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Abstract

We treat two one-dimensional chaotic dynamics derived from both the logis-
tic and the tent transformations from the viewpoint of the theory of stochastic
processes. We construct two one-dimensional stochastic processes associated with
the above dynamics. Applying the stationarity analysis and the non-linear infor-
mation analysis in the theory of KM2O-Langevin equations to them, we inves-
tigate the problem of the coexistence of order and chaos from the viewpoint of
the fluctuation-dissipation theorem which characterizes the stationarity property
of stochastic processes.

Key Words and Phrases: Chaos, Order and Chaos, KM2O-Langevin equation, Fluctuation-

Dissipation Theorem.

1. Introduction

For a given Borel map f from I = [0, 1] into I, we shall consider a discrete dynamical
system on the phase space I = [0, 1] defined by

xn = f(xn−1) (n = 1, 2, 3, . . .), (1)

where x0 is a given initial point of the phase space I.
By running the initial point x0 in the phase space I, we can introduce a family

X = (X(n); n ∈ N∗) of maps X(n) : I → I defined by

X(n)(x0) ≡ fn(x0) = xn (n ∈ N∗, x0 ∈ I), (2)

where N∗ denotes the set {0, 1, 2, . . .}.
Moreover, we shall treat the case where the map f has an invariant probability

measure µ on the measurable space (I,B(I)), that is, there exists a probability Borel
measure µ on the measurable space (I,B(I)) such that

µ(f−1A) = µ(A) (∀A ∈ B(I)). (3)

Then we can regard the family X as a one-dimensional stochastic process on the prob-
ability space (I,B(I), µ). It is to be noted that the stochastic process X is strictly
stationary.
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In this paper, we shall deal with two cases where the map f is a logistic map or a tent
map. The discrete dynamical systems derived from these maps have been investigated
as typical examples of chaos. The concept of chaos is explained in a sense that the time
evolutions of these dynamical systems are deterministic, but it is impossible for us to
predict their remote future, that is, there coexist the systematic state, “a state of order”
and the random state, “ a state of chaos”.

The first purpose of this paper is to obtain a mathematical representation for a
philosophical concept of the coexistence of order and chaos stated above from the the-
ory of KM2O-Langevin equations. The second purpose is to find a certain new relation
besides the fluctuation-dissipation theorem characterizing the weakly stationarity prop-
erty of a stochastic process which is represented as the relation among the system of the
minimum KM2O-Langevin matrices associated with the stochastic process.

For that purpose, we shall develop an analysis of chaos based upon the theory of
KM2O-Langevin equations, to be called a chaos analysis. We shall explain its idea.
Taking the standardization of the stochastic process X, we define a one-dimensional
stochastic process W = (W (n); n ∈ N∗) by

W (n) ≡ 1√
V (X(n))

(X(n)− E(X(n))) (n ∈ N∗). (4)

Moreover, for each n ∈ N∗, we define the non-linear information space Nn
0 (W) and the

linear information space Mn
0 (W) as follows:

Nn
0 (W) ≡ L2(I,Bn

0 (W), µ), (5)

Mn
0 (W) ≡ {

n∑

k=0

ckW (k); ck ∈ R (0 ≤ k ≤ n)}, (6)

where Bn
0 (W) stands for the smallest σ-field with respect to which all random variables

W (k) (0 ≤ k ≤ n) are measurable.
If we project the random variable W (n + 1) on the non-linear information space

Nn
0 (W), then we have

PNn

0 (W)W (n + 1) = W (n + 1) (n ∈ N∗). (7)

This implies that when we project the random variable W (n + 1) on the non-linear
information space Nn

0 (W), we can represent a certain existence of order, but we cannot
represent any existence of chaos of the stochastic process W.

On the other hand, for the case where the map f is logistic or tent, if we project
the random variable W (n + 1) on the linear information space Mn

0 (W), then we have

PMn

0 (W)W (n + 1) = 0 (n ∈ N∗). (8)

This implies that when we project the random variable W (n+1) on the linear information
space Mn

0 (W), we can represent a certain existence of chaos, but we cannot represent
any existence of order for the stochastic process W.

Therefore, the problem of coexistence of order and chaos is reduced to the following
problem: When we project the random variable W (n + 1) on what kinds of closed
subspace Pn

0 (W) such that

Mn
0 (W) ⊂ Pn

0 (W) ⊂ Nn
0 (W) (n ∈ N∗), (9)
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how can we investigate the problem of coexistence of order and chaos for the stochastic
process W?

We shall state the contents of this paper. In Section 2, Section 3 and Section 4, we
shall review the theory of KM2O-Langevin equations for any d-dimensional degenerate
flow Z = (Z(n); 0 ≤ n ≤ N) in a real inner product space W with an inner product (∗, ?).
In Section 2, in particular, we shall recall the theory of weight transformations and show
a new theorem (Theorem 2.3) in which the speed of convergence of KM2O-Langevin
dissipation matrices can be estimated.

In Section 3, we shall review the theory of stationarity analysis and give an algo-
rithm (fluctuation-dissipation algorithm) for obtaining all the elements of the set LM(R)
of KM2O-Langevin matrices from the covariance matrix function R of a degenerate sta-
tionary flow.

In Section 4, we shall recall the theory of non-linear information spaces associated
with any d-dimensional local stochastic process and construct a generating system of
the non-linear information spaces (Theorem 4.1).

In Section 5 and Section 6, we shall treat the stochastic processes associated with
the logistic map and the tent map, respectively, and investigate the problem of coexis-
tence of order and chaos by using 18 kinds of two-dimensional stochastic processes taken
out from the non-linear transformations of rank 6 introduced in Section 4. Moreover,
we shall prove in Theorem 5.5 that the inequalities in Theorem 2.3 are tight.

In Section 7, we shall discuss the results in Sections 5 and 6.

2. KM2O-Langevin equations

In this section, we shall review the theory of KM2O-Langevin equations for general
flows in a real inner product space (Matsuura and Okabe (2001), Okabe (1999, 2002)).
Let (W, (?, ∗)) be any real inner product space with an inner product (?, ∗). By a
d-dimensional flow Z = (Z(n); ` ≤ n ≤ r) in W , we mean a function Z : {`, ` +
1, . . . , r− 1, r} → W d, where d, ` and r (d ≥ 1, ` ≤ r) are integers. A d-dimensional flow
Z = (Z(n); ` ≤ n ≤ r) is said to be non-degenerate if {Zj(n); 1 ≤ j ≤ d, ` ≤ n ≤ r} is
linearly independent in W , where Zj(n) is the jth component of Z(n). Otherwise, Z is
said to be degenerate. For two integers n1 and n2 (` ≤ n1 ≤ n2 ≤ r), we define a closed
subspace Mn2

n1
(Z) of W by

Mn2
n1

(Z) ≡ [{Zj(m); 1 ≤ j ≤ d, n1 ≤ m ≤ n2}], (10)

where for any subset S of W , we denote by [S] the closed subspace of W which is
generated by all elements in S.

