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Abstract

McIntyre (1952) proposed a cost-effective survey sampling method that is cur-
rently known as ranked set sampling (RSS) in the literature. In this method a fairly
large number of randomly identified sampling units are partitioned into small sub-
sets of the same size. The units of each subset are ranked separately with respect
to the characteristic of interest without obtaining their actual measurements. The
information used for this purpose is supposed to be easily available and inexpen-
sive, and exactly one unit of each subset with a specified rank is quantified. As
the ranking induces stratification on the population it provides a more structured
sample than a simple random sample does with the same size. This sample, in
turn, yields more efficient estimators of many parameters of interest than a simple
random sample of the same size does. Moreover, its implementation needs only the
ranking of the randomly selected units, which does not depend upon the method
employed for determining the ranking. Thus, one can use any or all the available
information (in absence of actual quantification) including subjective judgment for
the purpose. Interestingly, by taking advantage of the experience and expertise
of the field personnel it exploits the auxiliary information that is not effectively
utilized by standard probability survey sampling designs. Even in the presence of
ranking error it provides unbiased and more efficient estimators of various popu-
lation parameters. It has been successfully used in the several areas on interest.
Recently, it has been used under the parametric setting for estimating the param-
eters of several known distributions. This paper discusses its theory, methods and
applications. Apart from McIntyre’s method of ranked set sampling (MRSS) there
are some more RSS methods. In this paper we also discuss them with some newly
developed estimators. This work may be of particular interest for those who have
been looking for a cost-effective survey sampling technique.

Key Words and Phrases: Cost-effectiveness, Equal and Unequal Allocation, Ranking Informa-

tion and Error, Relative Precision, Simple Random Sampling, Stratification.

1. Introduction

McIntyre (1952) proposed a method of sampling that synthesizes the convenience
of purposive sampling with the control of simple random sampling (SRS) and referred
to it as a method of unbiased selective sampling using ranked set. Contrary to classical
approaches that presume stratification of a population it works at stratification of sam-
ples. Without providing a rigorous mathematical background he pointed out that (i)
the mean of the quantifications provided an unbiased estimator of the population mean
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regardless of the error involved in ranking the randomly drawn units and (ii) for typical
unimodal distributions the mean obtained under perfect ranking was about half of the
set size plus half times as efficient as the mean of a simple random sample of the same
size. But the rigorous mathematical support to this technique, without referring to the
McIntyre’s work, was given by Takahasi and Wakimoto (1968) and, independently, by
Dell (1969) while investigating the McIntyre’s contribution. Like McIntyre, Takahasi
and Wakimoto also did not provide any name to the method and considered it as a
method of unbiased estimation of the population mean based on the sample stratified by
means of ordering. The McIntyre’s method appears to have lain dormant for almost
fourteen years until Halls and Dell (1966) conducted a field survey to examine its ef-
fectiveness for estimating weights of browse and of herbage in a pine hardwood forest.
In fact, they coined the name ranked set sampling (RSS) for this technique and found
empirically that it was more efficient than SRS. As errors may get involved while or-
dering due to dependence on the ranker’s judgment, Dell and Clutter (1972) showed
that the RSS estimator of a population mean remains unbiased and is at least as ef-
ficient as the SRS estimator with the same number of quantifications. They pointed
out that its performance would depend upon the characteristics of the population and
also on the magnitude of errors in ranking. This method is useful where exact quan-
tification of sampling units with respect to the variable of interest is difficult and/or
expensive, but the ranking of randomly selected units in subsets could be performed
conveniently. The ranking is carried out with respect to the characteristic of interest
by means of some crude method like visual perception that does not require the exact
measurements. It, in turn, exploits the experience and expertise of the field personnel
for improving upon the efficiency of SRS. One of its strengths is flexibility and model
robustness regarding the nature of the auxiliary information needed for ranking. For
achieving the cost-effectiveness the method presumes that the quantification rather than
identification, acquisition and ranking of sampling units is the main component of the
total sampling cost. This appears to be a pragmatic approach for a cost-effective survey
sampling technique. Though it was initially proposed for estimating the mean pasture
yields more efficiently, it has been used in other sampling situations advantageously. In a
recent paper Muttlak and Al-Saleh (2000) discussed some recent developments in RSS.
Patil, Sinha and Taillie (1999) provided an up-to-date bibliography; Patil, Sinha and
Taillie (1994b) presented a comprehensive review of the literature with its reported and
suggested applications. They showed its use for estimating the level of concentration of
polychlorinated biphenyls (PCB) in soil while Johnson, Patil and Sinha (1993) described
its applications in vegetation research and Mode, Conquest and Marker (1999) discussed
its relevance for ecological research. Bohn (1996) presented a review of nonparametric
RSS methodology. For estimating the average milk yield the technique is used by Al-
Saleh and Al-Shrafat (2001). As it presumes sampling from an infinite population Patil,
Sinha and Taillie (1995), and Takahasi and Futatsuya (1988) investigated its character-
istics under a finite population scenario. Apart from visual perceptions, ranking may be
carried out on the basis of remotely sensed information, prior information, results of ear-
lier sampling episodes, rank correlated covariates, expert-opinion/expert systems, etc.,
or some combinations of these methods. It is interesting to note that it needs only the
ordering of the randomly drawn units with respect to the variable of interest in subsets,
and this does not depend upon the method employed to achieve the ordering. Con-
trary to this procedure other techniques like ratio and regression methods that utilize
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the auxiliary information for improving upon the SRS estimator of a population mean
require very detailed specifications for the outside information. Besides the McIntyre’s
RSS (MRSS) method, Takahasi (1970) developed an RSS method that uses the ranking
information at the estimation stage unlike MRSS that needs the information at the se-
lection stage. But it is slightly less efficient than the former. On ignoring the ranking
information one gets a simple random sample from a Takahasi’s RSS (TRSS). Further,
multiple characteristics may be estimated more efficiently following these RSS methods,
see Norris, Patil and Sinha (1995), and Patil, Sinha and Taillie (1994c). Moreover, Nor-
ris, Patil and Sinha (1995) proposed some modifications to TRSS and named it as a
modified Takahasi’s RSS (MTRSS). It is probably the first paper to apply TRSS and
MTRSS in real life situations. These, in turn, have enhanced its applicability tremen-
dously to deal with real-life sampling and monitoring situations more effectively. Ridout
(2002) extended the use of the sampling technique in this direction further. Sinha et al.
(2001) compared the performances of TRSS and MTRSS for estimating a population
mean as compared with the linear regression (LR) estimator with and without double
sampling under perfect and concomitant ranking scenarios. This investigation finds the
RSS methods better than the LR estimators to estimate a population mean when the
correlation between the main variable and the concomitant variable is not very high.
Though the MRSS estimator is slightly more efficient than the MTRSS estimator, other
advantages of the latter offset this loss. Also, like the former this method reveals its
maximum potentiality under perfect ranking scenario. Moreover, out of the two TRSS
methods the modified technique performs slightly better than the original one, and it
is more suited to deal with real life situations. Under the nonparametric set up Bohn
and Wolfe (1992,1994), and Hettmansperger(1995), and Koti and Babu (1996) used the
sampling method for developing MRSS based nonparametric methods. Recently, MRSS
method has been used for estimating parameters of various known distributions. See
Lam, Sinha, and Wu (1994 and 1995), Stokes (1995), Bhoj and Ahsanullah (1996),
Chuiv and Sinha (1998). While contributing to this area Bhoj (2001a, 2000 a and b,
1999 a and b, 1997 a, b and c) has also introduced some new RSS methods for esti-
mating parameters. These distributions belong to the family of random variables with
cumulative distribution function of the form F [(x − µ)/σ] with µ and σ as the loca-
tion and scale parameters respectively. It has also been used for testing of hypothesis.
In this area Shen (1994b) employed it for testing a normal mean, and Shen and Yuan
(1996-97) used it for drawing inference about it. It is employed by Abu-Dayyeh and
Muttlak(1996) for conducting hypothesis tests on the scale parameter of the exponen-
tial and uniform distributions while Muttlak and Abu-Dayyeh (1998) considered it for
testing some hypotheses about normal distribution. In this paper an attempt is made
to present a critical review of its theory, methods and applications in both parametric
and nonparametric framework. This work may be of some particular interest for both
theoretical and applied statisticians.

