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SOME TOPICS RELATED TO HURWITZ-LERCH ZETA FUNCTIONS

TAKASHI NAKAMURA

Abstract. In this paper, we consider multiplication formulas and their inversion for-
mulas for Hurwitz-Lerch zeta functions. Inversion formulas give simple proofs of known
results, and also show generalizations of those results. Next, we give a generalization
of digamma and gamma functions in terms of Hurwitz-Lerch zeta functions, and con-
sider its properties. In all the sections, various kinds of results are always proved by
multiplication formulas and inversion formulas.

1. Introduction

Definition 1.1 ([3, p.27, (1)]). We define Hurwitz-Lerch zeta functions by

(1.1) Φ(z, s, a) :=
∞∑
n=0

zn

(n+ a)s
, z ∈ C, |z| < 1, a 6= 0,−1,−2, . . . , s ∈ C.

The function Φ(z, s, a) was defined by Erdélyi et al in [3] originally. We put

C1 := C \ [1,+∞) , C2 := {a ; < (a) > 0} , C3 := C \ {0,−1,−2, . . .}.
In [4, p.5 Theorem 1], the function Φ(z, s, a) is extended to an analytic function in three
variables z, s, a for

a ∈ C2, z ∈ C1, and

s ∈ C or s ∈ C \ {1} according to z 6= 1 or z = 1,

by the contour integral representation

Φ(z, s, a) = −Γ(1− s)
2πi

∫ (+0)

∞

(−t)s−1e−at

1− ze−t
dt, a ∈ C2, | arg(−t)| ≤ π.

The contour starts at ∞, encircles the origin once counter-clockwise and returns to its
starting point. The initial and final values of arg(−t) are −π and π respectively.

In Section 2, we consider a multiplication formula in Theorem 2.1 and an inversion
formula in Theorem 2.2. And by that inversion formula, we can give a simple proof of a
known result, and also show generalizations of the result. We give a simple proof of

(1.2) ζ(2, k/m) =
π2

sin2 πk/m
+ 2m

[(m−1)/2]∑
n=1

sin(2πkn/m) Cl2(2πn/m),

([7, p.358, (16.23)]), where Cl2(θ) is the Clausen integral defined by (2.9). And we obtain
formula (2.8), which is a generalization of (1.2).

In Section 3, by using the inversion formula we can show in Theorem 3.1 that Φ(z, 1, l/m)
is transcendental if m ∈ N, l = 1, 2, . . .m, z is algebraic, |z| ≤ 1, z 6= 1, which is a general-
ization of Uchiyama’s result [10]. We consider Φr(z, 1, l/m), which is a multiple analogue
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of Φ(z, 1, l/m). In Theorem 3.3, we show that Φr(z, 1, l/m) is transcendental if z is alge-
braic, |z| < 1, z 6= 1.

In Section 4, we treat Hurwitz-Lerch Bernoulli functions. By multiplication formulas,
we can give a simple proof of

(1.3) m1−NBN(mx) =
m−1∑
j=0

BN(x+ j/m)

([3, p.37, (11)]), where BN(x) is the Bernoulli function defined by (4.6). We can show
interesting formulas (4.5) and (4.9) which seem to be new by the inversion formula.

In Section 5 we introduce ψ(a, z) which is a generalization of digamma functions by
using Hurwitz-Lerch zeta functions, and consider its properties. In Theorem 5.4, we can
show that if z is algebraic, |z| ≤ 1, z 6= 1, then ψΦ(l/m, z) is transcendental. By the
multiplication formula, we can give a simple proof of

(1.4) ψ(ma) = logm+
1

m

m−1∑
j=0

ψ(a+ j/m)

([3, p.16, (12)]), where ψ(a) is the digamma function defined by (5.1). Let γ := −ψ(1)
be the Euler constant. Inversion formulas give a simple proof of

(1.5) ψ(l/m) = −γ − logm− π

2
cot(πl/m) +

m−1∑
n=1

cos(2πln/m) log (2 sinnπ/m)

([3, p.19, (29)]). We have interesting formulas (5.14) and (5.15), which are generalizations
of Gauss’ first formula (1.5), by inversion formulas. At the end of this section, we show
(5.16) which is a generalization of Gauss’ second formula (5.17).