For a given d-dimensional flow Z = (Z(n); 0 ≤ n ≤ N), we define two d-dimensional
flows Z+ = (Z+(n); 0 ≤ n ≤ N) and Z− = (Z−(`);−N ≤ ` ≤ 0) by

Z+(n) = Z(n) (0 ≤ n ≤ N), (11)
Z−(`) = Z(N + `) (−N ≤ ` ≤ 0). (12)

We call the pair of flows [Z+,Z−] the natural pair of flows. Then, we derive a new d-
dimensional flow ν+(Z) = (ν+(Z)(n); 0 ≤ n ≤ N) (resp. ν−(Z) = (ν−(Z)(`);−N ≤ ` ≤
0)) by projecting each component of Z+(n) (resp. Z−(`)) onto the subspace Mn−1

0 (Z+)
(resp. M0

`+1(Z−)), that is,

ν+(Z)(0) ≡ Z+(0), (13)
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ν+(Z)(n) ≡ Z+(n)− PMn−1
0 (Z+)Z+(n) (1 ≤ n ≤ N), (14)

ν−(Z)(0) ≡ Z−(0), (15)
ν−(Z)(`) ≡ Z−(`)− PM0

`+1(Z−)Z−(`) (−N ≤ ` ≤ −1). (16)

We call the flow ν+(Z) (resp. ν−(Z)) the forward (resp. backward) KM2O-Langevin
fluctuation flow associated with the flow Z. The forward (resp. backward) KM2O-
Langevin fluctuation matrix function V+(Z) = (V+(Z)(n); 0 ≤ n ≤ N) (resp. V−(Z) =
(V−(Z)(n); 0 ≤ n ≤ N)) associated with the flow Z is defined by

V±(Z)(n) ≡ (ν±(Z)(±n), tν±(Z)(±n)) (0 ≤ n ≤ N), (17)

where (?, t∗) denotes the inner product matrix of order d of the vectors ? and ∗ in W .
Furthermore, there exist two matrix functions γ+ = (γ+(n, k); 0 ≤ k < n ≤ N) and

γ− = (γ−(n, k); 0 ≤ k < n ≤ N) such that

PMn−1
0 (Z+)Z+(n) = −

n−1∑

k=0

γ+(n, k)Z+(k) (1 ≤ n ≤ N), (18)

PM0
−n+1(Z−)Z−(−n) = −

n−1∑

k=0

γ−(n, k)Z−(−k) (1 ≤ n ≤ N). (19)

In general, these matrix functions are not uniquely determined. We denote by LMD+(Z)
the set of all matrix functions γ+ for which (18) holds and by LMD−(Z) the set of all
matrix functions γ− for which (19) holds. Any element of LMD+(Z) (resp. LMD−(Z))
is called a forward (resp. backward) KM2O-Langevin dissipation matrix function asso-
ciated with the flow Z.

We note that if the flow Z is non-degenerate, the matrix function γ+ (resp. γ−)
is uniquely determined only through relation (18) (resp. (19)). To find a constructive
and efficient way to obtain appropriate KM2O-Langevin dissipation matrix functions
for degenerate flows, we have analyzed weight transformation in Matsuura and Okabe
(2001). Let ξ = (ξ(n); 0 ≤ n ≤ N) be any non-degenerate d-dimensional flow in W such
that

(Z(m), tξ(n)) = 0 and (ξ(m), tξ(n)) = δmnId (0 ≤ m,n ≤ N), (20)

where Id denotes the identity matrix of order d.
For each w > 0, we define a d-dimensional flow Zw = (Zw(n); 0 ≤ n ≤ N) in W by

Zw(n) ≡ Z(n) + w ξ(n). (21)

This transformation from Z into Zw is called a weight transformation with the weight
w, and ξ is called an additive white noise flow for the flow Z. Furthermore, we define a
norm ||γ+|| (resp. ||γ−||) on the set LMD+(Z) (resp. LMD−(Z)) by

||γ±|| ≡ (
N∑

n=1

n−1∑

k=0

d∑

j=1

d∑

`=1

γ±j`(n, k)2)1/2,

where γ±j`(n, k) denotes the (j, `)th component of γ±(n, k).
The following theorem has been proved in Matsuura and Okabe (2001).
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Theorem 2.1 (Matsuura and Okabe, 2001) There exist matrix functions γ0
+(Z) and

γ0
−(Z) that satisfy

(i) γ0
+(Z) ∈ LMD+(Z) and γ0

−(Z) ∈ LMD−(Z);

(ii) for any elements γ+ of LMD+(Z) and γ− of LMD−(Z) such that γ+ 6= γ0
+(Z)

and γ− 6= γ0
−(Z),

||γ0
+(Z)|| < ||γ+|| and ||γ0

−(Z)|| < ||γ−||.

The following lemma and theorem have been proved in Matsuura and Okabe (2001).

Lemma 2.1 (Matsuura and Okabe, 2001) For any w > 0, the flow Zw is non-degenerate.

It follows immediately from Lemma 2.1 that for each w > 0, there exist uniquely
two matrix functions γ±(Zw) = (γ±(Zw)(n, k); 0 ≤ k < n ≤ N) such that

LMD+(Zw) = {γ+(Zw)} and LMD−(Zw) = {γ−(Zw)}. (22)

Theorem 2.2 (Matsuura and Okabe, 2001) For each m,n, k (0 ≤ m ≤ N, 0 ≤ k < n ≤
N),

(i) lim
w→0

ν+(Zw)(m) = ν+(Z)(m) and lim
w→0

ν−(Zw)(−m) = ν−(Z)(−m),

(ii) lim
w→0

V+(Zw)(m) = V+(Z)(m) and lim
w→0

V−(Zw)(m) = V−(Z)(m),

(iii) lim
w→0

γ+(Zw)(n, k) = γ0
+(Z)(n, k) and lim

w→0
γ−(Zw)(n, k) = γ0

−(Z)(n, k).

We call the matrix function γ0
+(Z) = (γ0

+(Z)(n, k); 0 ≤ k < n ≤ N) (resp. γ0
−(Z) =

(γ0
−(Z)(n, k); 0 ≤ k < n ≤ N)) the minimum forward (resp. backward) KM2O-Langevin

dissipation matrix function associated with the flow Z.
After the above preparations, we can introduce a system LM(Z) of matrices of

order d by

LM(Z) ≡ {γ0
+(Z)(n, k), γ0

−(Z)(n, k), V+(Z)(m), V−(Z)(m); (23)
0 ≤ k < n ≤ N, 0 ≤ m ≤ N}

and call it the system of the minimum KM2O-Langevin matrices associated with the
flow Z.

From the theorems stated above, we can derive the following forward (resp. back-
ward) KM2O-Langevin equation (25) (resp. (27)) with (24) (resp. (26)) associated with
the flow Z:

Z(0) = ν+(Z)(0), (24)

Z(n) = −
n−1∑

k=0

γ0
+(Z)(n, k)Z(k) + ν+(Z)(n) (1 ≤ n ≤ N), (25)

Z(N) = ν−(Z)(0), (26)

Z(N − n) = −
n−1∑

k=0

γ0
−(Z)(n, k)Z(N − k) + ν−(Z)(−n) (1 ≤ n ≤ N). (27)



78 Y. Okabe and M. Matsuura

Finally, in order to prove Theorem 2.3 concerning the speed of convergence of
KM2O-Langevin dissipation matrices in Theorem 2.2, we shall introduce some notations.
Let R+(Z) = (R+(Z)(m,n); 0 ≤ m,n ≤ N) and R−(Z) = (R−(Z)(`, k);−N ≤ `, k ≤ 0)
be the covariance matrix functions for the d-dimensional flows Z+ and Z− in W :

R±(Z)(±m,±n) ≡ (Z±(±m), tZ±(±n)) (0 ≤ m,n ≤ N). (28)

Next, for any n (1 ≤ n ≤ N), we define four matrices Γ+(Z)(n), Γ−(Z)(n), S+(Z)(n)
and S−(Z)(n) of (nd, d)-type by

Γ±(Z)(n) ≡ t(γ0
±(Z)(n, 0), γ0

±(Z)(n, 1), . . . , γ0
±(Z)(n, n− 1)), (29)

S±(Z)(n) ≡ t(R±(Z)(±n, 0), R±(Z)(±n,±1), . . . , R±(Z)(±n,±(n− 1))). (30)

Moreover, we define two matrices T+(Z)(n) and T−(Z)(n) of order nd by

T±(Z)(n) (31)

=




R±(Z)(0, 0) R±(Z)(0,±1) . . . R±(Z)(0,±(n− 1))
R±(Z)(±1, 0) R±(Z)(±1,±1) . . . R±(Z)(±1,±(n− 1))

...
...

. . .
...

R±(Z)(±(n− 1), 0) R±(Z)(±(n− 1),±1) · · · R±(Z)(±(n− 1),±(n− 1))


 .

Similarly, for each w > 0, we can introduce four kinds of matrix functions R±(Zw) =
(R±(Zw)(±m,±n); 0 ≤ m,n ≤ N), Γ±(Zw) = (Γ±(Zw)(n); 1 ≤ n ≤ N), S±(Zw) =
(S±(Zw)(n); 1 ≤ n ≤ N) and T±(Zw) = (T±(Zw)(n); 1 ≤ n ≤ N).

