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Abstract: We consider a variable selection problem for functional linear models

where both multiple predictors and a response are functions. Especially we assume

that variables are given as functions of time and then construct the historical func-

tional linear model which takes the relationship of dependences of predictors and a

response into consideration. Unknown parameters included in the model are esti-

mated by the maximum penalized likelihood method with the L1 penalty. We can

simultaneously estimate and select variables given as functions using the L1 type

penalty. A regularization parameter involved in the regularization method is de-

cided by a model selection criterion. The effectiveness of the proposed method is

investigated by simulation studies and real data analysis.

Key Words and Phrases: Functional Data Analysis, Longitudinal Data, Model

selection, Sparse regularization

1 Introduction

Functional data analysis (FDA) has received considerable attentions in several fields such
as meteorology, ergonomics and medicine, and there still are so many studies in both
theoretical and applicative aspects (see, e.g. Ramsay and Silverman, 2005; Horváth and
Kokoszka, 2012). The basic concept behind FDA is to represent repeated measurement
data for individual as smooth functions and then treat them as if they themselves were
the observed data. In this paper we consider a variable selection problem for functional
data in the regression model.

There have been many works for functional regression models where predictors are
functions while a response(s) is a scalar. The functional linear model was extended
to several frameworks such as the generalized linear model (James, 2002; Müller and
Stadtmüller, 2005), the additive model (Müller and Yao, 2008) and the adaptive model
(James and Silverman, 2005). Furthermore, theoretical evaluations for the functional lin-
ear model were developed by Cai and Hall (2006); Hall and Horowitz (2007); Cai and
Yuan (2012).

On the other hand, when both predictors and a response are given as functions there
are two conceivable cases. One is that arguments of both the predictors and the response
are the same (denoted by X(t) and Y (t) respectively) and the other vice versa (X(s)
and Y (t)). For the former case the varying coefficient model (Hastie and Tibshirani,
1993; Hoover et al., 1998) can be applied for the modeling of the relationship. On the
other hand, the latter can consider the case where certain interval of the domain of the
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functional predictor affect the response and it is more natural than the former case.
Therefore we consider the latter case throughout this paper. Ramsay and Dalzell (1991)
first constructed the functional linear model for a functional predictor and a response as
follows. Let xi(s) and yi(t) be respectively a predictor and a response given as functions
with s ∈ [0, S] and t ∈ [0, T ] for i-th subject. Then the functional linear model for xi(s)
and yi(t) is

yi(t) = α(t) +

∫ T

0

xi(s)β(s, t)ds+ εi(t), (1)

where α(t) is an intercept function, β(s, t) is a coefficient function and εi(t) are an error
functions. Matsui et al. (2009) proposed estimating the model by the maximum penal-
ized likelihood method and also derived a model selection criterion for evaluating the
estimated model, and Yao et al. (2005) obtained a consistent estimates for the model as
the theoretical development.

When s and t in the model (1) represent times, the response depends on future in-
formation of the predictor, which leads to paradoxical and inappropriate results, except
that they have a periodicity. In order to solve this problem Malfait and Ramsay (2003)
took the relationship of dependences of x(s) and y(t) into consideration and proposed a
historical functional linear model (HFLM) as a special case of (1), and they also investi-
gated how to estimate it. Furthermore, Harezlak et al. (2007) estimated the HFLM by
the penalized least squares method with the L2 or the L1 penalty. Şentürk and Müller
(2008, 2010) also discussed the similar situations for the frameworks of varying-coefficient
models.

While these studies treat functional linear model with one predictor, in other word,
the functional simple regression models, we consider the variable selection problem for
multiple functional predictors in the multiple functional regression model, with the help of
the sparse regularization. Sparse regularization is one of the most useful tools for variable
selection problems and has come to be used in various situations. It can simultaneously
estimate parameters and select variables by imposing L1 type penalties. There have been
proposed several L1 type penalties (Tibshirani, 1996; Fan and Li, 2001; Zou and Hastie,
2005; Zhang, 2010). Matsui and Konishi (2011) proposed selecting functional predictors
using the sparse regularization in the functional linear model with a scalar response.