2. Ranked set sampling methods

The two main RSS methods are known as McIntyre’s RSS (MRSS) and Takahasi’s
RSS (TRSS). These are described below.
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2.1. McIntyre’s RSS methods

For obtaining the McIntyre’s RSS first of all m random samples with m units in
each sample are selected from a population with mean, µ and a finite variance, σ2.
This is the same as drawing m2 units randomly and then these are partitioned into
m equal samples. The m units of each subset are ranked with respect to the variable
of interest without using their exact measurements. For this purpose some outside
information like visual perception, past experience, etc., are used. Using this ranking
information the unit with the smallest rank is quantified from the first subset; the unit
with the second smallest rank is measured from the second subset, and this process of
quantification is continued until the unit with the mth rank is measured from the mth
subset. This yields m measurements with each of the first m ranks, and these constitute
an MRSS of size m. For obtaining a larger sample of size mr the whole procedure is
repeated r times. Here, m is referred to as the set size while r is called as the number
of cycles. In terms of usual notations we get the sample of size, n = mr from the
population with its size, N ≥ m2r. This procedure is called as MRSS with balanced
(equal) allocation because each rank order consists of r observations. Further, one could
utilize the prior information, if available, about the population for obtaining a more
efficient estimator of the population parameter of interest. For a skewed population the
number of quantifications of the ith rank, i.e., ri is taken as proportional to the standard
deviation of the rank order, σ(i:m). Because of unequal number of quantifications this
allocation may be termed as MRSS with unbalanced allocation (MRSSUA).

2.2. Takahasi’s RSS Method

After having selected m2 units randomly from an infinite population and arranged
them into m sets with m units each, a unit is randomly selected from each set. Each so
selected unit is then quantified and a rank between 1 and m (both inclusive) is assigned
to its quantification. Obviously, one may not get the same frequency for each rank order
as in the case of the MRSS method and also, there is a possibility of zero frequency
for a rank order even after selecting m2r units from the population. To deal with these
predicaments Takahasi (1970) suggested the McIntyre’s method for collecting samples in
one cycle. This, in turn, ensures that every rank order gets at least one quantification.
This works well so long as one is interested only to estimate the population mean. But
this does not help while estimating the variance of the estimator because in this case
the variance of each rank order is needed. In view of these facts Norris, Patil and Sinha
(1995) suggested to use McIntyre’s method in two cycles while using TRSS and referred
to it as modified TRSS (MTRSS). This increases its adaptation.

3. RSS with concomitant ranking

RSS presumes that the sampling units are correctly ranked with respect to the vari-
able of interest either before (McIntyre’s method) or after its quantification (Takahasi’s
method). This is called perfect ranking (PR) scenario, but this may not be possible
always while dealing with real life situations effectively. In these situations one could
take help of some other characteristic for ranking, which is supposedly inexpensive,
easily available and highly correlated with the main characteristic of interest. For ex-
ample, while ranking households with respect to their income one may take help of
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type/quality/appearance of the houses in which they live in, the number of adult mem-
bers in households, etc., when perfect ranking is not possible directly. Unlike perfect
ranking scenario the ranking so obtained may be referred to as concomitant ranking
(CR) because of its dependence on a concomitant variable. In the terminology of clas-
sical sampling this characteristic is called as an auxiliary variable, and we may denote
it by Y while the main variable is represented by X. See Patil, Sinha and Taillie (1994a
and b) for a more detailed discussion on concomitant ranking in RSS.