Immediately, we have

Lemma 2.2 For each w > 0,

(i) R±(Zw)(±m,±n) = R±(Z)(±m,±n) + w2δmnId (0 ≤ m,n ≤ N),

(ii) S±(Zw)(n) = S±(Z)(n) (1 ≤ n ≤ N),

(iii) T±(Zw)(n) = T±(Z)(n) + w2Ind (1 ≤ n ≤ N).

Further, we shall prove the following.

Lemma 2.3 For each n (1 ≤ n ≤ N), T±(Z)(n)Γ±(Z)(n) = S±(Z)(n).

Proof. For each ` (0 ≤ ` ≤ n− 1), taking the inner product of the both-hand sides of
the forward KM2O-Langevin equation (25) by the vector Z+(`), we have

R+(Z)(n, `) = −
n−1∑

k=0

γ0
+(Z)(n, k)R+(Z)(k, `). (32)

Using three matrices Γ+(Z)(n), S+(Z)(n) and T+(Z)(n) in (29), (30) and (31), we
find that the plus part comes from (32). Similarly, the minus part is proved. (Q.E.D.)

Theorem 2.3 For any w > 0 and any n (1 ≤ n ≤ N), the following hold:

(i)
‖Γ+(Zw)(n)− Γ+(Z)(n)‖

‖Γ+(Z)(n)‖ ≤ w2

w2 + λ+(Z)(n)
(‖Γ+(Z)(n)‖ 6= 0),
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(ii)
‖Γ−(Zw)(n)− Γ−(Z)(n)‖

‖Γ−(Z)(n)‖ ≤ w2

w2 + λ−(Z)(n)
(‖Γ−(Z)(n)‖ 6= 0),

where the symbol ‖A‖ stands for the Euclidean norm of the matrix A, and λ+(Z)(n)
and λ−(Z)(n) are the minimums of positive eigenvalues of the matrices T+(Z)(n) and
T−(Z)(n), respectively.

Proof. We prove only (i). It follows from Lemmas 2.2(ii) and 2.3 that

Γ+(Zw)(n)− Γ+(Z)(n) = (T+(Zw)(n)−1T+(Z)(n)− I)Γ+(Z)(n). (33)

Since the matrix T+(Z)(n) is symmetric and non-negative definite, there exists an
orthogonal matrix U such that

T+(Z)(n) = UDiag(λ1, λ2, . . . , λr, 0, . . . , 0)U−1,

where λk (1 ≤ k ≤ r) are positive eigenvalues of the matrix T+(Z)(n). It follows from
Lemma 2.2(iii) that for any w > 0,

T+(Zw)(n)−1 = UDiag(
1

w2 + λ1
,

1
w2 + λ2

, . . . ,
1

w2 + λr
,

1
w2

, . . . ,
1

w2
)U−1.

Substituting this into (33), we have

Γ+(Zw)(n)−Γ+(Z)(n) = −UDiag(
w2

w2 + λ1
,

w2

w2 + λ2
, . . . ,

w2

w2 + λr
, 1, . . . , 1)U−1Γ+(Z)(n).

On the other hand, noting that the matrix Γ+(Z)(n) can be determined from the
minimum norm property, we can find that all rows after the rth row of the matrix
U−1Γ+(Z)(n) are 0 ((4.39) in Matsuura and Okabe (2001)). Therefore, we have

Γ+(Zw)(n)−Γ+(Z)(n) = −UDiag(
w2

w2 + λ1
,

w2

w2 + λ2
, . . . ,

w2

w2 + λr
, 0, . . . , 0)U−1Γ+(Z)(n)

and so

‖Γ+(Zw)(n)− Γ+(Z)(n)‖
‖Γ+(Z)(n)‖ ≤ w2

w2 + λ+(Z)(n)
(‖Γ+(Z)(n)‖ 6= 0),

which proves (i). (Q.E.D.)
We shall find in Section 5 that the inequalities in Theorem 2.3 are tight.

3. Stationarity property and Fluctuation-Dissipation Theorem

In this section, we shall recall the results of stationarity analysis in the theory of
KM2O-Langevin equations.

[3.1] We first recall the definition of stationarity property for flows in a real inner
product space W (Okabe (1999)). Let Z = (Z(n); 0 ≤ n ≤ N) be any d-dimensional
flow in W . We say that the flow Z has stationarity property if there exists a covariance
matrix function R = (R(n); |n| ≤ N) of Z such that

R(Z)(m,n) = R(m− n) (0 ≤ m, n ≤ N). (34)

We are now going to state the fluctuation-dissipation theorem for stationary flows.
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Theorem 3.1 (Matsuura and Okabe, 2001) The flow Z is stationary if and only if
the followings hold:

(i)





γ0
+(Z)(n, k) = γ0

+(Z)(n− 1, k − 1) + δ0
+(Z)(n)γ0

−(Z)(n− 1, n− k − 1)
(1 ≤ k < n ≤ N),

γ0
−(Z)(n, k) = γ0

−(Z)(n− 1, k − 1) + δ0
−(Z)(n)γ0

+(Z)(n− 1, n− k − 1)
(1 ≤ k < n ≤ N),

(ii)





V+(Z)(0) = V−(Z)(0),
V+(Z)(n) = (Id − δ0

+(Z)(n)δ0
−(Z)(n))V+(Z)(n− 1) (1 ≤ n ≤ N),

V−(Z)(n) = (Id − δ0
−(Z)(n)δ0

+(Z)(n))V−(Z)(n− 1) (1 ≤ n ≤ N),

(iii) δ0
+(Z)(n)V−(Z)(n− 1) = V+(Z)(n− 1) tδ0

−(Z)(n) (1 ≤ n ≤ N),

where δ0
+(Z)(n) ≡ γ0

+(Z)(n, 0) and δ0
−(Z)(n) ≡ γ0

−(Z)(n, 0).

We call the matrix function δ0
+(Z) = (δ0

+(Z)(n); 1 ≤ n ≤ N) (resp. δ0
−(Z) =

(δ0
−(Z)(n); 1 ≤ n ≤ N)) the minimum forward (resp. backward) KM2O-Langevin partial

autocorrelation matrix function associated with the flow Z. The algorithms in Theorems
3.1(i) and (ii),(iii) are said to be (DDT) and (FDT), respectively (Okabe (1999)).

[3.2] We shall give the algorithm for calculating the minimum KM2O-Langevin
matrices associated with the flow Z from the covariance matrix function R.

For that purpose, we define a d-dimensional flow Zw in (21). Then, we define for
any w > 0 and any n (0 ≤ n ≤ N) a subsystem LM(Zw;n) of the KM2O-Langevin
matrix LM(Zw) by

LM(Zw;n) ≡ {γ+(Zw)(m, k), γ−(Zw)(m, k), V+(Zw)(`), V−(Zw)(`); (35)
0 ≤ k < m ≤ n, 0 ≤ ` ≤ n}.

We note that
R(Zw)(n) = R(n) + w2δn0Id (0 ≤ n ≤ N), (36)

where R(Zw) is the covariance matrix function of the flow Zw.
It follows from Theorem 3.1(i) and (ii) for the flow Zw that for any w > 0 and any

n (1 ≤ n ≤ N), the matrices γ+(Zw)(n, k), γ−(Zw)(n, k), V+(Zw)(n) and V−(Zw)(n)
can be calculated from the matrices δ+(Zw)(n), δ−(Zw)(n) and the system LM(Zw;n−
1) with V±(Zw)(0) = R(0) + w2Id (0 ≤ k < n), where δ±(Zw)(n) = γ±(Zw)(n, 0).
Therefore, we have only to obtain an algorithm by which the matrices δ+(Zw)(n) and
δ−(Zw)(n) can be calculated from the system LM(Zw; n−1) and the matrices R(m) (0 ≤
m ≤ n). Applying Theorem 6.1 of Okabe (1993a), to be called (PAC) in Okabe (1993b),
to the non-degenerate flow Zw, we see that for any positive weight w and any n (1 ≤
n ≤ N),

δ±(Zw)(n) = −{R(±n) +
n−2∑

k=0

γ±(Zw)(n− 1, k)R(±(k + 1))}V∓(Zw)(n− 1)−1. (37)

On the other hand, it follows from Theorem 2.2 that

lim
w→0

δ+(Zw)(n) = δ0
+(Z)(n) and lim

w→0
δ−(Zw)(n) = δ0

−(Z)(n) (1 ≤ n ≤ N). (38)

Thus we have obtained the algorithm for calculating the minimum KM2O-Langevin
matrix from the covariance matrix function. We shall call it the fluctuation-dissipation
algorithm.
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4. Non-linear information spaces

In this section, we shall recall the results of the non-linear information spaces for
one-dimensional stochastic processes by rearranging the results in Matsuura and Okabe
(2001) and Okabe and Kaneko (2000).