We propose a method for the strategy for the problem of variable selection for the
functional linear model with functional predictors and a functional response. Functional
data and coefficients are represented by basis expansions. Since it is difficult to analyt-
ically evaluate functions in the model, an approximate calculation is introduced. Then
parameters included in the model are estimated by the maximum penalized likelihood
method via the sparse regularization. In order to choose the degrees of regularization
we apply a model selection criterion derived for evaluating the functional linear model.
Monte Carlo simulations are conducted to see the effectiveness of the proposed modeling
strategy. Then we apply the proposed method to the analysis of typhoon data, trying to
select functional variables which have effects on the path of typhoons.

This paper is organized as follows. Section 2 introduces a HFLM that models the rela-
tionship between multiple predictors and a response both of which are given by functions
of time. Section 3 provides how to estimate and evaluate the model. Numerical examples
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are investigated in Section 4 and real data analysis is described in Section 5. Finally we
summarize the main results in Section 6.

2 Functional linear model with functional predictors

and a response

Suppose we have n sets of p functional predictors and a functional response {(xij(s),
yi(t)); s, t ∈ [0, T ], i = 1, . . . , n, j = 1, . . . , p}. In order to model the relationship between
predictors and a response, we consider the following historical functional linear model
(HFLM, Malfait and Ramsay, 2003; Ramsay and Silverman, 2005):

yi(t) = α(t) +

p∑
j=1

∫ t

sj(t)

xij(s)βj(s, t)ds+ εi(t), (2)

where α(t) is an intercept function, βj(s, t) are bivariate coefficient functions which impose
varying weights on xim(s) at s ∈ [sj(t), t] rather than s ∈ [0, T ], sj(t) = max{0, t − δj}
with a lag parameter δj > 0 which decide how long the time is included in the model,
and εi(t) are error functions. There are several relationships between other models for
longitudinal data analysis. If intervals of the integration with respect to s are shrunk
to sj(t) = t, that is, the arguments of the predictors and the response are the same, the
HFLM corresponds to a varying-coefficient model of Hastie and Tibshirani (1993); Hoover
et al. (1998):

yi(t) = α(t) +

p∑
j=1

xij(t)βj(t) + εi(t).

On the other hand, if [sj(t), t] are discretized to be tl, l = 1, . . . , Rj so that tl = t and
tl−(Rj−1) = sj(t) for fixed t. then it correspond to a generalized varying-coefficient model
by Şentürk and Müller (2008) with multiple predictors:

yi(tl) = α(tl) +

p∑
j=1

Rj∑
r=1

xij(tl−(r−1))βjr(tl) + εi(tl).

Now we return to the HFLM (2). From the normal equation the intercept function is
given by

α(t) = ȳ(t)−
p∑

j=1

∫ t

sj(t)

x̄m(s)βj(s, t)ds+ ε̄(t)

with x̄(s) =
∑

i xi(s)/n, ȳ(t) =
∑

i yi(t)/n and ε̄(t) =
∑

i εi(t)/n. Therefore the HFLM
(2) becomes

yci (t) =

p∑
j=1

∫ t

s0(t)

xcij(s)βj(s, t)ds+ εci(t), (3)
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where xci(s) = xi(s)− x̄(s), yci (t) = yi(t)− ȳ(t) and εci(t) = εi(t)− ε̄(t). For simplicity we
drop the suffix c for the rest of this paper.

Suppose that the coefficient functions βj(s, t) are approximated by basis expansions:

β̃j(s, t) =

Kj∑
k=1

bjkϕjk(s, t), (4)

where bjk are unknown parameters and βj(s, t) are basis functions. Typical bases include
radial basis functions or thin-plate splines. Defining the residual ε̃(j)(s, t) = βj(s, t) −
β̃j(s, t), the HFLM (2) becomes

yi(t) =

p∑
j=1

∫ t

sj(t)

xim(s)


Kj∑
k=1

bjkϕjk(s, t) + ε̃(j)(s, t)

 ds+ εi(t)

=

p∑
j=1

Kj∑
k=1

bjk

∫ t

sj(t)

xij(s)ϕjk(s, t)ds+ εi(t)

=

p∑
j=1

Kj∑
k=1

bjkψijk(t) + εi(t),

where

ψijk(t) =

∫ t

sj(t)

xij(s)ϕjk(s, t)ds.