4. McIntyre’s estimators

Let us consider only one cycle first and suppose that X(i:m) denotes the i : m th or-
der statistic from the population, and the parentheses are used to surround the subscript
to show that X(i:m) are independent unlike the usual i : m th order statistic denoted by
Xi:m. Thus the mean of the ranked set sample, X(m), is obtained by

∑m
i=1 X(i:m)/m

while the sample mean (X) based on the same number of independent and identically
distributed (iid) quantifications is computed by

∑m
i=1 Xi:m/m. Here X(i:m) and Xi:m

have the same marginal distribution and hence equal variances. As the former are inde-
pendent while the latter are positively correlated it follows that X(m) is more efficient
than X for estimating the population mean. In general suppose that X(i:m)j denotes
the ith order statistic based on perfect ranking in the jth cycle, for i = 1, . . . ,m and
j = 1, . . . , r. Note that these are not iid in general, but for a given value of i these are so
with E(X(i:m)j) = µ(i:m) and var(X(i:m)j) = σ2

(i:m). The McIntyre’s estimator, µ̂MRSS ,
of the population mean, µ, is defined as follows:

µ̂MRSS =
1

mr

m∑

i=1

r∑

j=1

X(i:m)j . (1)

Also, if µ̂(i:m) = 1
r

∑r
j=1 X(i:m)j then

µ̂MRSS =
1
m

m∑

i=1

µ̂(i:m).

Here E(µ̂(i:m)) = µ(i:m); E(µ̂MRSS) = µ and var(µ̂(i:m)) = σ2
(i:m)/r. Thus we get

var(µ̂MRSS) =
1

m2r

m∑

i=1

σ2
(i:m). (2)

This expression is also expressed as

var(µ̂MRSS) =
1

mr

[
σ2 − 1

m

m∑

i=1

(µ(i:m) − µ)2
]
. (3)

The alternative expression is useful when the variance of the ith order statistic is not
available. If we denote the SRS estimator of the population mean with the same sample
size, n = mr by µ̂SRS and then var(µ̂SRS) = σ2

n . This suggests that var(µ̂MRSS) <
var(µ̂SRS). See Bickel (1967) and Tukey (1958) for a proof of this inequality, which
follows from the well known positively associated property of order statistics.
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4.1. Effect of set size

Takahasi and Wakimoto (1968) show that for positive integers a, b, c and d, if
n > a > c > 1 and n = ab = cd then

var(Xn) > var(X(c)d) > var(X(a)b) > var(X(n)1).

Here Xn represents the sample mean of a simple random sample of size n while X(c)d

denotes the sample mean of a ranked set sample of size cd obtained with the set size
c and the number of cycles d. This suggests for taking the largest possible set size to
derive the maximum advantage of RSS. But this may not be a pragmatic solution to
deal with the real life situations because the ranking of sampling units with respect to
the variable of interest is carried out without quantifying them. In view of the limitation
of outside information and convenience of the sampler usually the set size is taken as
three or four. However, one could consider a larger set size if this number does not pose
a problem while carrying out ranking.

4.2. Relative precision and its estimators

The relative precision (RP) of the MRSS estimator, µ̂MRSS , as compared with
simple random sample (SRS) estimator, µ̂SRS , with the same sample size, n, is computed
as follows:

RP =
var(µ̂SRS)

var(µ̂MRSS)
.

As var(µ̂SRS) = σ2

mr , this leads to

RP =
σ2

σ2
; where σ2 =

∑m
i=1 σ2

(i:m)

m
. (4)

The variance of µ̂MRSS given in equation (3) yields the expression for RP as given below:

PR =
1

1− 1
mσ2

∑m
i=1(µ(i:m) − µ)2

. (5)

An equivalent and useful measure could be relative cost (RC) and relative savings (RS).
These are defined as

RC =
1

RP
and RS = 1−RC.

An expression for RS based on equation (4) is given below:

RS =
σ2 − σ2

σ2
. (6)

An equivalent expression for RS based on equation (5) is obtained as follows:

RS =
1

mσ2

m∑

i=1

(µ(i:m) − µ)2 (7)

McIntyre (1952), and Takahasi and Wakimoto (1968) showed that 1 ≤ RP ≤ m+1
2 and

so, 0 ≤ RS ≤ m−1
m+1 . The results suggest that there is no loss due to using MRSS instead
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of SRS. Obviously, there is no gain when ranking is the same as a random ordering, i.e.,
µ(i:m) = µ. For obtaining an estimator of RP we use

E

[ r∑

j=1

(X(i:m)j − µ̂(i:m))2/(r − 1)
]

= σ2
(i:m).

An expression for the unbiased estimator of the population variance σ2 based on a ranked
set sample when the number of cycle is more than one is given by

σ̂2
MRSS =

[
mr −m + 1
m2r(r − 1)

] m∑

i=1

r∑

j=1

(X(i:m)j − µ̂(i:m))2 +
(

1
m

) m∑

i=1

(µ̂(i:m) − µMRSS)2. (8)

For this result see Stokes (1976), Patil, Sinha and Taillie (1994a and 1993b), Norris,
Patil and Sinha (1995) and Yanagawa (2000). Stokes (1980) proposed an expression for
the estimator of the population variance that is mentioned below:

s2
(m)r =

∑m
i=1

∑r
j=1(X(i:m)j − µ̂MRSS)2

mr − 1
.