Let Z = (Z(n); n ∈ N∗) be a one-dimensional stochastic process defined on a
probability space (Ω,B, P ) satisfying the following condition (E):

(E) For any n ∈ N∗, there exists λ0 > 0 such that for any λ ∈ R (|λ| ≤ λ0),

E(exp {λZ(n)}) < ∞.

[4.1] For any n1, n2 (0 ≤ n1 ≤ n2 < ∞), we define two closed subspaces Mn2
n1

(Z)
and Nn2

n1
(Z) of L2(Ω,B, P ) by

Mn2
n1

(Z) ≡ [{Z(m); n1 ≤ m ≤ n2}], (39)

Nn2
n1

(Z) ≡ {Y ∈ L2(Ω,B, P ); Y is Bn2
n1

(Z)-measurable}, (40)

where for any subset S of L2(Ω,B, P ), we denote by [S] the closed subspace of L2(Ω,B, P )
which is generated by all elements in S and by Bn2

n1
(Z) the smallest σ-field with respect

to which all random variables Z(m) (n1 ≤ m ≤ n2) are measurable. We call Mn2
n1

(Z)
(resp. Nn2

n1
(Z)) linear (resp. non-linear) information spaces associated with the stochastic

process Z.
As noted in Dobrushin and Minlos (1977), it follows from condition (E) that

Lemma 4.1 (i) For any integer k ∈ N∗, Z(k) ∈
⋂

1≤p<∞
Lp(Ω,B, P ).

(ii) For any integers n, pk ∈ N∗ (0 ≤ k ≤ n),
n∏

k=0

Z(k)pk ∈ Nn
0 (Z).

[4.2] (Generator of non-linear information spaces) We shall construct a genera-
tor of the non-linear information spaces by introducing a system of multi-dimensional
stochastic processes.

[a] (Parameter space Λ and lexicographical order) We define a subset Λ of the

product space N∗N∗
by

Λ ≡ {
p = (p0, p1, . . .) ∈ N∗N∗

; p0 ≥ 1, ∃m ∈ N, pk = 0 (∀k ≥ m)
}
. (41)

Furthermore, for any q ∈ N，we define a subset Λ(q) of the set Λ by

Λ(q) ≡ {
p ∈ Λ;

∞∑

k=0

(k + 1)pk = q
}
. (42)

Then we have an orthogonal decomposition of the set Λ:

Λ =
⋃

q∈N

Λ(q). (43)

Next, we introduce a lexicographical order in the set Λ. Let p,p
′

be any fixed
elements of Λ. There exist q, q

′ ∈ N such that p ∈ Λ(q),p
′ ∈ Λ(q

′
). We say that p
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precedes p
′
if q < q

′
or if q = q

′
and pk0 > p′k0 , where k0 is given by

k0 ≡ min
{

0 ≤ k < ∞; pk 6= p′k

}
. (44)

[b] (G(Z) and G(Z)(q) (q ∈ N)) For each element p of Λ, we define an integer
τ(p) ∈ N∗ by

τ(p) ≡ max{k ∈ N∗; pk > 0} (45)

and define a one-dimensional stochastic process ϕp(Z) = (ϕp(Z)(n); τ(p) ≤ n < ∞) by

ϕp(Z)(n) ≡
τ(p)∏

k=0

Z(n− k)pk . (46)

We denote by G(Z) all of these stochastic processes:

G(Z) ≡ {ϕp(Z);p ∈ Λ}. (47)

Moreover, for any q ∈ N，we define a subset G(Z)(q) of the set G(Z) by

G(Z)(q) ≡ {ϕp(Z);p ∈ Λ(q)}. (48)

We note that the set G(Z) can be decomposed into the following orthogonal sums:

G(Z) =
⋃

q∈N

G(Z)(q). (49)

[c] (Lexicographical order in G(Z)) Using the lexicographical order in the set Λ
introduced in [a] and noting that there exists a one-to-one correspondence between G(Z)
and Λ, we can introduce an order into G(Z) according to the lexicographical order in Λ
and parameterize the set G(Z) as follows:

G(Z) = {ϕj(Z); j ∈ N∗}. (50)

Since there exists for each j ∈ N∗ a unique element pj of the set Λ such that ϕj(Z) =
ϕpj

(Z), we can define an integer τ(j) ≡ τ(pj) and represent the stochastic processes
ϕj(Z) = (ϕj(Z)(n); τ(j) ≤ n < ∞) as

ϕj(Z)(n) ≡ ϕpj
(Z)(n) (σ(j) ≤ n < ∞). (51)

[d] (System of stochastic processes of rank q) Let us fix any q ∈ N. We define a
natural number dq by

dq ≡ (the number of elements in
q⋃

s=1

Λ(s))− 1. (52)

Then we can see that

G(Z)(q) = {ϕdq−1+1(Z), ϕdq−1+2(Z), . . . , ϕdq
(Z)}. (53)
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Then, we call the system of stochastic processes ϕj(Z) (0 ≤ j ≤ dq) the system of
stochastic processes of rank q.

We note that the numbers dq (1 ≤ q ≤ 6) are given by

(d1, d2, d3, d4, d5, d6) = (0, 1, 3, 6, 11, 18). (54)

Further, the system of stochastic processes of rank 6 consists of the following 19 one-
dimensional stochastic processes ϕj(Z) (0 ≤ j ≤ 18):





ϕ0(Z) = (Z(n); 0 ≤ n < ∞),
ϕ1(Z) = (Z(n)2; 0 ≤ n < ∞),
ϕ2(Z) = (Z(n)3; 0 ≤ n < ∞),
ϕ3(Z) = (Z(n)Z(n− 1); 1 ≤ n < ∞),
ϕ4(Z) = (Z(n)4; 0 ≤ n < ∞),
ϕ5(Z) = (Z(n)2Z(n− 1); 1 ≤ n < ∞),
ϕ6(Z) = (Z(n)Z(n− 2); 2 ≤ n < ∞),
ϕ7(Z) = (Z(n)5; 0 ≤ n < ∞),
ϕ8(Z) = (Z(n)3Z(n− 1); 1 ≤ n < ∞),
ϕ9(Z) = (Z(n)2Z(n− 2); 2 ≤ n < ∞),
ϕ10(Z) = (Z(n)Z(n− 1)2; 1 ≤ n < ∞),
ϕ11(Z) = (Z(n)Z(n− 3); 3 ≤ n < ∞),
ϕ12(Z) = (Z(n)6; 0 ≤ n < ∞),
ϕ13(Z) = (Z(n)4Z(n− 1); 1 ≤ n < ∞),
ϕ14(Z) = (Z(n)3Z(n− 2); 2 ≤ n < ∞),
ϕ15(Z) = (Z(n)2Z(n− 1)2; 1 ≤ n < ∞),
ϕ16(Z) = (Z(n)2Z(n− 3); 3 ≤ n < ∞),
ϕ17(Z) = (Z(n)Z(n− 1)Z(n− 2); 2 ≤ n < ∞),
ϕ18(Z) = (Z(n)Z(n− 4); 4 ≤ n < ∞).