In Section 6, we generalize the notion of gamma functions by using Hurwitz-Lerch
zeta functions, and consider its properties in Theorem 6.4. At the end of this paper, we
evaluate a special value of generalized gamma functions.

In all sections, various kinds of results are always proved by multiplication formulas
and inversion formulas.

2. Multiplication and inversion formulas

Firstly, we quote the multiplication formula for Hurwitz-Lerch zeta functions. If a, s
and z satisfy the conditions

0 < a, z ∈ C1, −π < arg z ≤ π, and

s ∈ C or s ∈ C \ {1} according to zm 6= 1 or zm = 1,
(2.1)

we write (z, s, a) ∈ D1.

Theorem 2.1 (The multiplication formula [9, p.339, (15)]). If (z, s, a) ∈ D1, m ∈ N,
then we have

(2.2) Φ(z, s,ma) = m−s
m−1∑
j=0

zjΦ (zm, s, a+ j/m) .
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Proof. We give a proof for the convenience of readers. It is easy to see that

∞∑
n=0

zn

(n+ma)s
=

m−1∑
j=0

∞∑
n=0

zmn+j

(mn+ma+ j)s
.

We can get (2.2) by the above equation. �

In this paper we prove the following inversion formula. If a, s and z satisfy the conditions

0 < a, z ∈ C1, −π/m < arg z1/m ≤ π/m, and

s ∈ C or s ∈ C \ {1} according to z 6= 1 or z = 1
(2.3)

we write (z, s, a) ∈ D2. Let i =
√
−1, and

ωjm = exp(2πij/m), j ∈ N, 0 ≤ j ≤ m− 1.

Theorem 2.2 (The inversion formula). If (z, s, a) ∈ D2, m ∈ N, then we have

(2.4) Φ
(
z, s, (a+ j)/m

)
= ms−1z−j/m

m−1∑
n=0

ω−jnm Φ
(
ωnmz

1/m, s, a
)
.

Proof. If J ∈ N, we have

m−1∑
n=0

(
ωjm
)n

(ωnm)J =

{
m j + J ≡ 0 mod m,

0 otherwise.

From this formula, we have

m−1

m−1∑
n=0

ω−jnm

∞∑
h=0

ωnhm zh/m

(h+ a)s
=
∞∑
h=0

z(mh+j)/m

(mh+ a+ j)s
.

We obtain (2.4) by the above equation. �

If (z, s) ∈ D1, we define Lis(z) by

(2.5) Lis(z) :=
∞∑
n=1

zn

ns
= zΦ(z, s, 1).

We have the next corollary.

Corollary 2.3 (The fraction formula, the rational number formula).

(2.6) Φ(z, s, a/m) = ms−1

m−1∑
n=0

Φ
(
ωnmz

1/m, s, a
)
,

(2.7) Φ(z, s, l/m) = ms−1z−l/m
m−1∑
n=0

ω−lnm Lis
(
ωnmz

1/m
)
.

Proof. We have the fraction formula (2.6) by putting j = 0 in (2.4). Taking a = 1,
j + 1 = l, l = 1, 2, . . .m in (2.4), we have the rational number formula (2.7). �
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By putting z1/m = 1 in (2.7), we have

(2.8) ζ(s, l/m) = ms−1

m−1∑
n=0

ω−lnm Lis (ωnm) .

If s = k ∈ N in (2.5), it is called the k-th polylogarithm. By the definition of Li2, we have

Li2
(
eiθ
)

=
∞∑
n=1

cosnθ

n2
+ i

∞∑
n=1

sinnθ

n2
, 0 ≤ θ < 2π.

Here we recall the Clausen integral defined by

(2.9) Cl2(θ) :=
∞∑
n=1

sinnθ

n2
= −

∫ θ

0

log
(
2 sin (θ/2)

)
dθ.

In [6, p.105, (4.22)], the formula

Cl2(θ) + Cl2(2π − θ) = 0

is stated. Putting s = 2 in (2.8) and using the formulas
∞∑
n=1

cosnθ

n2
=
π2

6
− θ(2π − θ)

4
, ζ(2, x) + ζ(2, 1− x) =

π2

sin2 πx
,

we obtain (1.2). In [7, pp.357-358], it was proved by using the integral

ζ(2, l/m) =

∫ 1

0

m2yl−1 log y

1− ym
dy.