Unlike the unbiased estimator this estimator of the population variance could be used
to estimate the population variance even if the number of cycle is one. It is biased but
asymptotically unbiased as m or r increases because

E(s2
(m)r) = σ2 +

∑m
i=1(µ(i:m) − µ)2

m(mr − 1)
.

An estimator of RP, based on unbiased estimators of σ2 and σ2
(i:m), is obtained as follows:

R̂P =
mr − (m− 1)

mr
+

(r − 1)
∑m

i=1(µ̂(i:m) − µMRSS)2∑m
i=1

∑r
j=1(X(i:m)j − µ̂(i:m))2

. (9)

The Stoke’s biased estimator of σ2 yields an estimator of RP as given below:

R̂P =
[
m(r − 1)
(mr − 1)

] ∑m
i=1(X(i:m)j − µMRSS)2∑m

i=1

∑r
j=1(X(i:m)j − µ̂(i:m))2

. (10)

But these estimators are useful only when the number of cycles, i.e., r is more than one.

4.3. Some more efficient estimators

(a) Skewed distributions
Contrary to the approach of the same sample size for each rank order, McIntyre

(1952) suggested to take the sample size of each rank order proportional to its standard
deviation while sampling asymmetrical populations .The former may be referred to as
equal allocation approach while the latter may be called as unequal allocation method.
It means that if ri denotes the number of sets having quantified units with rank i, then
ri ∝ σ(i:m) for i = 1, . . . ,m. This leads to

ri =
nσ(i:m)∑m
i=1 σ(i:m)

; i = 1, . . . ,m. (11)
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The RSS estimator, µ̂MRSSUA, of the population mean, µ, based on the unequal alloca-
tion of samples (also called unbalanced allocation) is given by

µ̂MRSSUA =
1
m

m∑

i=1

Ti

ri
and var(µ̂MRSSUA) =

1
m2

m∑

i=1

σ2
(i:m)

ri

where Ti shows the sum of the quantification of the ri units having ith rank order. On
putting the value of ri from equation (11) into the expression for var(µ̂MRSSUA) we
have

var(µ̂MRSSUA) =
(σ)2

n
(12)

where σ =
∑m

i=1
σ(i:m)

m .
The relative precision (RPua) of µ̂MRSSUA relative to µ̂SRS with the same number

of quantifications is given below:

RPua =
var(µ̂SRS)

var(µ̂MRSSUA)
.

This yields that

RPua =
σ2/n

∑m
i=1

σ2
(i:m)

ri
/m

. (13)

This could also be expressed as

RPua =
(

σ

σ

)2

. (14)

See Patil, Sinha and Taillie (1993b) for these results. Further, it is interesting to note
that

var(µ̂MRSS)− var(µ̂MRSSUA) =
∑m

i=1(σ(i:m) − σ)2

mn
.

This proves that RPua ≥ RP . Takahasi and Wakimoto (1968) show that 0 ≤ RPua ≤ m.
For showing the relative savings due to these MRSS methods we consider the standard
Pareto and the standard lognormal distributions, two well known asymmetrical distribu-
tions with wide applications in real life situations. The variances of the order statistics
of the former distribution computed by Malik (1966) while those of the latter given by
Gupta, McDonald and Galarneau (1974) are used.

Table 1. Relative savings (RS) in percentage due to the RSS estimators of the
population mean based on the unequal (Neyman) and the equal allocations (under
parentheses) as compared with the corresponding SRS estimator while sampling the

standard Pareto population with parameter, k.
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Set Size k
(m) 2.5 3.0 3.5 4.0 4.5
2 39 37 37 36 36

(7) (12) (14) (16) (17)
3 56 54 53 53 52

(13) (19) (24) (26) (28)
4 64 63 62 62 61

(17) (25) (30) (33) (35)
5 70 69 68 68 68

(19) (29) (35) (38) (40)

Table 2. Relative savings (RS) in percentage due to the RSS estimators of the
population mean based on the unequal (Neyman) and the equal allocations as
compared with the corresponding SRS estimator while sampling the standard

lognormal population.

Allocation Set Size
2 3 4 5

Unequal 37 53 62 68
Equal 16 25 32 37

Though the unequal allocation based on Neyman’s approach improves the perfor-
mance of RSS further, this requires the sample size for each rank order to be proportional
to its standard deviation that is usually unavailable. This impasse, in turn, makes its
application difficult. This scenario appears to be the same as that of stratified sampling,
which suggests to use the result of previously conducted similar surveys or the result of
a preliminary survey based on a smaller size. Kaur, Patil and Taillie (1997) considered
these issues and examined two right- tail allocation models that give more quantification
to (i) the largest order statistic and (ii) the two largest order statistics. These perform
better than the equal allocation model.

Estimator of RPua

For obtaining an estimator of the RPua we use the estimator of the population
variance and that of the population variance of the ith rank order based on unequal
sample sizes as given below.

σ̂2
MRSSUA =

m∑

i=1

[
m(ri − 1) + 1
m2ri(ri − 1)

] ri∑

j=1

(X(i:m)j −X(i:m))2

+
(

1
m

) m∑

i=1

(X(i:m) −X(m)r)2. (15)

σ̂2
(i:m)UA =

∑ri

j=1(X(i:m)j − µ̂(i:m)UA)2

ri − 1
when µ̂(i:m)UA =

1
m

m∑

i=1

Ti

ri
. (16)

See Norris, Patil and Sinha (1995).