(55)

[e] (Generating system) Let us fix any q ∈ N. For any integer j (0 ≤ j ≤ dq), we
define a one-dimensional stochastic process Zj = (Zj(n); n ∈ N∗) with time parameter
space N∗ by

Zj(n) ≡
{

0 (0 ≤ n < τ(j)),
ϕj(Z)(n)− E(ϕj(Z)(n)) (τ(j) ≤ n < ∞). (56)

Then, we define a (dq + 1)-dimensional stochastic process Z(q) = (Z(q)(n); n ∈ N∗) by

Z(q)(n) ≡ t(Z0(n), Z1(n), . . . , Zdq (n)). (57)

Concerning the relation among these stochastic processes Z(q) and the original
stochastic process Z, we have

Theorem 4.1 (i) Z(1)(n) = Z(n)− E(Z(n)) (n ∈ N∗).

(ii) The system {Z(q); q ∈ N} has a nest structure, that is,

Z(q+1)(n) =
(

Z(q)(n)
?

)
(q ∈ N, n ∈ N∗).

(iii) Nn
0 (Z) = [{1}]⊕ [

∞⋃
q=1

Mn
0 (Z(q))] (n ∈ N∗).
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We call the system {Z(q); q ∈ N} a generating system of polynomial type of the
non-linear information spaces Nn

0 (Z) (n ∈ N∗) associated with the stochastic process Z.

5. Stochastic process associated with the logistic map

In this section, we shall consider the logistic map ϕ : [0, 1] → [0, 1] defined by

ϕ(x) ≡ 4x(1− x). (58)

Let µ be the Borel measure on ([0, 1],B([0, 1])) defined by

µ(dx) ≡ (π
√

x(1− x))−1dx. (59)

We know that this µ is a unique invariant probability measure of the logistic map ϕ:

µ(ϕ−1A) = µ(A) for any A ∈ B([0, 1]). (60)

We define a one-dimensional stochastic process X = (X(n); n ∈ N∗) defined on the
probability space ([0, 1],B([0, 1]), µ) by

X(n)(x) ≡ ϕn(x) (n ∈ N∗, x ∈ [0, 1]). (61)

Taking the standardization of the stochastic process X, we define a one-dimensional
stochastic process W = (W (n); n ∈ N∗) on the probability space ([0, 1],B([0, 1]), µ) by

W (n) ≡ 2
√

2(X(n)− 1
2
) (n ∈ N∗). (62)

Then we can show

Theorem 5.1

(i) W (n + 1) =
√

2(1−W (n)2) (n ∈ N∗).

(ii) W is identically distributed.

(iii) W is not independent.

(iv) W is a strictly stationary process.

(v) µ((W (0),W (1), . . . , W (n + 1)) ∈ dx0dx1 · · · dxn+1)
= µ((W (0),W (1), . . . ,W (n)) ∈ dx0dx1 · · · dxn)δ{√2(1−x2

n)}(dxn+1) (n ∈ N∗).

(vi) E(W (n)) = 0 (n ∈ N∗).

(vii) E(W (n)2) = 1 (n ∈ N∗).

(viii) E(W (n)2p+1) = 0 (n, p ∈ N∗).

(ix) E(W (n)2p) = (2p)!/(2p(p!)2) (n, p ∈ N∗).

(x) E(W (n)W (m)) = δnm (n,m ∈ N∗).

(xi) E(W (0)2p0+1W (1)p1W (2)p2 · · ·W (n)pn) = 0 (n ∈ N, p0, p1, . . . , pn ∈ N∗).
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Immediately from Theorem 5.1(vi) and (x), we have

Theorem 5.2 The stochastic process W is a white noise in a broad sense.

In order to investigate the problem of coexistence of order and choas for the stochas-
tic process W, we shall consider the following 18 two-dimensional stochastic processes
W(0,j) = (W(0,j)(n); n ∈ N∗) (1 ≤ j ≤ 18) by shifting the time domains of the system of
non-linear transformations of rank 6 introduced in (55) and taking their standardization:





W(0,1)(n) ≡ t(W (n),
√

2(W (n)2 − 1)) (n ∈ N∗),

W(0,2)(n) ≡ t(W (n),
√

2
5W (n)3) (n ∈ N∗),

W(0,3)(n) ≡ t(W (n + 1),W (n + 1)W (n)) (n ∈ N∗),

W(0,4)(n) ≡ t(W (n), 2
√

2
17 (W (n)4 − 3

2 )) (n ∈ N∗),

W(0,5)(n) ≡ t(W (n + 1),
√

2
3W (n + 1)2W (n)) (n ∈ N∗),

W(0,6)(n) ≡ t(W (n + 2),W (n + 2)W (n)) (n ∈ N∗),

W(0,7)(n) ≡ t(W (n), 2
3

√
2
7W (n)5) (n ∈ N∗),

W(0,8)(n) ≡ t(W (n + 1),
√

2
5W (n + 1)3W (n)) (n ∈ N∗),

W(0,9)(n) ≡ t(W (n + 2),
√

2
3W (n + 2)2W (n)) (n ∈ N∗),

W(0,10)(n) ≡ t(W (n + 1), 2√
5
(W (n + 1)W (n)2 + 1√

2
)) (n ∈ N∗),

W(0,11)(n) ≡ t(W (n + 3),W (n + 3)W (n)) (n ∈ N∗),
W(0,12)(n) ≡ t(W (n), 4√

131
(W (n)6 − 5

2 )) (n ∈ N∗),

W(0,13)(n) ≡ t(W (n + 1), 2
√

2
35W (n + 1)4W (n)) (n ∈ N∗),

W(0,14)(n) ≡ t(W (n + 2),
√

2
5W (n + 2)3W (n)) (n ∈ N∗),

W(0,15)(n) ≡ t(W (n + 1), 2√
7
(W (n + 1)2W (n)2 − 1)) (n ∈ N∗),

W(0,16)(n) ≡ t(W (n + 3),
√

2
3W (n + 3)2W (n)) (n ∈ N∗),

W(0,17)(n) ≡ t(W (n + 2),W (n + 2)W (n + 1)W (n)) (n ∈ N∗),
W(0,18)(n) ≡ t(W (n + 4),W (n + 4)W (n)) (n ∈ N∗).

(63)

[1:W(0,1)] At first, we shall treat the stochastic process W(0,1). Immediately
from Theorem 5.1(i), we have

W (n)2 = 1− 1√
2
W (n + 1) (n ∈ N∗). (64)

Hence, it follows from Theorem 5.1(iv) that the stochastic process W(0,1) is strictly
stationary. In particular, we can see from Theorem 5.1(vi), (vii), (viii), (ix), (x), (xi)
and (64) that

Theorem 5.3 The stochastic process W(0,1) is a degenerate and weakly stationary pro-
cess whose covariance matrix function R(W(0,1)) is given by

(i) R(W(0,1))(0) = I2,

(ii) R(W(0,1))(1) =
(

0 −1
0 0

)
,
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(iii) R(W(0,1))(n) = 0 (|n| ≥ 2).

At first, we shall construct the system of the minimum KM2O-Langevin matri-
ces associated with the stochastic process W(0,1). For any fixed N ∈ N, we restrict
the time domain of the stochastic process W(0,1) to the set {0, 1, . . . , N} and define
a two-dimensional flows Z = (Z(n); 0 ≤ n ≤ N) in the real inner product space
L2([0, 1],B([0, 1]), µ) by

Z(n) ≡ W(0,1)(n) (0 ≤ n ≤ N). (65)

Since it follows from the fluctuation-dissipation algorithm stated in Section 3 that
the system LM(Z) does not depend upon N , we can construct six matrix functions
δ0
±(W(0,1)) = (δ0

±(W(0,1))(n); n ≥ 1), γ0
±(W(0,1)) = (γ0

±(W(0,1))(m,n); 0 ≤ n < m <
∞) and V±(W(0,1)) = (V±(W(0,1))(n); n ≥ 0) such that for any N ∈ N,





δ0
±(W(0,1))(n) = δ0

±(Z)(n) (1 ≤ n ≤ N),
γ0
±(W(0,1))(m, n) = γ0

±(Z)(m,n) (0 ≤ n < m ≤ N),
V±(W(0,1))(n) = V±(Z)(n) (0 ≤ n ≤ N).