Note that we rewrote
∑

j

∫
xij(s)ε̃(j)(t)ds + εi(t) as εi(t). Using notations y(t) = (y1(t),

. . . , yn(t))
′, ε(t) = (ε1(t), . . . , εn(t))

′, Ψj(t) = (ψijk(t))ik, Ψ(t) = (Ψ1(t), . . . ,Ψp(t)), b =
(b′1, . . . , b

′
p)

′, and bj = (bj1, . . . , bjKj
)′ the model (3) has the form of

y(t) =

p∑
j=1

Ψj(t)bj + ε(t)

= Ψ(t)b+ ε(t), (5)

which is similar to the standard linear model with a design matrix Ψ(t), a response vector
y(t) and a coefficient vector b, except that some of vectors are functions of t.

3 Estimation and evaluation

We consider estimating the functional linear model described in the previous section.
As the standard and natural approach for this problem, Ramsay and Silverman (2005),
Chapter 16 used the integrated sum of squared error as the criterion to be minimized as
the standard and natural approach for this problem, that is, they considered minimizing

LMSSE(b) =

∫ T

0

n∑
i=1

ε2i (t)dt =

∫ T

0

{y(t)−Ψ(t)b}′ {y(t)−Ψ(t)b} dt.
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However, it is difficult to directly obtain estimates of b in (5) by two reasons. First, it is
difficult to calculate ψijk analytically because of the complexity of the integral. Second,
the least squares method sometimes gives unstable or degenerate estimates. In order
to solve these problems, we respectively apply the Finite Elements Method (FEM) that
approximate the integration numerically and the regularization method, especially the
sparse regularization to select functional variables.

3.1 Finite element method

In order to calculate ψijk numerically we here apply the finite element method (FEM)
to estimate the coefficient vector b. Malfait and Ramsay (2003) used the FEM for the
HFLM and described the details of it.

Consider a two dimensional coordinate of s, t which include the domain of integration
in (2) (Figure 1 left). First we divide the intervals [0, T ] for s and t directions into N
intervals, each of which have equal length of µ, and then construct triangular elements by
further dividing each square grid into two triangles (Figure 1 right). The lag parameter δj
can be approximated by Mjµ (0 ≤Mj ≤ N) for each j. When Mj = N the shape of the
domain becomes a triangle, 0 < Mj < N corresponds to a trapezoid, and when Mj = 0
the domain is only s = t and it corresponds to the varying-coefficient model. As a result,
there are Mj(2N −Mj) triangular elements and (Mj + 1)(N + 1 −Mj/2) nodes on the
domain of βj(s, t). Each node is assigned by one basis function which has the shape of a
hexagonal pyramid and has the value of 1 at the node and 0 at the adjacent nodes. Figure
2 shows a contour plot of an example of the basis function. These bases correspond to
ϕjk(t) (j = 1, . . . , p, k = 1, . . . , (Mj + 1)(N + 1−Mj/2)(= Kj)) of (4). We used Matlab
functions which connect nodes with indices, available from the website of Ramsay and
Silverman (2002).

We consequently discretize the time point t into finite time points Q. Malfait and
Ramsay (2003) says that the number of Q = 4N gives sufficiently accuracy for the ap-
proximation. Using this discretization, yi(t), ψijk(t) and εi(t) are respectively expressed
as vectors yi = (yi1, . . . , yiQ)

′, ψijk = (ψi1jk, . . . , ψiQjk)
′ and εi = (εi1, . . . , εiQ)

′. Then
y(t), Ψ(t) and ε(t) are respectively represented as vector or matrix forms

y =

 y1
...
yn

 ,Ψ =

 ψ111 · · · ψ11K1
· · · ψ1p1 · · · ψ1pKp

...
. . .

...
. . .

...
. . .

...
ψn11 · · · ψn1K1

· · · ψnp1 · · · ψnpKp

 and ε =

 ε1
...
εn

 ,

and finally we have a form of linear model

y = Ψb+ ε. (6)

3.2 Penalized likelihood method via the sparse regularization

We here assume that error vectors εi are identically and independently normally dis-
tributed with mean vector 0 and variance covariance matrix Σ0 and that Σ0 has an au-
tocorrelation since εi1, . . . , εiQ are discretized realization at continuous time points. That
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Figure 1: Illustration of the region of integral of the HFLM (left) and its triangulation
(right).
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Figure 2: An example of basis functions.

is, we assume that Σ0 has the form of

Σ0 =
σ2

1− ρ2


1 ρ · · · ρQ−1

ρ 1 · · · ρQ−2

...
...