(b) Symmetric Distributions
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Though MRSS with unequal allocation based on Neyman criterion shows a con-
siderable gain for skewed distributions, its gains for symmetrical distributions are very
marginal. The important point to note is that all symmetric distributions do not have
the same pattern of the variances of order statistics. One could notice two patterns
of variances of symmetric distributions. Under one family of symmetric distributions
the variances of the order statistics increase with the rank order until the middle posi-
tion, and then they decrease to the end (for example, Uniform (0,1), Unfolded Weibull
(2,0,1), Symmetric Beta (2) etc.) while for the other family the variances decrease with
the rank order until the middle and then they increase to have a symmetric pattern (for
example Normal (0,1), Logistic (0,1), Laplace (0,1), etc.). Kurtosis seems to discrim-
inate between the two families of symmetric distributions. For these distributions the
optimal allocation quantifies the least variable rank order (s) for giving a high precision
estimator of the population mean. For the first family of distributions having uniform
and other distributions we need to quantify the extreme order statistics to obtain the
minimum variance of the estimator of the population mean. For getting the minimum
variance in the other family of distributions having normal and other distributions we
quantify either the middle order statistic or the two closest middle order statistics in
1:1 proportion depending on whether the set size is odd or even. Because of this reason
Yanagawa and Chen (1980) referred to the estimator based on these order statistics as
the ”median-mean” estimator. For a detailed discussion on these allocations see Patil,
Sinha and Taillie (1994a), and Kaur, Patil and Taillie (2000). For the first family of the
distributions the RPext denotes the RP of the RSS estimator of the population mean as
compared with the corresponding SRS estimator. It is defined below:

RPext =
σ2

σ2
(1:m)

.

Table 3 shows that the performance of equal and Neyman allocation is almost the same
while the extreme allocation model performs better than both. Though the values of all
the three relative precisions increase with set size, there is no effect of these allocations
when the set size is two. For the second family of symmetric distributions RPmid gives
the RP of the MRSS estimator of the population mean as compared with the SRS
estimator and it is defined below:

RPmid =
σ2

σ2
(m′:m)

where σ2
(m′:m) denotes the variance of the middle order statistic when the set size is odd

and that of the any of the two closest middle order statistics when the set size is even.
Table 4 provides the values of the relative precisions for some symmetric distributions.
For a more detailed discussion on these allocations see Kaur, Patil and Taillie (2000).

Bhoj (2001a) proposed a new method of RSS with unequal samples for symmetric
distributions. But this method presumes that the ranking of sampling units may not be
difficult even if their number is large. This might cause difficulty in its implementation
in real life situations because in RSS ranking is carried out on the basis of outside in-
formation about the characteristic of interest, and because of this reason the set size is
kept small. Though MRSS provides a more efficient estimator with unequal allocation
than with equal allocation we need to be careful while using this technique because it
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may perform worse than equal allocation if it is not carried out properly. This situation
resembles with that of stratified random sampling. For planning proper allocations we
need some information about the population being sampled. Arnold, Balakrishnan and
Nagaraja (1992, p.187) suggested a simple method based on order statistic for this pur-
pose. According to this method for a symmetric population the plot of (Xi:m, Xm−i+1:m)
for i = 1, . . . , [m

2 ] gives a slope of -1 but for a positively skewed population it is less than
-1 while for a negatively skewed population it is more than -1. According to Wilk and
Gnanadesikan (1968) the plot of Xi:m + Xm−i+1:m against Xi:m − Xm−i+1:m yields a
horizontal configuration for a symmetrical population.

Table 3. Relative precisions RP , RPua, RPext of some selected distributions.

Distribution Set Size RP RPua RPext

Uniform(0,1) 2 1.50 1.50 1.50
Kurtosis=1.8 3 2.00 2.00 2.22

4 2.50 2.53 3.12
5 3.00 3.05 4.20

Unfolded 2 1.49 1.49 1.49
Weibull (2,0,1) 3 1.97 1.98 2.13
Kurtosis=2.19 4 2.44 2.46 2.86

5 2.91 2.93 3.59

Symmetric Beta(2) 2 1.49 1.49 1.49
Kurtosis=2.14 3 1.98 1.98 2.04

4 2.47 2.47 2.61
5 2.96 2.96 3.19

Table 4. Relative precisions RP , RPua, RPmid of some selected distributions.

Distribution Set Size RP RPua RPmid

Normal(0,1) 2 1.47 1.47 1.47
Kurtosis=3 3 1.91 1.92 2.23

4 2.35 2.36 2.77
5 2.77 2.80 3.49

Logistic(0,1) 2 1.44 1.44 1.44
Kurtosis=4.2 3 1.84 1.86 2.55

4 2.22 2.27 3.16
5 2.58 2.67 4.17

Laplace(0,1) 2 1.39 1.39 1.39
Kurtosis=6 3 1.73 1.78 3.13

4 2.04 2.16 3.84
5 2.33 2.54 5.70

Tables 3 and 4 are based on Tables 1 and 2 of Kaur, Patil and Taillie (2000).
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5. Takahasi’s estimator

For this estimator we need to obtain a sample of size (n−m) by Takahasi’s method
and one cycle of data through the MRSS method. The estimator of the population mean
is given by

µ̂TRSS =
1
m

m∑

i=1

Si

ri
(17)

where Si denotes the sum of the quantifications having rank i and ri ≥ 1 shows the
frequency of the ith ordered quantification.

The variance of µ̂TRSS is given below:

var(µ̂TRSS) =
1

m(n−m + 1)

[
1−

(
1− 1

m

)n−m+1] m∑

i=1

σ2
(i:m) (18)

where σ2
(i:m) denotes the variance of the ith order statistic X(i:m) based on perfect

ranking.