(66)

We call the system LM(W(0,1)) of such matrices the minimum KM2O-Langevin matrix
associated with the stochastic process W:

LM(W(0,1)) ≡ {γ0
+(W(0,1))(n, k), γ0

−(W(0,1))(n, k), V+(W(0,1))(m), V−(W(0,1))(m);
0 ≤ k < n < ∞, 0 ≤ m < ∞}. (67)

Since (64) implies that the flow Z is degenerate, we shall apply the weight trans-
formation with additive white noise flow to it and obtain the system of the minimum
KM2O-Langevin matrices associated with the stationary flow Zw. For simplicity of the
notation, we put, for each w > 0,





Rw(n) ≡ R(Zw)(n) (|n| ≤ N),
δw
±(n) ≡ δ±(Zw)(n) (1 ≤ n ≤ N),

γw
±(m,n) ≡ γ±(Zw)(m,n) (0 ≤ n < m ≤ N),

V w
± (n) ≡ V±(Zw)(n) (0 ≤ n ≤ N).

(68)

It follows from Lemma 2.2(i) and Theorem 5.3 that

Lemma 5.1 For any w > 0,

(i) Rw(0) = (1 + w2)I2,

(ii) Rw(1) =
(

0 −1
0 0

)
,

(iii) Rw(n) = 0 (|n| ≥ 2).

It follows from (37), Theorems 3.1(ii) and 5.3 that

Lemma 5.2 For any w > 0,
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(i)





δw
+(1) = 1

1+w2

(
0 1
0 0

)
,

δw
−(1) = 1

1+w2

(
0 0
1 0

)
,

δw
+(n) = δw

−(n) = 0 (n ≥ 2),

(ii)





V w
+ (0) = V w

− (0) = (1 + w2)I2,

V w
+ (1) = 1

1+w2

(
2w2 + w4 0

0 (1 + w2)2

)
,

V w
− (1) = 1

1+w2

(
(1 + w2)2 0

0 2w2 + w4

)
.

Therefore, according to the fluctuation-dissipation algorithm stated in Section 3,
we can let w tend to 0 in Lemma 5.2 to obtain

Theorem 5.4

(i)





δ0
+(W(0,1))(1) =

(
0 1
0 0

)
,

δ0
−(W(0,1))(1) =

(
0 0
1 0

)
,

(ii) δ0
+(W(0,1))(1)2 = δ0

−(W(0,1))(1)2 = 0,

(iii) δ0
+(W(0,1))(n) = δ0

−(W(0,1))(n) = 0 (n ≥ 2),

(iv)





V+(W(0,1))(0) = V−(W(0,1))(0) = I2,

V+(W(0,1))(n) =
(

0 0
0 1

)
(n ≥ 1),

V−(W(0,1))(n) =
(

1 0
0 0

)
(n ≥ 1).

We note from Theorem 5.3(iii) that the covariance matrix function R(W(0,1)) of
the stochastic process W(0,1) has the same structure as that of the moving average
processes of order 1—MA(1)-process. Moreover, we find from Theorem 5.4(iii) that the
minimum KM2O-Langevin partial autocorrelation matrix functions δ0

±(W(0,1)) have the
same structure as that of the autoregressive processes of order 1—AR(1)-process.

There exists a close relation between Theorems 5.3(iii) and 5.4(iii) under Theorem
5.4(ii). In fact, we shall show the following general Theorem 5.5.

Theorem 5.5 Let Z = (Z(n); 0 ≤ n ≤ N) be any d-dimensional stationary flow in a
real inner product space W with an inner product (?, ∗) satisfying

δ0
+(Z)(n) = 0 for any n (2 ≤ n ≤ N).

Then, for any p ∈ N∗ (0 ≤ p ≤ N), the following two conditions are equivalent to each
other:

(i) R(Z)(n) = 0 (p ≤ |n| ≤ N);

(ii) δ0
+(Z)(1)pV+(Z)(0) = 0.
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Proof. It is clear that (i) and (ii) are equivalent to each other for p = 0. Let p (1 ≤
p ≤ N) be any fixed number. It follows from (DDT) in Theorem 3.1 that for any
n (2 ≤ n ≤ N),

γ0
+(Z)(n, k) =

{
δ0
+(Z)(1) (k = n− 1),

0 (0 ≤ k < n− 1).

Substituting these into (32) for ` = 0, we see that for any n (1 ≤ n ≤ N),

R(Z)(n) = −δ0
+(Z)(1)R(Z)(n− 1)

= (−1)nδ0
+(Z)(1)nV+(Z)(0).

Therefore, we find that (i) and (ii) are equivalent to each other. (Q.E.D.)

Finally in [1:W(0,1)], we shall show that the inequalities in Theorem 2.3 are tight.

Lemma 5.3 For any w > 0 and any n ∈ N,

{
‖Γ±(Ww

(0,1))(n)− Γ±(W(0,1))(n)‖ = w2

w2+1 ,

‖Γ±(W(0,1))(n)‖ = 1.

Proof. It follows from Theorem 3.1 and Lemma 5.2 that γw
+(1, 0) = 1

1+w2

(
0 1
0 0

)

and for any n ≥ 2, γw
+(n, n − k) = γw

+(1, 0) (k = 1), γw
+(n, n − k) = 0 (2 ≤ k ≤ n).

Therefore, we can see that for any n ∈ N,

Γ+(Ww
(0,1))(n) =





1
1+w2

(
0 0
1 0

)
(n = 1),

1
1+w2

t

(
0 0 . . . 0 0 0 1
0 0 . . . 0 0 0 0

)
(n ≥ 2),

Γ+(W(0,1))(n) =





(
0 0
1 0

)
(n = 1),

t

(
0 0 . . . 0 0 0 1
0 0 . . . 0 0 0 0

)
(n ≥ 2).

Thus, we see that the plus part holds. Similarly, the minus part is proved. (Q.E.D.)

Lemma 5.4 For any n ∈ N, λ±(W(0,1))(n) = 1.
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Proof. It follows from (31) and Theorem 5.3 that

T+(W(0,1))(n) =




1 0 0 0 0 0 . . . 0 0 0 0 0 0
0 1 −1 0 0 0 . . . 0 0 0 0 0 0
0 −1 1 0 0 0 . . . 0 0 0 0 0 0
0 0 0 1 −1 0 . . . 0 0 0 0 0 0
0 0 0 −1 1 0 . . . 0 0 0 0 0 0
0 0 0 0 0 1 . . . 0 0 0 0 0 0
...

...
...

...
...

...
. . .

...
...

...
...

...
...

0 0 0 0 0 0 . . . 1 0 0 0 0 0
0 0 0 0 0 0 . . . 0 1 −1 0 0 0
0 0 0 0 0 0 . . . 0 −1 1 0 0 0
0 0 0 0 0 0 . . . 0 0 0 1 −1 0
0 0 0 0 0 0 . . . 0 0 0 −1 1 0
0 0 0 0 0 0 . . . 0 0 0 0 0 1




.

We put fn(λ) ≡ det(T+(W(0,1))(n)− λI2n) (λ ∈ R). Using the expansion formula
of the determinant det(T+(W(0,1))(n)− λI2n) with respect to the first row, we have

fn(λ) = (1− λ)gn−1(λ),

where gn−1(λ) is given by

gn−1(λ) ≡ det




1− λ −1 0 0 0 . . . 0 0 0 0
−1 1− λ 0 0 0 . . . 0 0 0 0
0 0 1− λ −1 0 . . . 0 0 0 0
0 0 −1 1− λ 0 . . . 0 0 0 0
0 0 0 0 1− λ . . . 0 0 0 0
...

...
...

...
...

. . .
...

...
...

...
0 0 0 0 0 . . . 1− λ 0 0 0
0 0 0 0 0 . . . 0 1− λ −1 0
0 0 0 0 0 . . . 0 −1 1− λ 0
0 0 0 0 0 . . . 0 0 0 1− λ




.