Therefore, the above proof of (1.2) is apparently new. In order to obtain equations similar
to (1.2) by Lewin’s method, we have to find some integral representation of ζ(s, l/m),
which seems to be difficult. But by using inversion formulas, we can obtain formula (2.8),
which is the equation similar to (1.2).

3. Applications in the theory of transcendental numbers

In this section, we consider the case of Φ(z, s, a) at s = 1. If |z| ≤ 1, z 6= 1, we have

(3.1) Li1(z) =
∞∑
n=1

zn

n
= − log(1− z).

If we put s = 1 in (2.7), we have

(3.2) Φ(z, 1, l/m) = −z−l/m
m−1∑
n=0

ω−lnm log
(
1− ωnmz1/m

)
.

From this formula, we obtain the following theorem.

Theorem 3.1. If z is algebraic, |z| ≤ 1, z 6= 1, then Φ(z, 1, l/m) is transcendental.

Proof. If z = −1, this has been proved by Saburo Uchiyama in [10]. By termwise integra-
tion, we can obtain

(3.3) Φ(z, 1, a) =

∫ 1

0

∞∑
n=0

zntn+a−1dt =

∫ 1

0

ta−1

1− zt
dt, 0 < a ≤ 1.

This can be justified by Abel’s theorem. Because of <(1−zt) > 0, ta−1 > 0, for all 0 < t <
1, we have Φ(z, 1, l/m) 6= 0. Since (1−ωnmz1/m) and ωnm are algebraic, according to Baker’s
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theorem [2, p.11, Theorem 2.2] and (3.2), we obtain that Φ(z, 1, l/m) is transcendental.
�

If we reform the method introduced in [10], the argument is as follows. Consider

Φ(z, 1, l/m) =

∫ 1

0

tl/m−1

1− zt
dt = m

∫ 1

0

ul−1

1− zum
du.

Then 1− zum has simple roots α1, α2, . . . , αm. Therefore the right-hand side becomes
m∑
n=1

γn
u− αn

,

where αn, γn are algebraic. According to Baker’s theorem we obtain the same result.
Inversion formulas simplify the argument, because to determine γn is not easy.

Next we generalize this result. Let r ∈ N, s ∈ C, |z| < 1, 0 < a and we define Φr(z, s, a)
by

(3.4) Φr(z, s, a) :=
∞∑

n1,n2,...,nr=0

zn1+n2+···+nr

(n1 + n2 + · · ·+ nr + a)s
.

It is easy to see that Φr(z, s, a) is expressed as

Φr(z, s, a) =
∞∑
n=0

(
n+ r − 1

r − 1

)
zn

(n+ a)s
.

We show that Φr(z, s, a) is a sum of Φ(z, s, a) and its derivatives.

Proposition 3.2. We have

(3.5) Φr(z, s, a) =
1

(r − 1)!

∂r−1

∂zr−1

(
zr−1Φ(z, s, a)

)
.

Proof. We evaluate the right-hand side of (3.5). We have

1

(r − 1)!

∂r−1

∂zr−1

(
zr−1Φ(z, s, a)

)
=

1

(r − 1)!

∂r−1

∂zr−1

∞∑
n=0

zn+r−1

(n+ a)s
=
∞∑
n=0

(
n+ r − 1

r − 1

)
zn

(n+ a)s
.

�

By this proposition, we can obtain the following theorem.

Theorem 3.3. If z is algebraic, |z| < 1, r ≥ 2, then Φr(z, 1, l/m) is transcendental.

Proof. If r = 2, we have
∞∑

n1,n2=0

zn1+n2

n1 + n2 + l/m
=

∂

∂z

(
zΦ(z, 1, l/m)

)
= (l/m− 1)z−l/m

m∑
n=1

ω−lnm log
(
1− ωnmz1/m

)
+
z(1−l)/m

m

m∑
n=1

ω
(1−l)n
m

1− ωnmz1/m
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by (3.2) and Proposition 3.2. Similarly, if r ≥ 3, we can obtain

Φr(z, 1, l/m) =
l/m− r + 1

(r − 1)!
zr−1−l/m

m∑
n=1

ω−lnm log
(
1− ωnmz1/m

)
+
(
a fractional expression in ωnm and z1/m

)(3.6)

by (3.2) and Proposition 3.2. We see that the first term on the right-hand side is not equal
to 0 by the argument similar to the proof of Theorem 3.1. The “fractional expression”
part of the right-hand side is an algebraic number. Therefore we obtain that Φr(z, 1, l/m)
is transcendental by Baker’s theorem. �

We give another proof of Theorem 3.3. This method can determine the fractional
expression on ωnm and z1/m on the right-hand side of (3.6). Let s(n, r) be Stirling numbers
of the first kind which are defined by

x(x− 1) · · · (x− n+ 1) =
n∑
r=0

s(n, r)xr.

