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Abstract

We consider asymptotic properties of an estimator of a drift parameter for a
one-dimensional diffusion process with small dispersion parameter ε. For discrete
data observed at equidistant times k/n, k = 0, 1, . . . , n, we study consistency and
asymptotic normality of an M-estimator derived from a martingale estimating func-
tion based on an eigenfunction as ε tends to 0 and n tends to ∞ simultaneously.

Key Words and Phrases: Diffusion process with small noise, Discrete time observation, Para-

metric inference.

1. Introduction

We consider statistical inference for a class of one-dimensional diffusion processes
defined as solutions of the stochastic differential equations

dXt = b(Xt, θ)dt + εσ(Xt)dwt, t ∈ [0, 1], ε ∈ (0, 1], (1)
X0 = x0,

where x0 and ε are known constants and w is an r-dimensional standard Wiener process.
Further, b is an R-valued function defined on R× Θ̄, σ is an Rr-valued function defined
on R, Θ is an open bounded convex subset of Rp and Θ̄ denotes the closure of Θ.
We assume that the drift b is known apart from the parameter θ. The types of data
considered in the present paper are observations of X at n regularly spaced time points:
(Xtk

)0≤k≤n with tk = k/n. The asymptotics we treat is when ε → 0 and n → ∞
simultaneously.

Diffusion processes with small noise have a lot of applications in various fields.
Applications to mathematical finance were given in Yoshida (1992c), Kunitomo and
Takahashi (2001) and Uchida and Yoshida (2004). The asymptotic theory of parametric
inference for diffusion processes with small noise is well developed. For continuous-
time observations, see Kutoyants (1984, 1994) and Yoshida (1992a, 2003). For discrete
observations, see Genon-Catalot (1990), Laredo (1990), Sørensen (2000), Sørensen and
Uchida (2003) and Uchida (2003). Recently, Uchida (2004) derived an explicit estimating
function by using the expansion in Florens-Zmirou (1989). His estimating function is
asymptotically equivalent to the martingale estimating function proposed by Bibby and
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2 M. Uchida

Sørensen (1995) under (εnl)−1 → 0 for a positive integer l. He also proved that the
estimator obtained from the approximate martingale estimating function has asymptotic
efficiency under (εnl)−1 → 0 for a positive integer l. However, there is a disadvantage
that the estimator may not be obtained explicitly when the approximate martingale
estimating function is complicated. In order to overcome this difficulty, Matsuzaki and
Uchida (2004) proposed one-step estimators based on the method of Newton-Rhapson
in numerical analysis. Using an initial estimator, they derived a one-step estimator with
asymptotic efficiency. A sufficient condition for the initial estimator is that the initial
estimator has asymptotic normality as ε → 0 and n →∞. Note that the initial estimator
does not have to be asymptotically efficient. Therefore, we investigate explicit estimating
functions to obtain estimators with asymptotic normality as ε → 0 and n → ∞. The
present paper is a contribution in this direction.

Kessler and Sørensen (1999) proposed explicit martingale estimating functions
based on eigenfunctions for discretely observed ergodic diffusion processes. Though the
estimators obtained from the estimating function may not be asymptotically efficient,
they have very good asymptotic properties. We will apply the martingale estimating
functions based on eigenfunctions to small diffusion models defined by (1). Another dif-
ference between Kessler and Sørensen (1999) and the present paper is asymptotics. Note
that the asymptotics in the present paper is when ε → 0 and tk− tk−1 = 1/n → 0 simul-
taneously, while the asymptotics in Kessler and Sørensen (1999) is when tk − tk−1 = ∆
is fixed and n∆ →∞.

In section 2, we construct the martingale estimating functions based on eigen-
functions. We also present asymptotic properties of M-estimators obtained from the
martingale estimating functions. Section 3 gives two examples and simulation studies.
Section 4 concludes. In section 5, we prove the results stated in section 2.