. . .
...

ρQ−1 ρQ−2 · · · 1

 , (7)

where σ2 and ρ ∈ [−1, 1] are variance and correlation parameters respectively. Here we
referred to Fahrmeir et al. (2013) pp.192 about the autocorrelation. Then the variance
covariance matrix Σ of ε is Σ = In⊗Σ0, and hence we have a probability density function

f(y,θ) =
1

(2π)nQ/2 log |Σ|
exp

{
−1

2
(y −Ψb)′Σ−1(y −Ψb)

}
, (8)

where θ = (b′, σ2, ρ)′, and then the log-likelihood function is given by

ℓ(θ) = −nQ
2

log(2π)− 1

2
log |Σ|1/2 − 1

2
(y −Ψb)′Σ(y −Ψb).
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Figure 3: Directions for penalizations about D
(H)
j (left), D

(V )
j (center) and D

(P )
j (right).

We estimate parameters b, σ2 and ρ by maximizing the following penalized likelihood
function

ℓλ(θ) = ℓ(θ)− nQ

p∑
j=1

Pλ(∥bj∥Ωj
), (9)

where Pλ(·) is a penalty function, ∥bj∥Ωj
=

√
b′jΩjbj and Ωj is a positive semi-definite

matrix. Harezlak et al. (2007) has penalized for the fluctuation of the coefficient function
in the direction parallel to s-axis (horizontal), t-axis (vertical) and s = t (parallel), each
of which corresponds to penalizing for neighboring basis functions for fixed t, s and s− t
(Figure 3). We use a first difference for the neighboring bases, constructing penalty

matrices for horizontal, vertical and parallel direction for j-th variable, denoted by D
(H)
j ,

D
(V )
j and D

(P )
j . For example, the elements of D

(H)
j are given by

(
D

(H)
j

)
lm

= 1(
D

(H)
j

)
lm′

= −1(
D

(H)
j

)
lm′′

= 0

 sm − sm′ = 1
if tm − tm′ = 0

m′′ ̸= m,m′

 , (10)

where sm and tm are respectively s and t coordinates of the m-th node, m = 1, . . . , Kj,
l = 1, . . . , L and L is the number of combinations that the condition in (10) occurs.

D
(V )
j and D

(P )
j are given in similar ways. Then the matrices Ωj are given by Ωj =

γ
(H)
j (D

(H)
j )′D

(H)
j + γ

(V )
j (D

(V )
j )′D

(V )
j + γ

(P )
j (D

(P )
j )′D

(P )
j with tuning parameters γ

(H)
j , γ

(V )
j

and γ
(P )
j that control degrees of regularizations for each direction. Although it can be

considered that all of these tuning parameters are selected by model selection criteria such
as AIC or BIC, the computational load can be very expensive. Alternatively we decide
these values as the following rule, using the idea of Fan and Li (2004). First we obtain

the maximum likelihood estimator of b, denoted by b̂
(ML)

, by maximizing (9) with λ = 0,

and then γ
(H)
j is given as the standard deviation of D

(H)
j b̂

(ML)

j . γ
(V )
j and γ

(P )
j are obtained

in same way, then the overall degrees of the regularization is controlled by λ, which is
selected by model selection criteria.

For the penalty Pλ(·) we apply a smoothly clipped absolute deviation (SCAD) penalty
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by Fan and Li (2001) whose derivative is defined by

P ′
λ (|θ|) = λ

{
I (|θ| ≤ λ) +

(aλ− |θ|)+
(a− 1)λ

I (|θ| > λ)

}
for arbitrary θ, where λ is a regularization parameter and a is a tuning parameter. Here
we set a = 3.7 since Fan and Li (2001) says that this value gives minimum Bayes rule.

Parameters are estimated via the local quadratic approximation which iteratively up-
date parameters and has been applied for the lasso (Tibshirani, 1996) and the SCAD
(Fan and Li, 2001). Denote an initial value of b in the update as b(0), then the Taylor

expansion of Pλ(∥bj∥Ωj
) around b

(0)
j gives

Pλ(∥bj∥Ωj
) ≈ Pλ(∥b(0)j ∥Ωj

) +
1

2

P ′
λ(∥b

(0)
j ∥Ωj

)

∥b(0)j ∥Ωj

{
b′jbj −

(
b
(0)
j

)′
b
(0)
j

}
.