We define pr,n(x) by

pr,n(x) :=
1

(r − 1)!

r−1∑
k=n

(−1)r+1−n
(
k

n

)
s(r, k + 1)xk−n.

By reforming the proof of [9, p.86, (21)] we have

(3.7) Φr(z, s, a) =
1

(r − 1)!

r−1∑
n=0

pr,n(a) Φ(z, s− n, a).

Let S(n, r) be Stirling numbers of the second kind, which are defined by

xn =
n∑
r=0

S(n, r)x(x− 1) · · · (x− r + 1).

The following formula has been showed in [4, p.14, Theorem 6]

(3.8) Φ(z,−N, a) =
N∑
r=0

N∑
n=r

(
N

n

)
r! zraN−nS(n, r)

(1− z)r+1
, N = 0, 1, 2 . . . .

Taking s = 1 in (3.7) and using (3.8), we can determine the fractional expression in ωnm
and z1/m on the right-hand side of (3.6).

4. Hurwitz-Lerch Bernoulli functions

In this section, we study Hurwitz-Lerch Bernoulli functions BN(a, z). By (4.3) below, it
is known that the right-hand side of (3.8) is related to Hurwitz-Lerch Bernoulli functions.
They are already included in [1], [4] and [9], hence we may call them Apostol-Bernoulli
functions.

Definition 4.1 ([9, p.126, (41)]). If |z| ≤ 1, z 6= 1, N = 0, 1, 2, . . ., 0 ≤ a, we define
Hurwitz-Lerch Bernoulli functions by

(4.1)
teat

zet − 1
=

∞∑
N=0

BN(a, z)
tN

N !
, |t+ log z| < 2π.
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We define Hurwitz-Lerch Bernoulli numbers by

(4.2) BN(z) := BN(0, z).

In [9, p.126, (40)] there is the formula

(4.3) BN+1(a, z) = −(N + 1)Φ(z,−N, a), 0 < a.

The following multiplication formula and the inversion formula for BN(a, z) are direct
consequences of Theorem 2.1 and Theorem 2.2.

Theorem 4.2. If zm 6= 1, we have the multiplication formula

(4.4) BN(ma, z) = m1−N
m−1∑
j=0

zjBN(a+ j/m, zm).

If z 6= 1, we have the inversion formula

(4.5) BN
(
(a+ j)/m, z

)
= m−Nz−j/m

m−1∑
j=0

ω−jnm BN
(
a+ j/m, ωnmz

1/m
)
.

Proof. We get (4.4), (4.5) by (3.8) and putting s = 1−N in (2.2) and (2.4). �

We recall Bernoulli functions defined by

(4.6)
teat

et − 1
=

∞∑
N=0

BN(a)
tN

N !
, |t| < 2π.

The number BN := BN(0) are called Bernoulli numbers. The formula

(4.7) BN+1(a) = −(N + 1)ζ(−N, a), 0 < a

is stated in [9, p.85, (17)]. We get (1.3) by this difinition and (2.2). If k = 1, 2 . . .m− 1,
we have the next theorem.

Theorem 4.3 (Relations between Hurwitz-Lerch-Bernoulli functions and
Bernoulli functions).

(4.8) BN(a, ωkm) = m1−N
m−1∑
j=0

ωkjmBN(a+ j/m),

(4.9) BN

(
(a+ j)/m

)
−m−NBN(a) = m−N

m−1∑
n=1

ω−jnm BN(a, ωnm).

Proof. We have (4.8) by putting s = 1 − N , z = ωkm in (2.2). We have (4.9) by putting
s = 1−N , z = 1 in (2.4). �

Using (3.8) and taking a = 1 in (4.9), we have the rational number formula

(4.10) BN(l/m) = m−NBN(1)− N

mN

m−1∑
h=1

N−1∑
r=0

N−1∑
n=r

(
N − 1

n

)
r!ω

(r−j)h
m S(n, r)

(1− ωhm)r+1
.