Since f1(λ) = (1− λ)2, we note that g0(λ) = 1− λ. Using the expansion formula of the
determinant, we have

gn−1(λ) = (1− λ)fn−1(λ)− gn−2(λ).

Using these algorithms, we can see that

fn(λ) = λn−1(λ− 1)2(λ− 2)n−1 (n ∈ N).

Hence, we find that λ+(W(0,1))(n) = 1 and so the plus part holds. Similarly, the minus
part is proved. (Q.E.D.)

Consequently, we see from Theorem 2.3, Lemmas 5.3 and 5.4 that

Theorem 5.6 The inequalities in Theorem 2.3 are tight, that is, for any w > 0 and
any n ∈ N,
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(i)
‖Γ+(Ww

(0,1))(n)− Γ+(W(0,1))(n)‖
‖Γ+(W(0,1))(n)‖ =

w2

w2 + λ+(W(0,1))(n)
,

(ii)
‖Γ−(Ww

(0,1))(n)− Γ−(W(0,1))(n)‖
‖Γ−(W(0,1))(n)‖ =

w2

w2 + λ−(W(0,1))(n)
.

[2:W(0,2)] We shall treat the stochastic process W(0,2). It follows from Theorem
5.1(ix) that

E(W (n)4) =
3
2

(n ∈ N∗), (69)

E(W (n)6) =
5
2

(n ∈ N∗). (70)

Therefore, it follows from Theorem 5.1(x) and (xi) that

Theorem 5.7 The stochastic process W(0,2) is a weakly stationary process whose co-
variance matrix function R(W(0,2)) is given by

(i) R(W(0,2))(0) =

(
1 3√

10
3√
10

1

)
,

(ii) R(W(0,2))(n) = 0 (|n| ≥ 1).

[3:W(0,3)] We shall treat the stochastic process W(0,3). It follows from Theorem
5.1(vi), (vii), (viii) and (64) that

E(W (n + 1)W (n)2) = − 1√
2

(n ∈ N∗), (71)

E(W (n + 1)2W (n)2) = 1 (n ∈ N∗). (72)

Therefore, we see from Theorem 5.1(x) and (xi) that

Theorem 5.8 The stochastic process W(0,3) is a weakly stationary process whose co-
variance matrix function R(W(0,3)) is given by

(i) R(W(0,3))(0) =
(

1 0
0 1

)
,

(ii) R(W(0,3))(1) =
(

0 0
− 1√

2
0

)
,

(iii) R(W(0,3))(n) = 0 (|n| ≥ 2).

[4:W(0,4)] We shall treat the stochastic process W(0,4). It follows from Theorem
5.1(ix) that

E(W (n)8) =
35
8

(n ∈ N∗). (73)
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We note from (64) that

W (n)4 = 1−
√

2W (n + 1) +
1
2
W (n + 1)2 (n ∈ N∗). (74)

Using this and (64) again, we see from Theorem 5.1(vi), (vii), (viii) and (x) that

E(W (n)W (0)4) =





0 (n = 0),
−√2 (n = 1),
− 1

2
√

2
(n = 2),

0 (n ≥ 3).

(75)

Further, it follows from (64), (69), (70), (73), (74) and Theorem 5.1(viii) that

E(W (n)4W (0)4) =





35
8 (n = 0),
11
4 (n = 1),
9
4 (n ≥ 2).

(76)

Therefore, we see from Theorem 5.1(x) and (xi) that

Theorem 5.9 The stochastic process W(0,4) is a weakly stationary process whose co-
variance matrix function R(W(0,4)) is given by

(i) R(W(0,4))(0) =
(

1 0
0 1

)
,

(ii) R(W(0,4))(1) =
(

0 − 4√
17

0 4
17

)
,

(iii) R(W(0,4))(2) =
(

0 − 1√
17

0 0

)
,

(iv) R(W(0,4))(n) = 0 (|n| ≥ 3).

[5:W(0,5)] We shall treat the stochastic process W(0,5). We see from (64), (69),
(72), Theorem 5.1(x) and (xi) that

Theorem 5.10 The stochastic process W(0,5) is a weakly stationary process whose co-
variance matrix function R(W(0,5)) is given by

(i) R(W(0,5))(0) =
(

1 0
0 1

)
,

(ii) R(W(0,5))(1) =

(
0 0√

2
3 0

)
,

(iii) R(W(0,5))(n) = 0 (|n| ≥ 2).

[6:W(0,6)] We shall treat the stochastic process W(0,6). It follows from (64),
Theorem 5.1(x) and (xi) that
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Theorem 5.11 The stochastic process W(0,6) is a weakly stationary process whose co-
variance matrix function R(W(0,6)) is given by

(i) R(W(0,6))(0) =
(

1 0
0 1

)
,

(ii) R(W(0,6))(n) = 0 (|n| ≥ 1).

[7:W(0,7)] We shall treat the stochastic process W(0,7). It follows from Theorem
5.1(ix) that

E(W (n)10) =
63
8

(n ∈ N∗). (77)

Using this and (70), we see from Theorem 5.1(x) and (xi) that

Theorem 5.12 The stochastic process W(0,7) is a weakly stationary process whose co-
variance matrix function R(W(0,7)) is given by

(i) R(W(0,7))(0) =


 1 5

3

√
2
7

5
3

√
2
7 1


 ,

(ii) R(W(0,7))(n) = 0 (|n| ≥ 1).

[8:W(0,8)] We shall treat the stochastic process W(0,8). It follows from (64), (69),
Theorem 5.1(viii), (x) and (xi) that

Theorem 5.13 The stochastic process W(0,8) is a weakly stationary process whose co-
variance matrix function R(W(0,8)) is given by

(i) R(W(0,8))(0) =
(

1 0
0 1

)
,

(ii) R(W(0,8))(1) =
(

0 0
− 3

2
√

5
0

)
,

(iii) R(W(0,8))(n) = 0 (|n| ≥ 2).

[9:W(0,9)] We shall treat the stochastic process W(0,9). It follows from (64), (69),
Theorem 5.1(viii), (x) and (xi) that

Theorem 5.14 The stochastic process W(0,9) is a weakly stationary process whose co-
variance matrix function R(W(0,9)) is given by

(i) R(W(0,9))(0) =
(

1 0
0 1

)
,

(ii) R(W(0,9))(1) =
(

0 0
0 0

)
,

(iii) R(W(0,9))(2) =

(
0 0√

2
3 0

)
,
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(iv) R(W(0,9))(n) = 0 (|n| ≥ 3).

[10:W(0,10)] We shall treat the stochastic process W(0,10). It follows from (64),
(72), (74), Theorem 5.1(vi), (vii), (viii), (x) and (xi) that

Theorem 5.15 The stochastic process W(0,10) is a weakly stationary process whose
covariance matrix function R(W(0,10)) is given by

(i) R(W(0,10))(0) =

(
1 2√

5
2√
5

1

)
,

(ii) R(W(0,10))(1) =
(

0 1√
5

0 2
5

)
,

(iii) R(W(0,10))(n) = 0 (|n| ≥ 2).

[11:W(0,11)] We shall treat the stochastic process W(0,11). We see from (64),
Theorem 5.1(vi), (vii), (x) and (xi) that

Theorem 5.16 The stochastic process W(0,11) is a weakly stationary process whose
covariance matrix function R(W(0,11)) is given by

(i) R(W(0,11))(0) =
(

1 0
0 1

)
,

(ii) R(W(0,11))(n) = 0 (|n| ≥ 1).

[12:W(0,12)] We shall treat the stochastic process W(0,12). It follows from Theo-
rem 5.1(ix) that

E(W (n)12) =
231
16

(n ∈ N∗). (78)

We note from (64) that

W (n)6 = 1− 3√
2
W (n + 1) +

3
2
W (n + 1)2 − 1

2
√

2
W (n + 1)3 (n ∈ N∗). (79)

Hence, we see from Theorem 5.1(vi), (vii), (viii), (x), (xi), (64), (69) and (70) that

Theorem 5.17 The stochastic process W(0,12) is a weakly stationary process whose
covariance matrix function R(W(0,12)) is given by

(i) R(W(0,12))(0) =
(

1 0
0 1

)
,

(ii) R(W(0,12))(1) =
(

0 − 15√
262

0 45
131

)
,

(iii) R(W(0,12))(2) =

(
0 −3

√
2

131

0 0

)
,
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(iv) R(W(0,12))(n) = 0 (|n| ≥ 3).