Using this approximation and assuming a fixed variance σ2 the penalized log-likelihood
function (9) can also be approximated by

ℓλ(b) ≈ ℓ(b(0)) +
∂ℓ(b(0))

∂b′
(b− b(0)) + 1

2
(b− b(0))′∂ℓ(b

(0))

∂b∂b′
(b− b(0)) + nQ

2
b′Ω(b)b,

where Ω(b) = blockdiag{P ′
λ(∥b1∥Ω1)/∥b1∥Ω1 , . . . , P

′
λ(∥bp∥Ωp)/∥bp∥Ωp}. Then if k-th up-

dated values of b and Σ, respectively denoted by b(k) and Σ(k), are obtained, the (k+1)-th
updated value of b is given by

b(k+1) =
{
Ψ′ (Σ(k)

)−1
Ψ+ nQΩ(b(k))

}−1

Ψ′ (Σ(k)
)−1

y,

and subsequently the correlation and variance parameter are respectively updated by

ρ(k+1) =
sq1
sq
,

(
σ2
)(k+1)

=
1

nQ

(
y −Ψb(k+1)

)′ (
y −Ψb̂

(k+1)
)
,

where

sq1 =
1

nQ

n∑
i=1

Q∑
q=2

yiq − p∑
j=1

Kj∑
k=1

ψiqjkbjk

yi(q−1) −
p∑

j=1

Kj∑
k=1

ψi(q−1)jkbjk

 ,

sq =
1

nQ

n∑
i=1

Q∑
q=1

yiq − p∑
j=1

Kj∑
k=1

ψiqjkbjk

2

.

The updated variance covariance matrix Σ(k+1) is obtained by substituting ρ(k+1) and
(σ2)(k+1) into (7). This update is continued until the convergence criterion is satisfied,

then we obtain the estimated parameters b̂, σ̂2 and ρ̂. Substituting θ̂ = (b̂
′
, σ̂2, ρ̂)′ into

(8) we obtain a statistical model

f(y, θ̂) =
1

(2π)nQ/2 log |Σ̂|
exp

{
−1

2

(
y −Ψb̂

)′
Σ̂−1

(
y −Ψb̂

)}
. (11)
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3.3 Model selection criterion

Since the estimated model (11) strongly depends on the value of tuning parameters such
as regularization parameter λ. Although the cross-validation is widely used for the se-
lection of tuning parameters, Leng et al. (2006) showed that the criteria based on the
minimum prediction error such as cross-validation or generalized cross-validation do not
select models consistently. On the other hand, Wang et al. (2007) and Zhang et al. (2010)
showed that the BIC type criterion with the effective degrees of freedom select the true
model consistently for the SCAD regularization. We use a BIC type model selection cri-
terion for evaluating the historical functional linear model (2) estimated by the maximum
penalized likelihood method with the group SCAD regularization. The BIC is given by

BIC = −2ℓ(θ̂) + df log(nQ),

where df is an effective degrees of freedom given by

df = tr

{
Ψ
(
Ψ′Σ̂−1Ψ+ nQΩ(b̂)

)−1

Ψ′Σ̂−1

}
.

We select the regularization parameter λ which minimizes the BIC and treat it as an
optimal model.

4 Simulation

We conducted Monte Carlo simulations to show the effectiveness of the proposed method.
We simulated functional predictors Xj(s) (j = 1, . . . , 5) and a response Y (t), where
j = 1, . . . , 5 and s, t ∈ [0, 1], as the following rule on the model of the HFLM. First, we
constructed functional predictors and coefficients by

xij(s) =
K∑
k=1

(ujk + wijk)ξjk(s), βj(s, t) =
K2∑
k=1

vjkζjk(s, t)

respectively, whereK = 7 and ξjk(s) and ζjk(s, t) are respectively one and two dimensional
basis functions, for which we used the radial basis functions of Kawano and Konishi (2007),
and ujk, wijk in xij(s) are respectively given as follows:

u1k = 0.1k, u2k = sin k, u3k = cos k, u4k = exp(2k/7), u5k = −k2,
wij ∼ NK(0,Σw), wij = (wij1, . . . , wijK)