Formula (4.10) should be compared with the formulas

B2N−1(l/m) = (−1)N
2(2N − 1)!

(2mπ)2N−1

N∑
n=1

ζ(2N − 1, n/m) sin(2πln/m), N 6= 1,
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B2N(l/m) = (−1)N−1 2(2N)!

(2mπ)2N

N∑
n=1

ζ(2N, n/m) cos(2πln/m), N 6= 0

([9, p.336 Theorem 6.2]). They are proved by the known formula

BN(x) =
2 ·N !

(2π)N

∞∑
n=1

1

nN
cos(2πnx− πN/2), N 6= 0, 1, 0 ≤ x ≤ 1,

and the multiplication formula (2.2) in [9, p.337, (8)].

5. Hurwitz-Lerch digamma functions

The values of Φ(z, s, a) at s = −N are considered as Hurwitz-Lerch-Bernoulli functions
in the preceding section. In this section we consider the case of s = 1. The function
ζ(s, a) has a simple pole at s = 1. But Φ(z, s, a) does not have a pole at s = 1, if |z| ≤ 1,
z 6= 1. Therefore it is easier to treat. We put S = {z ; |z| ≤ 1}. Using Φ(z, 1, a), we
define the following generalization of digamma functions ψ(a) which are defined by

(5.1) ψ(a) := lim
N→∞

(
log(N + 1)−

N∑
n=0

1

n+ a

)
.

Definition 5.1. If 0 < a, |z| ≤ 1, we define Hurwitz-Lerch digamma functions by

(5.2) ψΦ(a, z) :=


− log(1− z)− Φ(z, 1, a) z ∈ S \ [0, 1],

lim
N→∞

(
log

( N∑
n=0

zn
)
−

N∑
n=0

zn

n+ a

)
0 ≤ z ≤ 1.

If 0 < z < 1, we have

lim
N→∞

(
log

( N∑
n=0

zn
)
−

N∑
n=0

zn

n+ a

)
= − log(1− z)− Φ(z, 1, a).

By Abel’s theorem, when z ↑ 1 on the real axis, we have

lim
z↑1

lim
N→∞

(
log

( N∑
n=0

zn
)
−

N∑
n=0

zn

n+ a

)
= lim

N→∞

(
log(N + 1)−

N∑
n=0

1

n+ a

)
= ψ(a).

Therefore we can write

(5.3) ψΦ(a, z) =

{
− log(1− z)− Φ(z, 1, a) z ∈ S \ {1},
ψ(a) z = 1.

Here we show other representations of Hurwitz-Lerch digamma functions ψΦ(a, z) in
the case of z 6= 1. By (2.5), (3.1) and (5.3), we have

(5.4) ψΦ(a, z) = zΦ(z, 1, 1)− Φ(z, 1, a).

By (3.3) and (5.4), we obtain

(5.5) ψΦ(a, z) =

∫ 1

0

z − ta−1

1− zt
dt.

Recall Pochhammer’s symbol

(λ)0 := 1 , (λ)n := λ(λ+ 1) · · · (λ+ n) n = 1, 2, 3, . . .



SOME TOPICS RELATED TO HURWITZ-LERCH ZETA FUNCTIONS 9

for λ ∈ C, and Gauss’ hypergeometric series

F (a, b ; c : z) :=
∞∑
n=0

(a)n(b)n
(c)n

zn

n!

for a, b ∈ C, c ∈ C3. Using these symbols, Hurwitz-Lerch digamma functions ψΦ(a, z) are
written by

ψΦ(a, z) = − log(1− z)− a−1F (1, a ; a+ 1 : z)

= zF (1, 2 ; 2 : z)− a−1F (1, a ; a+ 1 : z).

Now we consider properties of Hurwitz-Lerch digamma functions.

Theorem 5.2 (The integral representation, the asymptotic expansion). If |z| ≤ 1, z 6= 1,
0 < a, we have

(5.6) ψΦ(a, z) =

∫ ∞
0

e(z−1)t − e−t

t
dt−

∫ ∞
0

e−at

1− ze−t
dt.

(5.7) ψΦ(a, z) = − log(1− z)−
M∑
n=1

Bn(z)

n
(−a)−n +O(a−M−1).