2. Martingale estimating functions based on eigenfunctions

We first state notation used in this paper. Let θ0 ∈ Θ denote the true value of θ.
Let X0

t be the solution of the ordinary differential equation corresponding to ε = 0, i.e.
dX0

t = b(X0
t , θ0)dt, X0

0 = x0. For a matrix A, A∗ is the transpose of A. We denote by
C∞,k
↑ (R×Θ×(0, 1];R) the space of all functions f satisfying the following two conditions:

(i) f(x, θ, ε) is an R-valued function on R × Θ × (0, 1] that is infinitely differentiable
with respect to x and continuously differentiable with respect to θ up to order k, (ii)
for n ≥ 0 and 0 ≤ |ν| ≤ k, there exists C > 0 such that supθ∈Θ |δν∂n

x f | ≤ C(1 + |x|)C

for all x, ε. Here ∂x = ∂/∂x and ν = (ν1, · · · , νp) is a multi-index, |ν| = ν1 + · · · + νp,
δν = δν1

1 · · · δνp

p , δj = ∂/∂θj , j = 1, · · · , p. Likewise, let C∞,k
↑ (R×Θ;R) be the space of

all functions f satisfying the following two conditions: (i) f(x, θ) is an R-valued function
on R×Θ that is infinitely differentiable with respect to x and continuously differentiable
with respect to θ up to order k, (ii) for n ≥ 0 and 0 ≤ |ν| ≤ k, there exists C > 0 such
that supθ∈Θ |δν∂n

x f | ≤ C(1 + |x|)C for all x. Let C∞↑ (R;Rr) be the set of all functions
f of class C∞(R;Rr) such that f and all of its derivatives have polynomial growth. Let
Ck

b (Θ× (0, 1];R) be the space of all functions f satisfying the following two conditions:
(i) f(θ, ε) is an R-valued function on Θ× (0, 1] that is continuously differentiable with
respect to θ up to order k, (ii) for 0 ≤ |ν| ≤ k, there exists C > 0 such that |δνf | ≤ C for
all θ, ε. We denote by

p−→ and d−→ the convergence in probability and the convergence
in distribution as ε → 0 and n → ∞, respectively. Let Pθ be the law of the solution of
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(1). Let Lθ be the infinitesimal generator of the diffusion (1): For g ∈ C2(R),

Lθg(x) = b(x, θ)∂xg(x) +
1
2
ε2[σσ∗](x)∂2

xg(x).

For a twice continuously differentiable function φ(x, θ, ε) with respect to x, φ(x, θ, ε) is
called an eigenfunction for Lθ with eigenvalue λ(θ, ε) if

Lθφ(x, θ, ε) = −λ(θ, ε)φ(x, θ, ε)

for all x in the state space of X under Pθ. For more details, see Kessler and Sørensen
(1999).

In this paper we make the following assumptions.

A1. For every θ ∈ Θ̄, there exists a constant Kθ > 0 such that b2(x, θ) + |σ(x)|2 ≤
Kθ(1 + x2).

A2. b is Lipschitz on R× Θ̄.

A3. b(x, θ) ∈ C∞,3
↑ (R× Θ̄;R), σ(x) ∈ C∞↑ (R;Rr).

A4. There exists an eigenfunction φ(x, θ, ε) ∈ C∞,2
↑ (R× Θ̄× (0, 1];R) with eigenvalue

λ(θ, ε) ∈ C2
b (Θ̄ × (0, 1];R) such that Lθφ(x, θ, ε) = −λ(θ, ε)φ(x, θ, ε) for all x in

the state space of X under Pθ.

A5. infx[σσ∗](x) > 0.

Remark. (i) By a localization argument, the results which will be presented in this
paper still hold under mild regularity conditions about b, σ and φ in the neighborhood
of the path of X0

t instead of A3–A5. (ii) By A4, we set φ(x, θ, 0) = limε→0 φ(x, θ, ε) and
λ(θ, 0) = limε→0 λ(θ, ε).

Under some regularity conditions, we have

Eθ[φ(Xtk
, θ, ε)|Xtk−1 ] = e−λ(θ,ε)/nφ(Xtk−1 , θ, ε).