′, Σw = (σwρ
|k−l|
w )kl

with σw = 0.3 and ρw = 0.5. Moreover, vjk in βj(s, t) are set to be

v1k = 0.5(a−4)2+(b−4)2/10, v2k = 0.1a, v3k = − sin((a− b)2), v4k = 0, v5k = 0,

where a = 1, . . . , K and b = 1, . . . , K correspond to k = (a− 1)K + b. It means that X4

and X5 are unnecessary for the model. Furthermore, the error function in the HFLM was
generated by the basis expansion with random coefficients:

εi(t) =
K∑
k=1

ekξk(t), ek ∼ N(0, σ2
eR

e2
i ),

9



where ξk(t) are basis functions same as ξjk(t), σe = 0.1, 0.3 and Re
i = sd(yi(t)). Then the

response is given by

yi(t) =

p∑
j=1

∫ t

sj(t)

xij(s)βj(s, t)ds+ εi(t),

where we set the lag parameter δj included in sj(t) to be δj = 0.5 for all j. Since it is
natural that the observed longitudinal data themselves have noises, we added noises to
above predictors and responses as follows:

xijl = xij(sl) + ε
(x)
ijl , yil = yi(tl) + ε

(y)
il ,

where l = 1, . . . , 51 and ε
(x)
ijl and ε

(y)
il respectively follow N(0, σ2

xR
x2
i ) and N(0, σ2

yR
y2
i ) with

σx = σy = 0.3, Rx
i = sd(xij(s)), R

y
i = sd(yi(t)).

We treated xijl and yil as observed data, then converted them into functional data us-
ing B-spline basis. Numbers of basis are set to be 8 for each variable. Next we constructed
a design matrix and a response vector in (6) using the FEM. There are several tuning
parameters involved in the FEM, described in Section 3.1. We set parameters N = 13 and
µ = 4, and Mj are set so that δj = 0.25, 0.50, 0.75 for all j (true is 0.5). Then parameter
θ in the model is estimated by maximum likelihood method and the penalized likelihood
method with the group SCAD regularization. We conducted this strategy for 100 rep-
etitions and for all combinations of n = 50, 100, σe = 0.1, 0.3 and δj = 0.25, 0.50, 0.75,
and then investigated average values of MSE=

∑n
i

∑51
j {yi(tj) − ŷi(tj)}2 with estimated

response functions ŷi(t), regularization parameter, and numbers of selected variables.
Table 1 shows the results of simulation study. It includes averaged MSEs for the max-

imum likelihood method (ML) and the group SCAD regularization (gSCAD), averaged
value of selected regularization parameters (λ) and ratios of variables selected for 100
repetitions. This table shows that the group SCAD regularization minimized MSEs for
all cases. Among δj, δj = 0.25 and δj = 0.50 minimized the MSE, although the true δj
is 0.5. For the accuracy of variable selection, all cases had tendencies to select correct
variables.

5 Real data analysis

We applied the proposed method to the analysis of typhoon data. We investigated which
sets of data about the typhoon have an influence on the path of them, using the functional
linear model.

The data are available on the website “Digital Typhoon.∗” We picked up 88 typhoons
which passed around Japan, i.e. passed between north latitude of 30 and 50 and between
east longitude of 130 and 150) since 2001 to 2012 from the website. The data contains the
position (latitude Y1 and longitude Y2), the center atmospheric pressure (X1), velocity of
the wind around the center (X2) and radii of minor and major storm axes (winds higher
than 25 m/s, respectively X3 and X4) and gale axes (winds higher than 15 m/s, respec-
tively X5 and X6) of typhoons. They are observed every six hours from the generation