5.1. Modified Takahasi’s RSS Estimators

For the estimator, µ̂MTRSS , we draw an RSS of size (n− 2m) based on the Taka-
hasi’s method and two cycles of data are obtained following McIntyre’s method. The
expression, when ri ≥ 2, is given as:

µ̂MTRSS =
1
m

m∑

i=1

Si

ri
. (19)

The variance of the estimator µ̂MTRSS is mentioned below:

var(µ̂MTRSS) =
1

m(n− 2m + 1)

[
1− m

(n− 2m + 2)

{
1−

(
1− 1

m

)n−2m+2}] m∑

i=1

σ2
(i:m).

(20)
See Norris, Patil and Sinha (1995) for this result.

6. Illustration of RSS methods

For illustrating RSS methods we draw a random sample of 36 units from the data
set showing the revenue (in millions of kroner) earned by 40 municipalities in Sweden,
see Mukhopadhyay (1998, page 141). The drawn sample in a set of three observations
is given below:

24 386 74 163 37 97 134 128 96 199 290 626
422 101 536 412 250 155 249 240 196 144 249 63
1277 230 467 241 159 111 55 623 288 277 720 488

Suppose we wish to draw an MRSS with equal allocation of size, n = 12 while
keeping the set size, m = 3 and the number of cycles, r = 4. For drawing the sample
the ranking is carried out vertically in each column and the lowest value is taken from
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the first column, the value having the second rank is selected from the second column
and the highest value is drawn from the third column. This process is repeated for each
set of three columns and the values so selected are given below.

Rank
1 2 3
24 230 536
163 159 155
55 240 288
144 290 626

As µ̂(i:m) = 1
r

∑r
j=1 X(i:m)j , we obtain µ̂(1:m) = 96.5, µ̂(2:m) = 229.8, µ̂(3:m) =

401.3. Thus an estimate of the population mean, µ̂MRSS = 1
m

∑m
i=1 µ̂(i:m) = 242.433. As

we compute Est.σ2
(1:3) = 4556.25, Est.σ2

(2:3) = 2916 and Est.σ2
(3:3) = 47524, var(µ̂MRSS) =

1527.67. For MRSS with unequal allocation we compute r1 = 2, r2 = 2 and r3 = 8.
Thus we have the following values as shown below in a tabular form.

Rank Values
1 24 163
2 230 159
3 536 155 249 623 288 277 720 626

Here we get µ̂(1:m) = 93.5, µ̂(2:m) = 98.3, µ̂(3:m) = 50.2 with Est.σ2
(1:3) = 9662.89,

Est.σ2
(2:3) = 2520.04, Est.σ2

(3:3) = 46096.09. Then we obtain an estimate of the popula-
tion mean, µ̂MRSSUA = 240.733 and var(µ̂MRSSUA) = 1317.05.

For MTRSS we collect the two cycles of the data set following the MRSS procedure
and then the TRSS is used. The final data set is given below:

Rank Values
1 24 163 128 96
2 230 159 134 199 290
3 536 155 626

Here we compute µ̂(1:m) = 102.8, µ̂(2:m) = 202.4, µ̂(3:m) = 439 with Est.σ2
(1:3) =

3504.64, Est.σ2
(2:3) = 3757.69, Est.σ2

(3:3) = 62500. These yield an estimate of the popu-
lation mean, µ̂MTRSS = 248.067 and var(µ̂MTRSS) = 2124.87. Further, the population
variance is estimated for the three samples. The estimates of the population variance
based on the MRSS, MRSSUA and MTRSS are obtained as 30767.7, 37212.9 and 32007.3
respectively. These, in turn, give the variances of the estimator of the population mean
based on SRS as 2563.97, 3101.08 and 2667.25 respectively. Thus the estimates of the
RP of the MRSS, MRSSUA and TMRSS estimators of the population mean relative to
the respective SRS estimator are obtained as 1.678, 2.355 and 1.255 respectively.

7. RSS methods with concomitant ranking

In order to obtain the expressions of the variances of the three RSS estimators
under concomitant ranking we assume that there is a linear relationship between the
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main variable X and the concomitant variable Y . This yields that

E{X[i:m]|Y(i:m)} = µX +
ρσX

σY
(Y(i:m) − µY )

where X[i:m] denotes the ith order statistic of X based on a concomitant ranking whereas
Y(i:m) shows the ith order statistic of Y based on perfect ranking.

Thus, the expression

var(X[i:m]) = E{var(X|Y(i:m))}+ var{E(X|Y(i:m))}
leads to the following expression for the var(X[i:m]) for the standard bivariate normal
distribution:

σ2
[i:m] = (1− ρ2) + ρ2σ2

(i:m)

where σ2
[i:m] denotes the var(X[i:m]) and ρ shows the correlation between X and Y .

For obtaining the variances of the three RSS estimators under the concomitant rank-
ing scenario while sampling the standard bivariate normal population the expression∑m

i=1 σ2
(i:m) is replaced by

∑m
i=1 σ2

[i:m] in relevant equations. See Sinha et al. (2001),
and Patil, Sinha and Taillie (1993a) for more details.