For details of the regularity conditions, see section 5 in Kessler and Sørensen (1999).
We then obtain the following martingale estimating function: for i = 1, 2, . . . , p,

M i
ε,n(θ) =

n∑

k=1

(δib)(Xtk−1 , θ)[σσ∗]−1(Xtk−1)(φ(Xtk
, θ, ε)− Eθ[φ(Xtk

, θ, ε)|Xtk−1 ])

=
n∑

k=1

(δib)(Xtk−1 , θ)[σσ∗]−1(Xtk−1)
[
φ(Xtk

, θ, ε)− e−λ(θ,ε)/nφ(Xtk−1 , θ, ε)
]
.

For results put later on, we introduce several functions. Let Kε,n(θ) = (Kij
ε,n(θ))1≤i,j≤p,

where Kij
ε,n(θ) = δjM

i
ε,n(θ). Let K(θ) = (Kij(θ))1≤i,j≤p and A(θ) = (Aij(θ))1≤i,j≤p,

where

Kij(θ) =
∫ 1

0

(δjδib)(X0
s , θ)[σσ∗]−1(X0

s )b(X0
s , θ0)∂xφ(X0

s , θ, 0)ds
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+
∫ 1

0

(δjδib)(X0
s , θ)[σσ∗]−1(X0

s )λ(θ, 0)φ(X0
s , θ, 0)ds

+
∫ 1

0

(δib)(X0
s , θ)[σσ∗]−1(X0

s )b(X0
s , θ0)∂xδjφ(X0

s , θ, 0)ds

+
∫ 1

0

(δib)(X0
s , θ)[σσ∗]−1(X0

s )λ(θ, 0)δjφ(X0
s , θ, 0)ds

+
∫ 1

0

(δib)(X0
s , θ)[σσ∗]−1(X0

s )(δjλ)(θ, 0)φ(X0
s , θ, 0)ds,

and

Aij(θ0) =
∫ 1

0

(δib)(X0
s , θ0)[σσ∗]−1(X0

s )(∂xφ)2(X0
s , θ0, 0)(δjb)(X0

s , θ0)ds.

In order to show asymptotic results of M-estimators, we need the following two
lemmas.

Lemma 2.1. Under A1–A5, Kε,n(θ)
p−→ K(θ) uniformly in θ ∈ Θ̄.

Lemma 2.2. Under A1–A5, ε−1Mε,n(θ0)
d−→ N (0, A(θ0)) .

Let θ̂ε,n be an M-estimator defined as a solution of Mε,n(θ) = 0. The main theorem
is as follows.

Theorem 2.3. Let γ ∈ (0, 1). Suppose that A1–A5 hold true. Moreover, suppose
that there exists an open set Θ̃ including θ0 such that

inf
θ1,θ2∈Θ̃,|x|=1

∣∣∣∣x∗
(∫ 1

0

K(θ1 + s(θ2 − θ1))ds

)∣∣∣∣ > 0.

Then,

Pθ0 [(∃1θ̂ε,n ∈ Θ̃ such that Mε,n(θ̂ε,n) = 0) and (|θ̂ε,n − θ0| ≤ εγ)] → 1

and
ε−1(θ̂ε,n − θ0)

d−→ N
(
0,K(θ0)−1A(θ0)(K∗(θ0))−1

)
.

3. Examples

In this section, we consider two kinds of non-linear models and examine the asymp-
totic behaviour of the estimator proposed in section 2 through simulations. We generate
1000 independent sample paths with θ = θ0 (true parameter value) and the initial value
x0. In order to evaluate the estimator (θ̂ε,n), we also examine the estimator in corollary
1 of Genon-Catalot (1990) and the estimator in Laredo (1990), which are called the sim-
ple estimator (θ̂(S)

ε,n ) and Laredo’s estimator (θ̂(L)
ε,n ) respectively in this section. For each

of the three estimators, its mean and standard deviation are computed. The simulations
are done for each ε = 0.1, 0.05, 0.01 and n = 5, 10, 50, with the Euler-Maruyama scheme,
see Kloeden and Platen (1992).
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3.1. Non-linear model