∗http://agora.ex.nii.ac.jp/digital-typhoon/index.html.en
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Table 1: Results on 100 repetitions in simulation studies.
MSE (SD ×10) λ Ratio of selection

n σe δ ML gSCAD (×102) X1 X2 X3 X4 X5

50 0.1 0.25 3.17 (1.53) 2.93 (1.80) 0.82 0.82 1.00 1.00 0.31 0.01
0.1 0.50 3.22 (2.01) 2.76 (3.16) 0.71 0.82 1.00 0.99 0.24 0.01
0.1 0.75 3.49 (2.22) 2.98 (2.80) 0.67 0.88 1.00 1.00 0.29 0.04
0.3 0.25 5.88 (5.56) 5.18 (6.90) 1.52 0.81 1.00 0.91 0.42 0.01
0.3 0.50 6.67 (5.47) 5.71 (7.80) 1.35 0.83 0.99 0.84 0.36 0.07
0.3 0.75 7.24 (6.21) 6.25 (8.64) 1.26 0.90 0.97 0.73 0.40 0.01

100 0.1 0.25 2.80 (1.20) 2.64 (1.24) 0.46 0.76 1.00 1.00 0.10 0.01
0.1 0.50 2.56 (1.26) 2.30 (1.35) 0.34 0.93 1.00 1.00 0.27 0.02
0.1 0.75 2.71 (1.43) 2.43 (1.63) 0.30 0.94 1.00 1.00 0.38 0.06
0.3 0.25 4.46 (3.08) 4.10 (5.66) 0.89 0.69 1.00 0.83 0.18 0.00
0.3 0.50 4.85 (3.55) 4.44 (5.91) 0.57 0.88 1.00 0.83 0.48 0.01
0.3 0.75 5.17 (3.54) 4.73 (5.67) 0.52 0.95 1.00 0.80 0.51 0.00

to the disappearance of the typhoons. We aligned the generation and disappearance time
of all typhoons by scaling the time points at which the data were observed on [0, 1].
Figure 4 shows some examples of typhoon data. Since the survival times differ for each
typhoon numbers and positions of time points also differ, and therefore it is difficult to
apply the traditional linear model directly. In this example we examined whether which
kind of information of the typhoon affect the location of it. In order to do it we treated
the positions as responses and other variables as predictors.

First of the analysis we converted the observed data into functions by the basis ex-
pansion, and then centered them. Then we constructed the HFLM (2) by treating the
position of typhoons as the functional response and the remaining data as functional pre-
dictors. Since the model (2) contains only one response whereas there are two data sets
of positions (latitude and longitude), we separately constructed the HFLM with each of
the response. Unknown parameters included in the model is estimated by the maximum
penalized likelihood method with the group SCAD regularization and a regularization
parameter λ involved in the penalized log-likelihood function was selected by BIC. We
investigated which variables are selected and surface of the estimated coefficients.

Figures 5 to 10 show estimated coefficient functions for Y1, Y2 and δj = 0.25, 0.50, 0.75.
From these figures we can find that some of coefficient surfaces are estimated to be zero
functions, which lead to eliminations of corresponding variables from the model. When
the response is latitude only one variable, the velocity of the wind (X2) is removed from
the model for all cases of δj. On the other hand when the response is longitude the
pressure (X1), the velocity of the wind (X2) and the minor gale axis (X6), and in addition
the major gale axis (X5) for cases δj = 0.50 and δj = 0.75 are removed from the model.
Next we focus on features of coefficient surfaces of selected variables. For example, β1(s, t)
in Figure 9 shows that there is a positive weight to the variable around t = s direction,
and this weight decreases for the t = 1 − s direction with s goes to 0. It indicates that
the last information of the predictor has positive weight to the response, whereas this
influence gradually vanishes as it becomes a thing of the past. Same implications are
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Figure 4: Examples of typhoon data. Bottom right 2 plots (north latitude and east
longitude) are responses and remaining data are predictors.

obtained from other coefficient surfaces. Note that, however, for the δj = 0.25 case there
are many fluctuations on the surfaces and therefore it is difficult to obtain insights from
them than other cases of δj.

6 Concluding remarks

We have proposed the method for variable selection of variable selection where predictors
and a response are given as functions. Especially when they are functions of time we
need to take account of the dependency between predictors and a response, and therefore
we applied the historical functional linear model. Unknown parameters included in the
historical functional linear model are estimated by the maximum penalized likelihood
method with the group SCAD regularization, and a regularization parameter included in
the model is selected by a BIC type model selection criterion. In addition to the estimation
of parameters we can also select functional predictors in the regression model due to the
property of the L1 type regularization. Simulation and real data analysis revealed that
the proposed method appropriately selected variables.