Proof. Using

− log(1− z) = −
∫ ∞

0

e−t − e−(1−z)t

t
dt

and putting x = e−t in (3.3), we have (5.6). By

−
∫ ∞

0

e−at

1− ze−t
dt =

∫ ∞
0

−t
ze−t − 1

e−at

−t
dt, n! =

∫ ∞
0

tne−tdt,

(4.1), (5.6) and B0(z) = 0, which is in [9, p.127, (46)], we have

(5.8) ψΦ(a, z) ∼ − log(1− z)−
∞∑
n=1

Bn(z)

n
(−a)−n.

This formula implies (5.7). �

Theorem 5.3. If |z| ≤ 1, zm 6= 1, we have the multiplication formula

(5.9) ψΦ(ma, z) + log(1− z) =
1

m

m−1∑
j=0

zj
(
ψΦ(a+ j/m, zm) + log(1− zm)

)
.

If |z| ≤ 1, z 6= 1, we have the inversion formula

ψΦ

(
(a+ j)/m, z

)
+ log(1− z)

= z−j/m
m−1∑
n=0

ω−jnm

(
ψΦ

(
a, ωnmz

1/m
)

+ log
(
1− ωnmz1/m

))
.

(5.10)

Proof. We have (5.9) by using the definition of ψΦ(a, z) and putting s = 1 in (2.2). We
have (5.10) by using the definition of ψΦ(a, z) and putting s = 1 in (2.4). �
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By putting j = 0 in (5.10) we have the fraction formula

ψΦ(a/m, z) + log(1− z) = z−j/m
m−1∑
n=0

(
ψΦ

(
a, ωnmz

1/m
)

+ log
(
1− ωnmz1/m

))
.

Using the definition of ψΦ(a, z) and putting a = 1, j+1 = l in (5.10), we have the rational
number formula

(5.11) ψΦ(l/m, z) = − log(1− z) + z−l/m
m−1∑
n=0

ω−lnm log
(
1− ωnmz1/m

)
.

In [5, p.937] the q-Euler constant is defined by

γ(q) :=
(q − 1) log(q − 1)

log q
+ (q − 1)

∞∑
n=1

1

qn − 1
− q − 1

2
,

and it is shown in [5, p.938, Theorem 2.4] that if q ≥ 2 is an integer, then

γ(q)− (q − 1) log(q − 1)

log q

is an irrational number. Therefore here we consider ψΦ(l/m, z).

Theorem 5.4. If z is algebraic, |z| ≤ 1, z 6= 1, then ψΦ(l/m, z) is transcendental.
Especially, the Hurwitz-Lerch Euler constant −ψΦ(1, z) is transcendental if z is algebraic,
|z| ≤ 1, z 6= 1.

Proof. We obtain ψΦ(l/m, z) 6= 0 by (5.5) and inequalities

z − ta−1

1− zt
=

(z − ta−1)(1− z̄t)
|1− zt|2

,

<
(
(z − ta−1)(1− zt)

)
< 0, 0 < a ≤ 1, 0 < t < 1.

According to Baker’s theorem and (5.11), ψΦ(l/m, z) is transcendental. �

When k = 1, 2 . . .m− 1, we have the next theorem.

Theorem 5.5 (Relations between Hurwitz-Lerch digamma functions and
digamma functions).

(5.12) ψΦ

(
ma, ωkm

)
=

1

m

m−1∑
j=0

ωkjmψ(a+ j/m)− log
(
1− ωkm

)
,

ψ
(
(a+ j)/m

)
− ψ(a) + logm =

m−1∑
n=1

ω−jnm

(
ψΦ (a, ωnm) + log (1− ωnm)

)
.(5.13)

Proof. We have (5.12) by putting z = λωkm (0 < λ < 1) and taking λ ↑ 1 in (5.9), and

lim
z→ωk

m

m−1∑
j=0

zj log (1− zm) = lim
z→ωk

m

zm − 1

z − 1
log (1− zm) = 0.

We have (5.13) by letting z ↑ 1 on the real axis in (5.10) and

lim
z↑1

(
− log(1− z) + log(1− z1/m)

)
= − logm.

�
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Corollary 5.6 (The inversion formula, the fraction formula).

(5.14) ψ
(
(a+ j)/m

)
= − logm+ ψ(a)−

m−1∑
n=1

ω−jnm Φ (ωnm1, a) ,

(5.15) ψ(a/m) =
m−1∑
n=0

ψΦ (a, ωnm) = − logm+ ψ(a)−
m−1∑
n=1

Φ(ωnm1, a).