Consider a non-linear model defined by the following stochastic differential equation

dXt = −θ tan Xtdt + εdwt,

X0 = x0,

where x0 and ε are known constants and θ is an unknown parameter. Here we assume
that Xt 6= mπ/2 (m = 0, 1, . . .). The non-trivial eigenfunction is φ(x, θ, ε) = sin(x) and
its eigenvalue is λ(θ, ε) = θ + ε2/2. The martingale estimating function based on an
eigenfunction is given by

Mε,n(θ) = −
n∑

k=1

tan Xtk−1

[
sin Xtk

− exp
{
− 1

n

(
θ +

ε2

2

)}
sin Xtk−1

]
,

and one has the estimator

θ̂ε,n = n

{
log

(
n∑

k=1

tanXtk−1 sin Xtk−1

)
− log

(
n∑

k=1

tan Xtk−1 sin Xtk

)}
− ε2

2
.

By Theorem 2.3, the asymptotic variance of ε−1(θ̂ε,n − θ0) is as follows.

K(θ0)−1A(θ0)(K∗(θ0))−1 =

∫ 1

0
sin2 X0

s ds
(∫ 1

0
sin X0

s

cos X0
s
ds

)2 ,

where X0
s is a solution of the ordinary differential equation: dX0

s = −θ0 tanX0
s ds.

Table 1 shows the means and standard deviations of simulated values. We set θ = 2
and x0 = 1/2. When n ≤ 10, θ̂

(S)
ε,n has a considerable bias and θ̂

(L)
ε,n has a little small

bias, while θ̂ε,n is better than the others. Compared with those of θ̂
(S)
ε,n and θ̂

(L)
ε,n , the

standard deviations of θ̂ε,n get a little greater because θ̂ε,n is not asymptotically efficient.
However, θ̂ε,n gives satisfactory approximation in all cases.

3.2. The radial Ornstein-Uhlenbeck process

We consider another non-linear model defined by the stochastic differential equation

dXt =
(

θ

Xt
−Xt

)
dt + εdwt,

X0 = x0,

where x0 and ε are known constants and θ is an unknown parameter. Here we assume
that the state space is the positive real line. This model is called the radial Ornstein-
Uhlenbeck process. The eigenfunctions are φi(x, θ, ε) = L

(θ/ε2−1/2)
i (x2/ε2), where L

(ν)
i is

the ith-order Laguerre polynomial with parameter ν, and the associated eigenvalues are
{2i : i = 1, 2, . . .}(Karlin and Taylor (1981), p.333). The first non-trivial eigenfunction
is φ(x, θ, ε) = (θ + ε2/2) − x2 with eigenvalue λ(θ, ε) = 2. We obtain the following
martingale estimating function.

Mε,n(θ) =
n∑

k=1

1
Xtk−1

[(
θ +

ε2

2

)
−X2

tk
− e−

2
n

{(
θ +

ε2

2

)
−X2

tk−1

}]
.
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Table 1: (Non-linear model) The mean and standard deviation (s.d.) of the three
estimators determined from 1000 independent simulated sample paths for θ = 2, x0 =
1/2.

θ̂
(S)
ε,n θ̂

(L)
ε,n θ̂ε,n

n ε mean s.d. mean s.d. mean s.d.
5 0.10 1.619732 0.244242 1.916941 0.350186 2.046181 0.399759
5 0.05 1.604015 0.122962 1.927802 0.176971 2.009593 0.196568
5 0.01 1.601109 0.024705 1.934346 0.035514 2.001343 0.039226
10 0.10 1.820309 0.306519 1.963445 0.373302 2.050758 0.393158
10 0.05 1.793241 0.153053 1.976303 0.188003 2.011086 0.193620
10 0.01 1.786957 0.030637 1.983474 0.037636 2.001493 0.038591
50 0.10 2.005406 0.368952 1.974965 0.377853 2.053692 0.388012
50 0.05 1.965942 0.183091 1.991505 0.190903 2.011772 0.191976
50 0.01 1.956236 0.036568 2.000019 0.038265 2.001479 0.038305

We then have the estimator,

θ̂ε,n =

∑n
k=1 X2

tk
X−1

tk−1
− e−

2
n

∑n
k=1 Xtk−1

(1− e−
2
n )

∑n
k=1 X−1

tk−1

− ε2

2
.