In this work we assumed that several tuning parameters except for the regularization
parameter λ are given. Especially for the lag parameter δj, though, we think it is a crucial
issue to select these values objectively, since it decides how long the time is included in the
model. However, we cannot directly apply model selection criteria since the “sample size”
in model (6) changes as the lag parameter δj changes. Therefore future works include
the selection of them. Furthermore we can consider extending the HFLM to that with
multiple response. Then we can treat two responses, such as the longitude and the latitude
of typhoon data used in Section 5, together in one model to take the correlation among
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responses into consideration.
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Figure 5: Coefficient functions for Y1 and δj = 0.25.
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Figure 7: Coefficient functions for Y1 and δj = 0.50.
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Figure 9: Coefficient functions for Y1 and δj = 0.75.
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(1)
8

MI2009-13 Hidenao IWANE, Hitoshi YANAMI, Hirokazu ANAI & Kazuhiro YOKOYAMA
A Practical Implementation of a Symbolic-Numeric Cylindrical Algebraic Decompo-
sition for Quantifier Elimination

MI2009-14 Yasunori MAEKAWA
On Gaussian decay estimates of solutions to some linear elliptic equations and its
applications



MI2009-15 Yuya ISHIHARA & Yoshiyuki KAGEI
Large time behavior of the semigroup on Lp spaces associated with the linearized
compressible Navier-Stokes equation in a cylindrical domain

MI2009-16 Chikashi ARITA, Atsuo KUNIBA, Kazumitsu SAKAI & Tsuyoshi SAWABE
Spectrum in multi-species asymmetric simple exclusion process on a ring

MI2009-17 Masato WAKAYAMA & Keitaro YAMAMOTO
Non-linear algebraic differential equations satisfied by certain family of elliptic func-
tions

MI2009-18 Me Me NAING & Yasuhide FUKUMOTO
Local Instability of an Elliptical Flow Subjected to a Coriolis Force

MI2009-19 Mitsunori KAYANO & Sadanori KONISHI
Sparse functional principal component analysis via regularized basis expansions and
its application

MI2009-20 Shuichi KAWANO & Sadanori KONISHI
Semi-supervised logistic discrimination via regularized Gaussian basis expansions

MI2009-21 Hiroshi YOSHIDA, Yoshihiro MIWA & Masanobu KANEKO
Elliptic curves and Fibonacci numbers arising from Lindenmayer system with sym-
bolic computations

MI2009-22 Eiji ONODERA
A remark on the global existence of a third order dispersive flow into locally Hermi-
tian symmetric spaces

MI2009-23 Stjepan LUGOMER & Yasuhide FUKUMOTO
Generation of ribbons, helicoids and complex scherk surface in laser-matter Interac-
tions

MI2009-24 Yu KAWAKAMI
Recent progress in value distribution of the hyperbolic Gauss map

MI2009-25 Takehiko KINOSHITA & Mitsuhiro T. NAKAO
On very accurate enclosure of the optimal constant in the a priori error estimates
for H2

0 -projection

MI2009-26 Manabu YOSHIDA
Ramification of local fields and Fontaine’s property (Pm)

MI2009-27 Yu KAWAKAMI
Value distribution of the hyperbolic Gauss maps for flat fronts in hyperbolic three-
space

MI2009-28 Masahisa TABATA
Numerical simulation of fluid movement in an hourglass by an energy-stable finite
element scheme

MI2009-29 Yoshiyuki KAGEI & Yasunori MAEKAWA
Asymptotic behaviors of solutions to evolution equations in the presence of transla-
tion and scaling invariance



MI2009-30 Yoshiyuki KAGEI & Yasunori MAEKAWA
On asymptotic behaviors of solutions to parabolic systems modelling chemotaxis

MI2009-31 Masato WAKAYAMA & Yoshinori YAMASAKI
Hecke’s zeros and higher depth determinants

MI2009-32 Olivier PIRONNEAU & Masahisa TABATA
Stability and convergence of a Galerkin-characteristics finite element scheme of
lumped mass type

MI2009-33 Chikashi ARITA
Queueing process with excluded-volume effect

MI2009-34 Kenji KAJIWARA, Nobutaka NAKAZONO & Teruhisa TSUDA
Projective reduction of the discrete Painlevé system of type(A2 +A1)
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