Proof. We have the inversion formula (5.14) by the definiton of ψΦ (ωnm, a) and (5.13).
The first equality of the fraction formula (5.15) is proved by putting j = 0 in (5.13), and

m = lim
x→1

1− xm

1− x
= lim

x→1

m−1∏
n=1

(1− xωnm) =
m−1∏
n=1

(1− ωnm).

We have the second equality of (5.15) by putting j = 0 in (5.14). �

Now we prove (1.4) and (1.5). By letting z ↑ 1 on the real axis and

lim
z↑1

(
− log(1− z) +

1

m

m−1∑
j=0

zj log(1− zm)

)
= logm,

we have (1.4). If k = 1, 2, . . .m− 1, we have

log(1− ωkm) = log(2 sinπ/m) + i (πk/m− π/2) ,

iπ

(
1

2
+

1

ωkm − 1

)
=
π

2
cot(πk/m),

m−1∑
n=1

ωknm = −1,
m−1∑
n=1

nωknm =
m

ωknm − 1
.

By using γ = −ψ(1), (3.1) and putting a = 1, j + 1 = l, l = 1, 2, . . .m in (5.14), we have
Gauss’ formula (1.5). Therefore (5.14) is a generalization of (1.5). Using the definition of
ψΦ(ma, ωkm) and replacing a by a/m in (5.12), we have

(5.16) Φ
(
ωkm, 1, a

)
= − 1

m

m−1∑
j=0

ωkjmψ
(
(a+ j)/m

)
.

Putting a = 1 in (5.16), we have Gauss’ second formula [9, pp.19, (49)]

(5.17)
m∑
n=1

ωknm ψ(n/m) = m log
(
1− ωkm

)
.

6. Hurwitz-Lerch gamma functions

In the preceding section we consider Hurwitz-Lerch digamma functions. It is natural
that we define the following generalization of gamma functions by using Hurwitz-Lerch
digamma functions. In many books, for example [3], [9], and [11], the gamma function is
defined before the definition of the digamma function. In this paper, the order is reversed.

Definition 6.1. If |z| ≤ 1, 0 < a, we define Hurwitz-Lerch gamma functions by

(6.1) log ΓΦ(a, z) :=

∫ a

1

ψΦ(x, z) dx.
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Letting z ↑ 1 on the real axis we have

lim
z↑1

∫ a

1

ψΦ(x, z) dx =

∫ a

1

ψ(x) dx = log Γ(a)

by Abel’s theorem. Therefore Hurwitz-Lerch gamma functions are generalizations of the
gamma function.

Theorem 6.2 (The infinite product, Lerch’s formula). If |z| ≤ 1, z 6= 1, 0 < a, we have

(6.2) ΓΦ(a, z) = (1− z)1−a
∞∏
n=0

(
n+ 1

n+ a

)zn

,

(6.3) log ΓΦ(a, z) =
∂

∂s
Φ(z, 0, a)− ∂

∂s
Φ(z, 0, 1)− (a− 1) log(1− z).

Proof. By the uniformity of the convergence, we have

(6.4) log ΓΦ(a, z) =

∫ a

1

ψΦ(x, z) dx = (1− a) log(1− z)−
∞∑
n=0

zn log
n+ a

n+ 1
.

This formula implies (6.2). If |z| < 1, we have (6.3) by termwise differentiation of Φ(z, s, a)
and (6.4). If |z| ≤ 1, z 6= 1, we have

∂

∂a
Φ(z, s, a) = −sΦ(z, s, a) = −s

∞∑
n=0

zn

(n+ a)s+1
< (s) > −1.

Therefore we have
∂2

∂s∂a
[Φ(z, s, a)]s=0 = −Φ(z, 1, a).

We put

(6.5) f(a, z) = log ΓΦ(a, z)− ∂

∂s
Φ(z, 0, a).

By the definition of log ΓΦ(a, z) we have

∂

∂a
f(a, z) = − log(1− z).

Hence we have
f(a, z) = −a log(1− z) + g(z).

Next we determine g(z). By the definition of log ΓΦ(a, z), we have log ΓΦ(1, z) = 0.
Therefore by (6.5), we have

f(1, z) = − ∂

∂s
Φ(z, 0, 1).