The asymptotic variance of ε−1(θ̂ε,n − θ0) is given by

K(θ0)−1A(θ0)(K∗(θ0))−1 =
(∫ 1

0

1
X0

s

ds

)−2

,

where X0
s is a solution of the ordinary differential equation, dX0

t =
(
θ0/X0

t −X0
t

)
dt.

The results with θ = 10 and x0 = 3 are given in Table 2. Even if n = 5, both
θ̂
(L)
ε,n and θ̂ε,n are unbiased, while θ̂

(S)
ε,n , has a small bias. Although θ̂ε,n has a little

greater standard deviation than the others, as the theory shows, it gives as good an
approximation as θ̂

(L)
ε,n . When n = 50, there seems no difference between the three

estimators.

4. Conclusions

This paper has proposed a martingale estimating function based on an eigenfunction
for a small diffusion process using the same technique as in Kessler and Sørensen (1999).
Moreover, it has been shown that an estimator obtained from the estimating function
has consistency and asymptotic normality. As seen from the assumption A4, in order
to obtain the martingale estimating function, it is important to get an eigenfunction
φ(x, θ, ε) with an eigenvalue λ(θ, ε) such that Lθφ(x, θ, ε) = −λ(θ, ε)φ(x, θ, ε). Since
this is the second order differential equation, in general, it is not easy to solve this
equation. However, for several diffusion models, we can refer section 13 of chapter 15 in
Karlin and Taylor (1981). See also Kessler and Sorensen (1999). ¿From the viewpoint
of theory, an extension of this paper to multivariate case is straightforward. In practice,
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Table 2: (The radial Ornstein-Uhlenbeck process) The mean and standard deviation
(s.d.) of the three estimators determined from 1000 independent simulated sample paths
for θ = 10, x0 = 3.

θ̂
(S)
ε,n θ̂

(L)
ε,n θ̂ε,n

n ε mean s.d. mean s.d. mean s.d.
5 0.10 9.915631 0.271403 10.003568 0.299242 10.010793 0.301986
5 0.05 9.908870 0.135665 9.998501 0.149627 10.005073 0.150860
5 0.01 9.904811 0.027127 9.994905 0.029927 10.001282 0.030152
10 0.10 9.966824 0.286189 10.008460 0.300001 10.011606 0.301243
10 0.05 9.959136 0.143081 10.003445 0.150052 10.005410 0.150511
10 0.01 9.954612 0.028614 9.999736 0.030019 10.001342 0.030086
50 0.10 10.005790 0.298375 10.010167 0.300978 10.012232 0.301648
50 0.05 9.997270 0.149186 10.005154 0.150546 10.005693 0.150739
50 0.01 9.992323 0.029837 10.001322 0.030118 10.001394 0.030135

however, it can be difficult to obtain an eigenfunction with an eigenvalue satisfying the
multivariate version of the assumption A4. For a multivariate diffusion process with a
small noise, we will need to consider a more convenient procedure.

5. Proofs

Let R be a function Θ̄ × (0, 1] ×R → R for which there exists a constant C > 0
such that |R(θ, a, x)| ≤ aC(1 + |x|)C for all θ, a, x. We define Gn

k = σ(ws; s ≤ tk). Let
C̃1,1
↑ (R×Θ;R) be the space of all functions f : R×Θ → R such that (i) f is continuously

differentiable with respect to x and θ, (ii) f and its derivatives are of polynomial growth
in x uniformly in θ. Let Q(x, θ) = φ(x, θ, ε)− φ(Xtk−1 , θ, ε). In order to prove Lemmas
2.1 and 2.2, we will use the following two lemmas.

