditional weak anal-
ogy to the law of inertia. 

(I–2) Suggested analogy to Newton’s equation of 
motion

Equation (6) shows that the product of body weight 
and growth acceleration gives the square of dW/dt.  
Mathematically speaking at the risk of making mistakes, 
the form of equation (6) seems to show a similarity to 
that of Newton’s equation of motion that is described as 
follows (Kawabe, 2006),

dp/dt = m · (d2r/dt2),               (22)
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where m = mass of an object, r = position, p = momen-
tum, t = time, d2r/dt2 = acceleration, dp/dt = force. 

The comparison of equation (6) with equation (22) 
suggests weak analogies between the two terms, respec-
tively.  Thus, 

 
W    and    m,                (23)

d2W/dt2    and    d2r/dt2,              (24)

(dW/dt)2    and    dp/dt.               (25) 
 

From comparing equations (6) and (22), (dW/dt)2 may 
be interpreted as growth force (Shimojo et al., 2006).  
Growth is absolutely different from motion, but the weak 
analogy between them suggested beyond the difference 
is a mystic phenomenon that is very difficult to under-
stand and explain.  However, this weak analogy is very 
important and the starting point for basic growth 
mechanics, from which other analogies are suggested. 

(I–3) Suggested analogy to the law of action and 
reaction

Equation (8) shows that dW/dt is considered to be a 
quasi–force of growth, because (dW/dt)2 is interpreted 
as growth force.  There are two quasi–forces forming a 
pair in equation (8), 

 
(dW/dt)1 = W0 · RGR · exp(RGR · t),            (8–1)

−(dW/dt)1 = −(W0 · RGR · exp(RGR · t)).         (8–2)
 

Therefore, the following equation is given by relating the 
two quasi–forces, 

 
(dW/dt)1 + (−(dW/dt)1) = 0.               (26)

From comparing (dW/dt)1 and –(dW/dt)1, they show the 
same horizontal component of t, but show the opposite 
vertical component of W.  The opposite vertical compo-
nent in basic growth mechanics suggests a conditional 
weak analogy to the law of action (F1→2) and reaction 
(F2→1), Newton’s third law of motion that is described as 
follows (Kawabe, 2006), 

 
F1→2 + F2→1 = 0.                (27)

(I–4) Might a conditional weak analogy to Newton’s 
law of universal gravitation be suggested?

Equation (9) is divided into two equations as fol-
lows, 

 
(dW/dt)R = W0 · RGR · exp(RGR · t),            (9–1)

(dW/dt)F = (−W0) · RGR · exp(RGR · t),           (9–2) 

where (dW/dt)R = quasi–force related to the ruminant, 
(dW/dt)F = quasi–force related to the forage. 

Multiplying equation (9–1) by equation (9–2) gives 
the following equation (28), where the product of (dW/
dt)R and (dW/dt)F may be interpreted as a force because 
of interpreting (dW/dt)2 as a force. 

(dW/dt)R · (dW/dt)F

  =(W0 · RGR · exp(RGR · t)) · ((−W0) · RGR · 
      exp(RGR · t))

  = RGR2 · (W0 · exp(RGR · t)) · ((−W0) · exp(RGR · t))

  = −(RGR2) · (W0 · exp(RGR · t)) · (W0 · exp(RGR · t)). 
                                                                               (28)
 

The mean value over the given interval is usually used, 
and thus equation (28) is modified as

(dW/dt)R · (dW/dt)F

= −(RGR)2 · (W0 · exp(RGR · t)) · (W0 · exp(RGR · t)). 
                                                                               (29)
 

Three terms in the right–hand side of equation (29) are 
interpreted as follows: (i) the first term (RGR)2 takes a 
value that is kept constant over the given interval, (ii) 
the second term is the ruminant body weight, (iii) the 
third term shows the forage whose volume is expressed 
as the ruminant body weight.  Mathematically speaking 
at the risk of making mistakes, the form of equation (29) 
seems to show a similarity to that of the numerator of 
Newton’s law of universal gravitation that is described as 
follows (Kawabe, 2006), 

 
F = –

   =                       ,                (30)

where G = gravitational constant, M = mass of one object, 
m = mass of the other object, r = the distance between 
the two objects, F = universal gravitation. 

The comparison of equation (29) with the numera-
tor of equation (30) suggests weak analogies between 
the two terms, respectively.  Thus, 

 
(RGR)2　and　G,                (31)

W0 · exp(RGR · t)　and　M,                (32)

W0 · exp(RGR · t)　and　m.                (33)

(dW/dt)R  · (dW/dt)F　and　F.               (34) 
 
From the suggested conditional weak analogy 

between equation (29) and the numerator of equation 
(30), equation (29) seems to show a virtual force of 
attracting that operates, with the intervention of con-
stant (RGR)2, between the ruminant and the forage.  
From the mathematical viewpoint as shown in equation 
(10), the ruminant and the forage are related to the 
same coordinate axes, therefore, equation (29) lacks the 
concept of distance between them.  This is absolutely dif-
ferent from equation (30), where the attracting force of 
universal gravitation is inversely proportional to the 
square of distance between the two objects. 

Based on the property of equation (29), both the 
ruminant and the forage belong to the same field or the 
farm.  However, if applied to the case of importing them, 
equation (29) will be extended to include a distance by 
introducing the movement of them.  This may be given 
mathematically by moving linearly the ruminant and the 
forage in order to make them meet each other at the 
same farm.  If the linear distance from the farm to the 
ruminant is shown by DR and the linear distance to the 

G · M · m
r2

–G · M · m
r2
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forage is shown by DF, then equation (29) is rewritten 
as, 

 
(dW/dt)R · (dW/dt)F

= −(RGR)2 · (W0 · exp(RGR · t)) · (W0 · exp(RGR · t))

= −                                                                                 .

                  (35)
 
Comparing the denominator of equation (35) with 

that of equation (30) suggests a weak analogy between 
the two terms as follows, 

 
DR · DF　and　r2.                 (36)

However, the numerator is different between the two 
equations because of the inclusion of distance in equa-
tion (35) and of equation (30) whose numerator does 
not include distance.  Equation (30) shows that the 
longer the distance between the two objects is, the 
weaker the force of universal gravitation is.  Equation 
(35) shows that the distance does not affect the virtual 
force of attracting owing to the cancellation of the term 
of distance between the numerator and the denomina-
tor.  If depended on imports in the ruminant agriculture, 
however, the farm is connected to the foreign country 
regardless of the length of the distance between them. 

The distance, DR and DF, in equation (35) may be 
replaced by the actual distance of transportation (ADTR 

and ADTF).  If this replacing is conducted, equation (35) 
is modified as, 

 
(dW/dt)R · (dW/dt)F

= −                                                                                 .

                  (37)

In equation (37), the following two terms imply the con-
cept of food–mileage that is given by the product of 
transported food volume and its transportation distance 
(Nakata, 2007).  Thus, 

 
ADTR · (W0 · exp(RGR · t))   
     implies food – mileage for the ruminant,        (38)

ADTF · (W0 · exp(RGR · t)) 
     implies food – mileage for the forage.             (39)

(K) Conclusions
It is suggested from the present study that the inves-

tigation into mathematical properties of basic growth 
mechanics gives conditional weak analogies to laws of 
motion developed by Newton.
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