Therefore we have

g(z) = log(1− z)− ∂

∂s
Φ(z, 0, 1).

This formula implies (6.3). �

Theorem 6.3 (The integral representation, the asympotic expansion). If |z| ≤ 1, z 6= 1,
0 < a, we have

(6.6) log ΓΦ(a, z) =

∫ ∞
0

(
(a− 1)

(
e(z−1)t − e−t

)
− e−t − e−at

1− ze−t

)
dt

t
,
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log ΓΦ(a, z) = (1− a) log(1− z) + B1(z) log a− ∂

∂s
Φ(z, 0, 1)

−
M∑
n=2

Bn(z)

n(n− 1)
(−a)−n+1 +O(a−M).

(6.7)

Proof. Formula (6.6) is a generalization of Malmstén’s formula [3, p.21, (1)]. By integrat-
ing (5.6) from 1 to a and changing the order of integration, we have (6.6) . Formula (6.7)
is a generalization of Stirling’s formula [3, p.47, (1)]. By putting

f(t) =
te−at

1− ze−t
and using Ruijsenaars’ method introduced in [8, p.118, (3.13)], we have (6.7). �

Theorem 6.4. If |z| ≤ 1, zm 6= 1 we have the multiplication formula

ΓΦ(ma, z)

ΓΦ(m, z)
=

m−1∏
j=0

(1− zm)(a−1)zj

(1− z)(a−1)

(
ΓΦ(a+ j/m, zm)

ΓΦ(1 + j/m, zm)

)zj

.(6.8)

If |z| ≤ 1, z 6= 1 we have the inversion formula

(1− z)(a−1)/mΓΦ

(
(a+ j)/m, z

)
ΓΦ

(
(1 + j)/m, z

)
=

m−1∏
n=0

((
1− ωnmz1/m

)(a−1)
ΓΦ

(
a, ωnmz

1/m
))ω−jn

m z−j/m/m

.

(6.9)

Proof. By (5.9) and∫ a

1

ψΦ(mx, z) dx =
1

m
log

ΓΦ(ma, z)

ΓΦ(m, z)
,

∫ a

1

ψΦ(x+ j/m, z) dx = log
ΓΦ(a+ j/m, z)

ΓΦ(1 + j/m, z)
,

we have (6.8). By (5.10) and∫ a

1

ψΦ

(
(x+ j)/m, zm

)
dx = m log

ΓΦ

(
(a+ j)/m, zm

)
ΓΦ

(
(1 + j)/m, zm

) ,
we have (6.9). �

By putting j = 0 in (6.9), we have the fraction formula

(1− z)(a−1)/mΓΦ(a/m, z)

ΓΦ(1/m, z)
=

m−1∏
n=0

((
1− ωnmz1/m

)(a−1)
ΓΦ

(
a, ωnmz

1/m
))1/m

.

We have the following theorem by integrating (5.12) and (5.13) from 1 to a.

Theorem 6.5 (Relations between Hurwitz-Lerch gamma functions and the gamma func-
tion).

(6.10)
ΓΦ

(
ma, ωkm

)
ΓΦ (m,ωkm)

= (1− ωkm)m(1−a)

m−1∏
j=0

Γ(a+ j/m)

Γ(1 + j/m)
,

(m1−aΓ(a))
−1/m

Γ
(
(a+ j)/m

)
Γ
(
(1 + j)/m

) =
m−1∏
n=1

(
(1− ωnm)(a−1) ΓΦ (a, ωnm)

)ω−jn
m /m

.(6.11)
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Puttig j = 0, we have the fraction formula

(6.12) Γ(a/m) = Γ(1/m)
m−1∏
n=0

(
ΓΦ (a, ωnm)

)1/m

.

Finally we calculate the value of ΓΦ

(
a, ωkm

)
. By (6.1), we have ΓΦ(1, z) = 1. Therefore

we have

ΓΦ

(
m,ωkm

)
= (1− ωkm)1−m

m−1∏
j=0

Γ(1 + j/m)

Γ
(
(1 + j)/m

)
by putting a = 1/m in (6.10). Replacing a by a/m in (6.10), we have

ΓΦ

(
a, ωkm

)
= (1− ωkm)1−a

m−1∏
j=0

Γ
(
(a+ j)/m

)
Γ
(
(1 + j)/m

) .
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