Lemma 5.1. Suppose that A1–A4 hold true. Then, for i = 1, . . . , p,

Eθ0 [Q(Xtk
, θ)|Gn

k−1] =
1
n

b(Xtk−1 , θ0)∂xφ(Xtk−1 , θ, ε) (2)

+R

(
θ,

ε2

n
,Xtk−1

)
+ R

(
θ,

1
n2

, Xtk−1

)
,

Eθ0 [δiQ(Xtk
, θ)|Gn

k−1] =
1
n

b(Xtk−1 , θ0)∂xδiφ(Xtk−1 , θ, ε) (3)

+R

(
θ,

ε2

n
,Xtk−1

)
+ R

(
θ,

1
n2

, Xtk−1

)
,

Eθ0 [(Q(Xtk
, θ))2|Gn

k−1] =
ε2

n
[σσ∗](Xtk−1)(∂xφ(Xtk−1 , θ, ε))

2 (4)

+R

(
θ,

1
n2

, Xtk−1

)
,

Eθ0 [(δiQ(Xtk
, θ))2|Gn

k−1] =
ε2

n
[σσ∗](Xtk−1)(∂xδiφ(Xtk−1 , θ, ε))

2 (5)
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+R

(
θ,

1
n2

, Xtk−1

)
.

Lemma 5.2. Let f ∈ C̃1,1
↑ (R× Θ̄;R). Assume A1–A4. Then, uniformly in θ ∈ Θ̄,

(i)
1
n

n∑

k=1

f(Xtk−1 , θ)
p−→

∫ 1

0

f(X0
s , θ)ds,

(ii)
n∑

k=1

f(Xtk−1 , θ)Q(Xtk
, θ)

p−→
∫ 1

0

f(X0
s , θ)b(X0

s , θ0)∂xφ(X0
s , θ, 0)ds,

(iii) for i = 1, . . . , p,

n∑

k=1

f(Xtk−1 , θ)(δiQ)(Xtk
, θ)

p−→
∫ 1

0

f(X0
s , θ)b(X0

s , θ0)∂xδiφ(X0
s , θ, 0)ds.

Proof of Lemma 5.1. By the same method as the proof of Lemma 7 in Kessler
(1997), we prove Lemma 5.1. An easy computation enables us to get

Lθ0Q(x, θ) = b(x, θ0)∂xQ(x, θ) +
1
2
ε2[σσ∗](x)∂2

xQ(x, θ)

= b(x, θ0)∂xφ(x, θ, ε) +
1
2
ε2[σσ∗](x)∂2

xφ(x, θ, ε).

It then follows that

Eθ0 [Q(Xtk
, θ)|Gn

k−1] = Q(Xtk−1 , θ) +
1
n

Lθ0Q(Xtk−1 , θ)

+
∫ 1

n

0

∫ u1

0

Eθ0 [L
2
θ0

Q(Xtk−1+u2 , θ)|Gn
k−1]du2du1

=
1
n

b(Xtk−1 , θ0)∂xφ(Xtk−1 , θ, ε)

+R

(
θ,

ε2

n
,Xtk−1

)
+ R

(
θ,

1
n2

, Xtk−1

)
.

This completes the proof of (2). Similarly, we can prove (3). ut
Next, we see that

Eθ0 [(Q(Xtk
, θ))2|Gn

k−1]

= (Q(Xtk−1 , θ))
2 +

1
n

Lθ0(Q(Xtk−1 , θ))
2

+
∫ 1

n

0

∫ u1

0

Eθ0 [L
2
θ0

(Q(Xtk−1+u2 , θ))
2|Gn

k−1]du2du1

=
ε2

n
[σσ∗](Xtk−1)(∂xφ(Xtk−1 , θ, ε))

2 + R

(
θ,

1
n2

, Xtk−1

)
.

This completes the proof of (4). Similarly, (5) can be proved. ut
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Proof of Lemma 5.2. (i) In the same way as in the proof of Lemma 8 in Kessler
(1997), we can prove (i). See also Lemma 4-(i) in Uchida (2004). ut

(ii) Let ξk(θ) = f(Xtk−1 , θ){Q(Xtk
, θ)− b(Xtk−1 , θ0)∂xφ(Xtk−1 , θ, ε)/n}. It follows

from Lemmas 5.1 and 5.2–(i) that

n∑

k=1

E[ξk(θ)|Gn
k−1] =

n∑

k=1

{
R

(
θ,

ε2

n
,Xtk−1

)
+ R

(
θ,

1
n2

, Xtk−1

)}
p−→ 0,

n∑

k=1

E[(ξk(θ))2|Gn
k−1] =

n∑

k=1

{
R

(
θ,

ε2

n
,Xtk−1

)
+ R

(
θ,

1
n2

, Xtk−1

)}
p−→ 0.