8. RSS under parametric framework

Let X be a random variable with distribution function within the class F [ (x−µ)
σ ]

where µ and σ are the location and scale parameters respectively. Barnett and Moore
(1997) showed, following Lloyd (1952), that the best linear unbiased order statistics
estimator (BLUE) based on ordering a single random sample x1, x2, . . . , xn is given by

θ∗ = (A′V −1A)−1A′V −1x

with variance-covariance matrix as

var(θ∗) = σ2(A′V −1A)−1

where A = (1, α) with α′ = (αi) and αi = E(Ui) when U(i) = X(i)−µ

σ . V = (σij) is the
variance-covariance matrix of the reduced order statistics U(i), 1′ = (1, 1, . . . , 1) and x′

is the set of ordered sample values (x(1), x(2), . . . , x(n)).
For RSS x′ is replaced by (x(1:n), x(2:n), . . . , x(n:n)). Further, the diagonal matrix

W = diag(σij) replaces V because these sample values are uncorrelated as they come
from independent samples. Thus the ranked set BLUE of the parameter vector θ′(µ, σ)
is obtained. Here

µ∗ =
n∑

i=1

γix(i:n) and σ∗ =
n∑

i=1

η(i)x(i:n)

where

γi =
1

σii

[∑n
j=1(α

2
j/σjj)− αi

∑n
j=1(αj/σjj)

]

B
,

ηi =
1

σii

[∑n
j=1 αj(1/σjj)−

∑n
j=1(αj/σjj)

]

B
,

and B =
n∑

j=1

(
α2

j

σjj

) n∑

j=1

1
σjj

−
[ n∑

j=1

(
αj

σjj

)]2

.
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Further, we obtain that var(µ∗) =
σ2

∑n

i=1
α2

i /σii

B and var(σ∗) =
σ2

∑n

i=1
1/σii

B .
These results get simplified substantially for symmetric X. Sinha, Sinha and

Purkayastha (1996), and Barnett and Moore (1997) consider the case of normal dis-
tribution and obtain the following estimators

µ∗ =
∑

x(i:n)/σii∑
1/σii

, σ∗ =
∑

αix(i:n)/σii∑
α2

i /σii

with

var(µ∗) =
σ2

∑
1/σii

, var(σ∗) =
σ2

∑
α2

i /σii
.

Note that these estimators involve variances of order statistics, which are usually not
known.

9. Comparison of the RSS estimators of the population mean

In this subsection we examine the variances of the RSS estimators of the popula-
tion mean of the normal population under BLUE, i.e., var(µ∗) BLUE, median MRSS
estimator represented by var(µ̂MEDIAN ), the Neyman allocation based MRSS esti-
mator, i.e., var(µ̂MRSSUA) and the usual MRSS estimator denoted by var(µ̂MRSS).
These estimators could arise while sampling a standard normal population following
MRSS technique. These values, shown in Table 5, reveal that there is no differences
among these variances for the set size two, but when it is more than two we find that
var(µ̂MEDIAN ) < var(µ∗)BLUE < var(µ̂MRSSUA) < var(µ̂MRSS).

Table 5. Values of var(µ∗)BLUE , var(µ̂MEDIAN ), var(µ̂MRSSUA), var(µ̂MRSS) while
sampling a standard normal population with set size (n) = 2(1)6.

Set Size var(µ∗)BLUE var(µ̂MEDIAN ) var(µ̂MRSSUA) var(µ̂MRSS)
(n)
2 0.34084 0.34084 0.34084 0.34084
3 0.17230 0.14956 0.17373 0.17418
4 0.10399 0.09011 0.10589 0.10652
5 0.06956 0.05737 0.07151 0.07220
6 0.04979 0.04103 0.05164 0.05232

Further, using BLUE based on an MRSS Chuiv and Sinha (1998) discuss the esti-
mation of (i) normal mean and variance (ii) an exponential mean (iii) the location and
scale parameters of a two-parameter exponential distribution (iv) the location param-
eter of a Cauchy distribution with an unknown scale parameter (v) the location and
scale parameters of a logistic distribution (vi) the location and scale parameters of a
Weibull distribution and an extreme-value distribution. This is mainly a survey paper
based on some recent works of Professor Bimal K Sinha and his associates. For more
details see Fei, Sinha and Wu (1994), Lam, Sinha and Wu (1994 and 1995), Chuiv and
Sinha (1994), Sinha, Sinha and Purkayastha (1996). The estimation of parameters of a
normal population has also been considered by Stokes (1995), and Barnett and Moore
(1997), but unlike other authors Barnett and Moore also discussed the situation of im-
perfect ordering in addition to perfect ranking scenario. They also estimated parameters
of exponential distribution. For the estimation of a lognormal mean see Shen (1994a).
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The estimation of parameters of the extreme value distribution is considered by Bhoj
(1997b) and Fei, Sinha and Wu (1994). Bhoj and Ahsanullah (1996) obtained more
efficient estimators of parameters of the generalized geometric distribution using BLUE
with MRSS. Professor Dinesh S. Bhoj has developed some new RSS procedures and
obtained more efficient estimators of parameters of rectangular, Laplace, logistic, and
exponential distributions using BLUE technique based on MRSS and his new RSS. For
more details see Bhoj (2001a and b, 2000a and b, 1999a and b, 1997 a, b and c). Also,
see Barabesi and El-Shaarawi (2001) for the efficiency of RSS. Tam, Yu and Fung (1998)
examined the sensitivity of the BLUE of the population mean to the misspecification of
the underlying distribution. They observed that the relative performance of the BLUE
depends on the kurtosis, not on the skewness, of the underlying distribution.

10. Maximum likelihood estimators

Using a ranked set sample the maximum likelihood (ML) method of estimation is
employed by Stokes (1995). Kvam and Samaniego (1994) described the nonparametric
ML (NPML) estimation while Zheng and Al-Saleh (2000) proposed modified ML esti-
mators using an RSS.The asymptotic properties of the NPML estimator based on the
sample are discussed by Huang (1997).