By Lemma 9 in Genon-Catalot and Jacod (1993), it can be proved that
∑n

k=1 ξk,ε(θ)
p−→

0. In order to show the tightness of
∑n

k=1 ξk,ε(·), it suffices to prove the following
inequalities (cf. Theorem 20 in Appendix I in Ibragimov and Has’minskii (1981) or
Lemma 3.1 in Yoshida (1990)): there exists a constant m such that m > p/2, and for
any θ, θ1, θ2 ∈ Θ̄,

Eθ0




(
n∑

k=1

ξk,ε(θ)

)2m

 ≤ C, (6)

Eθ0




(
n∑

k=1

ξk,ε(θ2)−
n∑

k=1

ξk,ε(θ1)

)2m

 ≤ C|θ2 − θ1|2m, (7)

where C is a constant independent of θ, θ1, θ2, ε and n. By Ito’s formula, one has

ξk(θ) = f(Xtk−1 , θ)
∫ tk

tk−1

Lθ0φ(Xtk
, θ, ε)ds

+εf(Xtk−1 , θ)
∫ tk

tk−1

r∑

j=1

(∂xφ)(Xs, θ, ε)σj(Xs)dwj
s

− 1
n

f(Xtk−1 , θ)b(Xtk−1 , θ0)∂xφ(Xtk−1 , θ, ε)

=: Ak,1(θ) + Ak,2(θ)−Ak,3(θ) (say).

In the same way as the proof of Lemma 1 in Yoshida (1992b), we will estimate Ak,1(θ),
Ak,2(θ) and Ak,3(θ). By Lemma 6 in Kessler (1997),

Eθ0




∣∣∣∣∣
n∑

k=1

Ak,1(θ)

∣∣∣∣∣

2m



≤ n2m−1
n∑

k=1

Eθ0




(∫ tk

tk−1

|f(Xtk−1 , θ)Lθ0φ(Xtk
, θ, ε)|ds

)2m



≤
n∑

k=1

∫ tk

tk−1

Eθ0

[|f(Xtk−1 , θ)|2mEθ0 [|Lθ0φ(Xtk
, θ, ε)|2m|Gn

k−1]
]
ds

≤ n · 1
n
· C.
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It follows from the Burkholder-Davis-Gundy inequality that

Eθ0




∣∣∣∣∣
n∑

k=1

Ak,2(θ)

∣∣∣∣∣

2m



≤ C2mε2mEθ0

[(
n∑

k=1

∫ tk

tk−1

f(Xtk−1 , θ)
2(∂xφ)(Xs, θ, ε)[σσ∗](Xs)ds

)m]

≤ C2mε2m
n∑

k=1

∫ tk

tk−1

Eθ0 [f(Xtk−1 , θ)
2mEθ0 [((∂xφ)(Xs, θ, ε)[σσ∗](Xs))m|Gn

k−1]]ds

≤ C2mε2mC,

where Cm denotes a constant which depends on an integer m. Moreover, we see that

Eθ0




∣∣∣∣∣
n∑

k=1

Ak,3(θ)

∣∣∣∣∣

2m

 ≤ 1

n

n∑

k=1

Eθ0

[∣∣f(Xtk−1 , θ)b(Xtk−1 , θ0)∂xφ(Xtk−1 , θ, ε)
∣∣2m

]

≤ C.

Consequently, we obtain the inequality (6) and similarly the inequality (7) can be proved.
This completes the proof of (ii). By the same fashion, we can prove (iii). ut

Proof of Lemma 2.1. It follows from an easy computation that

Kij
ε,n,l(θ) =

n∑

k=1

(δjδib)(Xtk−1 , θ)[σσ∗]−1(Xtk−1)
[
φ(Xtk

, θ, ε)− φ(Xtk−1 , θ, ε)
]

+
n∑

k=1

(δjδib)(Xtk−1 , θ)[σσ∗]−1(Xtk−1)(1− e−λ(θ,ε)/n)φ(Xtk−1 , θ, ε)

+
n∑

k=1

(δib)(Xtk−1 , θ)[σσ∗]−1(Xtk−1)
[
δjφ(Xtk

, θ, ε)− δjφ(Xtk−1 , θ, ε)
]

+
n∑

k=1

(δib)(Xtk−1 , θ)[σσ∗]−1(Xtk−1)(1− e−λ(θ,ε)/n)δjφ(Xtk−1 , θ, ε)

+
n∑

k=1

(δib)(Xtk−1 , θ)[σσ∗]−1(Xtk−1)
(δjλ)(θ, ε)

n
e−λ(θ,ε)/nφ(Xtk−1 , θ, ε).

By Lemma 5.2, we complete the proof. ut

Proof of Lemma 2.2. The predictable quadratic variation of the martingale
ε−1Mε,n(θ0) is

ε−2 < M i(θ0),M j(θ0) >n

= ε−2
n∑

k=1

(δib)(Xtk−1 , θ0)[σσ∗]−2(Xtk−1)v(Xtk−1 , θ0)(δjb)(Xtk−1 , θ0),
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where v(Xtk−1 , θ0) = Eθ0 [(φ(Xtk
, θ0, ε)− e−λ(θ0,ε)/nφ(Xtk−1 , θ0, ε))2|Xtk−1 ]. Note that

Lθ0(φ(x, θ0, ε))2 = 2(−λ(θ0, ε))(φ(x, θ0, ε))2 + ε2[σσ∗](x)(∂xφ)2(x, θ0, ε),

and that for l ≥ 2,

Ll
θ0

(Q(x, θ0))2 = 2(−λ(θ0, ε))lφ(x, θ0, ε)Q(x, θ0) + (2l − 2)(−λ(θ0, ε))l(φ(x, θ0, ε))2

+R(θ0, ε
2, x).

By using the same method as the proof of Lemma 5.1, it follows that for any m ≥ 1,

v(Xtk−1 , θ0) = Eθ0 [(Q(Xtk
, θ0) + (1− e−λ(θ,ε)/n)φ(Xtk−1 , θ0, ε))2|Xtk−1 ]

= Eθ0 [(Q(Xtk
, θ0))2|Xtk−1 ]− ((1− e−λ(θ0,ε)/n)φ(Xtk−1 , θ0, ε))2

=
2m∑

l=1

1
l!nl

Ll
θ0

(Q(Xtk−1 , θ0))2

−(1− 2e−λ(θ0,ε)/n + e−2λ(θ0,ε)/n)(φ(Xtk−1 , θ0, ε))2

+R

(
θ0,

1
n2m+1

, Xtk−1

)

=
ε2

n
[σσ∗](Xtk−1)(∂xφ)2(Xtk−1 , θ0, ε) +

2m∑

l=2

1
l!nl

Ll
θ0

(Q(Xtk−1 , θ0))2

−
2m∑

l=2

(2l − 2)(−λ(θ0, ε))l

l!nl
(φ(Xtk−1 , θ0, ε))2 + R

(
θ0,

1
n2m+1

, Xtk−1

)

=
ε2

n
[σσ∗](Xtk−1)(∂xφ)2(Xtk−1 , θ0, ε)

+R

(
θ0,

ε2

n2
, Xtk−1

)
+ R

(
θ0,

1
n2m+1

, Xtk−1

)
.

Therefore, ε−2 < M i, M j >n
p−→ Aij(θ0). By the central limit theorem for martingales,

one has that ε−1Mε,n(θ0)
d−→ N(0, A(θ0)). This completes the proof. ut

Proof of Theorem 2.3. Now that Lemmas 2.1 and 2.2 have been already proved,
it is not difficult to prove Theorem 2.3. Using the same method as the proof of Theorem
6.1 in Sakamoto and Yoshida (1999, 2004), we can show the existence, the uniqueness
and the consistency of θ̂ε,n. For the asymptotic normality of θ̂ε,n, we can prove it along
the same lines as the proof of Theorem 1 in Uchida (2004). This completes the proof.

ut
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