11. Estimating distribution function, reliability of a component and Bernoulli
parameter

Stokes and Sager (1988) studied the estimation of distribution function and showed
that the empirical distribution function (EDF) based on an RSS was unbiased and
more efficient than the EDF based on an equal sized SRS. Using extreme and median
MRSS Samawi and Al-Sageer (2001) discussed it but under a generalized RSS scenario
it was investigated by Kim (1995). Further, Barabesi and Fattorini (2000) developed
the kernel estimators of probability density functions using the MRSS procedure under
balanced and unbalanced allocation scenarios. Using an RSS El-Neweihi and Sinha (2000
and 2001) considered the estimation of the reliability of a component whose lifetime is
exponentially distributed along with the non-negative unbiased variance estimation. The
problem was also referred to by Kvam and Samaniego (1993). Kvam (1999) obtained the
RSS estimator of a Bernoulli parameter that is superior to the corresponding estimator
based on a simple random sample. Li, Sinha and Chuiv (1999), and Lacayo, Nagaraja
and Sinha (1999) discussed the problem with more details.

12. Other RSS designs

We may consider two main families of RSS designs that depend on ranking be-
fore (selection stage) and after (estimation stage) quantification of sampling units. The
MRSS design comes under the first family that includes most of the variations recently
suggested mainly for developing relatively more efficient estimators of parameters of
interest. Some of these even ignore the cost and the convenience factors. The un-
equal (unbalanced) allocation scheme proposed by McIntyre (1952) and developed by
Yanagawa and Chen (1980), and Patil, Sinha and Taillie (1994a) for obtaining ”median-
mean” estimators that was further extended by Kaur, Patil and Taillie (1997and 2000)
comes under this category. Recently some more papers have appeared for estimating
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the population mean using the median and the extreme order statistics. These include
Bhoj (2001a), Muttlak (1997 and 1998), Swami, Ahmed and Abu-Dayyeh (1996) and
Sinha, Rodriguez and Patil (1995). Samawi and Al-Sageer (2001) used extreme and me-
dian RSS for the estimation of the distribution function. Sinha, Sinha and Purkayastha
(1996) introduced the concept of partial MRSS that was extended further by Shen and
Yuan (1995). Hossain and Muttlak (1999) extended the concept of ”quasi-midrange”,
suggested by Dixon (1954), to MRSS to obtain more efficient estimators of the popula-
tion mean and standard deviation. They referred it to as paired ranked set sampling.
Bhoj (1997a and c, 1999a abd b, 2000a and b) proposed a number of variations to MRSS
for obtaining better estimators using the technique of BLUE. A generalized ranked set
sampling design as an extension to MRSS is considered by Kim (1995) and Kim and
Arnold(1999). Though the efficiency of MRSS estimator increases with the set size, it
cannot be increased arbitrarily because of ranking error that could also increase with
the set size. In view of these predicaments Al-Saleh and Al-Kadiri (2000), and Al-Saleh
and Al-Omary (2002) introduced the double ranked set sampling and multistage ranked
set sampling respectively which increase the efficiency without extending the set size. In
fact, multistage RSS is just an extension of double RSS or we could also infer that double
RSS is a special case of multistage RSS. But these methods require a larger sample size
drawn initially that might, in turn, increase the cost of sampling. Al-Saleh and Al-Odat
(2001) discussed a variation of ranked set sampling while Al-Saleh and Samawi (2000)
investigated the efficiency of Monte Carlo methods with steady state ranked simulated
samples. Chen and Shen (2000) considered two-layer RSS with concomitant variables
and Chen (2000) evaluated the efficiency of RSS relative to SRS under multi-parameter
family. MRSS under Bayesian set up is discussed by Al-Saleh, Al-Sharafat and Muttlak
(2000). TRSS and MTRSS belong to the second family of the RSS design. See Norris,
Patil and Sinha (1995), and Ridout (2002) for a detailed discussion on this design.

13. Ratio and regression estimators

The ratio estimators based on MRSS and median MRSS were developed by Samawi
and Muttlak (1996 and 2001). These are more efficient than the corresponding estimator
based on SRS. Comparing MRSS estimator of the population mean with the SRS based
linear regression estimator Patil, Sinha and Taillie (1993a) showed that the MRSS es-
timator was considerably more efficient than the regression estimator unless correlation
is very high. They considered the regression estimator with and without double sam-
pling while for MRSS they assumed perfect and concomitant ranking scenarios. They
considered that the main and auxiliary variables jointly followed a bivariate normal dis-
tribution. Note that this model is favorable to the regression estimator since the latter
is unbiased under the bivariate normality while the RSS estimator is always so. Further,
Sinha, Rodriguez and Patil (1995), and Muttlak (1998) showed that the median MRSS
estimator gave better performance than the equal allocation based MRSS under perfect
and concomitant ranking scenarios. Muttlak (1997) reported that the extreme MRSS
estimator of the population mean was more efficient than the regression estimator unless
the correlation between the variable of interest and the auxiliary variable was more than
0.80. Also, he (1995) used the MRSS to estimate the slope and the intercept of a simple
linear regression equation, which are more efficient than the corresponding estimators
based on SRS. The author (1996), further, obtained more efficient estimators of the
parameters of the multiple regression model based on this sampling technique. Yu and
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Lam (1997) proposed a more efficient RSS regression estimator than usual MRSS and
SRS estimators unless the correlation between the variable of interest and the concomi-
tant variable is less than 0.4. The method is illustrated using a real data set. While
extending the work of Barnett and Moore (1997) further, Barreto and Barnett (1999)
obtained the best linear unbiased estimators in the classes of linear combinations of the
ranked set sample values for the simple linear regression models with replicated obser-
vations. The efficiency of these estimators relative to ordinary least square estimators
is quite high for the slope and intercept parameters for the normal case. Considering
TRSS and MTRSS Sinha et al.(2001) examined the effectiveness of the estimators of
the population mean as compared with the linear regression estimators and found the
former more efficient than the latter.
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