[13:W(0,13)] We shall treat the stochastic process W(0,13). It follows from Theo-
rem 5.1(viii), (x), (xi), (69) and (73) that

Theorem 5.18 The stochastic process W(0,13) is a weakly stationary process whose
covariance matrix function R(W(0,13)) is given by

(i) R(W(0,13))(0) =
(

1 0
0 1

)
,

(ii) R(W(0,13))(1) =

(
0 0

3
√

2
35 0

)
,

(iii) R(W(0,13))(n) = 0 (|n| ≥ 2).

[14:W(0,14)] We shall treat the stochastic process W(0,14). It follows from (64),
(70), Theorem 5.1(viii), (x) and (xi) that

Theorem 5.19 The stochastic process W(0,14) is a weakly stationary process whose
covariance matrix function R(W(0,14)) is given by

(i) R(W(0,14))(0) =
(

1 0
0 1

)
,

(ii) R(W(0,14))(n) = 0 (|n| ≥ 1).

[15:W(0,15)] We shall treat the stochastic process W(0,15). It follows from Theo-
rem 5.1(vi), (vii), (viii), (x), (xi), (69), (70), (72) and (74) that

Theorem 5.20 The stochastic process W(0,15) is a weakly stationary process whose
covariance matrix function R(W(0,15)) is given by

(i) R(W(0,15))(0) =

(
1 − 3√

14

− 3√
14

1

)
,

(ii) R(W(0,15))(1) =

(
0 −

√
2
7

0 3
7

)
,

(iii) R(W(0,15))(n) = 0 (|n| ≥ 2).

[16:W(0,16)] We shall treat the stochastic process W(0,16). It follows from Theo-
rem 5.1(vii), (x), (xi), (64) and (69) that

Theorem 5.21 The stochastic process W(0,16) is a weakly stationary process whose
covariance matrix function R(W(0,16)) is given by

(i) R(W(0,16))(0) =
(

1 0
0 1

)
,
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(ii) R(W(0,16))(1) = R(W(0,16))(2) =
(

0 0
0 0

)
,

(iii) R(W(0,16))(3) =

(
0 0√

2
3 0

)
,

(iv) R(W(0,16))(n) = 0 (|n| ≥ 4).

[17:W(0,17)] We shall treat the stochastic process W(0,17). It follows from Theo-
rem 5.1(vi), (vii), (viii), (x), (xi), (64) and (72) that

Theorem 5.22 The stochastic process W(0,17) is a weakly stationary process whose
covariance matrix function R(W(0,17)) is given by

(i) R(W(0,17))(0) =
(

1 0
0 1

)
,

(ii) R(W(0,17))(1) =
(

0 0
0 0

)
,

(iii) R(W(0,17))(2) =
(

0 0
1
2 0

)
,

(iv) R(W(0,17))(n) = 0 (|n| ≥ 3).

[18:W(0,18)] We shall treat the stochastic process W(0,18). It follows from Theo-
rem 5.1(vi), (vii), (x), (xi) and (64) that

Theorem 5.23 The stochastic process W(0,18) is a weakly stationary process whose
covariance matrix function R(W(0,18)) is given by

(i) R(W(0,18))(0) =
(

1 0
0 1

)
,

(ii) R(W(0,18))(n) = 0 (|n| ≥ 1).

As stated before for the stochastic process W(0,1), we find from Theorem 5.3 and
Theorem 5.7-Theorem 5.23 that all the covariance matrix functions R(W(0,j)) of the
stochastic processes W(0,j) (1 ≤ j ≤ 18) have the same structure as that of the moving
average processes, that is, there exists a natural number mj such that R(W(0,j))(n) = 0
for any n ≥ mj (1 ≤ j ≤ 18).

On the other hand, similarly as in Theorem 5.4 for the stochastic process W(0,1), ap-
plying the fluctuation-dissipation algorithm stated in Section 3 to the covariance matrix
functions R(W(0,j)) (1 ≤ j ≤ 18) calculated in Theorem 5.3 and Theorem 5.7-Theorem
5.23, we can show that the minimum KM2O-Langevin partial autocorrelation matrix
functions δ0

±(W(0,j)) = (δ0
±(W(0,j))(n); n ∈ N) except j = 4, 10 have the same struc-

ture as that of the autoregressive processes, that is, there exists a natural number `j

such that δ0
±(W(0,j))(n) = 0 for any n ≥ `j (1 ≤ j ≤ 18, j 6= 4, 10). The calculation for

the cases where j = 4, 10 will be given in Section 7.
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6. Stochastic process associated with the tent map

In this section, we shall consider the tent map ψ : [0, 1] → [0, 1] defined by

ψ(x) ≡
{

2x (0 ≤ x ≤ 1
2 ),

2(1− x) ( 1
2 ≤ x ≤ 1). (80)

Let ν be the Lebesgue measure on ([0, 1],B([0, 1])), that is,

ν(dx) ≡ dx. (81)

We define a one-dimensional stochastic process X = (X(n); n ∈ N∗) on the proba-
bility space ([0, 1],B([0, 1]), ν) by

X(n)(x) = ψn(x) (n ∈ N∗, x ∈ [0, 1]). (82)

At first, we shall show that the probability measure ν is the unique invariant mea-
sure for the tent map ψ.

Lemma 6.1 For any bounded Borel function f : [0, 1] → R,

E(f(X(n))) = E(f(X(0))) =
∫ 1

0

f(x)dx (n ∈ N∗).

Proof. Let us denote by (∗n) the equality to be proved. We shall show it by mathe-
matical induction with respect to n. It is clear that (∗n) holds for n = 0. Let us assume
that (∗n) holds for some n (≥ 0).

E(f(X(n + 1))) =
∫ 1/2

0

f(X(n)(2x))dx +
∫ 1

1/2

f(X(n)(2(1− x)))dx.

Taking the changes of variables y = 2x and y = 2(1−x) in the first term and the second
term of the right-hand side of the above equation, respectively, we find that both the
first term and the second term become 1

2

∫ 1

0
f(X(n)(y))dy. Therefore, E(f(X(n+1))) =

E(f(X(n))) and so (∗n+1) holds. Hence, by mathematical induction, we see that (∗n)
holds for any n ∈ N∗. (Q.E.D.)

Immediately from Lemma 6.1, we have

Lemma 6.2 For any bounded Borel function f : [0, 1] → R,

E(f(ψn)) = E(f(X(0))) =
∫ 1

0

f(x)dx (n ∈ N∗).

By putting n = 1 and f = χA (A ∈ B([0, 1])) , we have

Lemma 6.3 ν(ψ−1A) = ν(A) for any A ∈ B([0, 1]).
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Lemma 6.3 implies that the probability measure ν is an invariant measure for the
tent map ψ. We know that this probability measure ν is a unique invariant probability
measure of the tent map ψ.

Moreover, we introduce a one-dimensional stochastic process W = (W (n); n ∈ N∗)
defined on the probability space ([0, 1],B([0, 1]), ν) by

W (n) ≡ 2
√

3(X(n)− 1
2
) (n ∈ N∗). (83)

We call the stochastic process W a stochastic process associated with the tent map ψ.
A direct calculation gives us the following Theorem 6.1.

Theorem 6.1

(i) W is identically distributed.

(ii) W is not independent.

(iii) W is a strictly stationary process.

(iv) E(W (n)) = 0 (n ∈ N∗).

(v) E(W (n)2) = 1 (n ∈ N∗).

(vi) E((W (n)2 − 1)2) = 4
5 (n ∈ N∗).

(vii) E(W (0)2W (1)) = −
√

3
2 .

(viii) E(W (0)2W (1)2) = 6
5 .

(ix) E(W (n)2p+1) = 0 (n, p ∈ N∗).

(x) E(W (0)2p+1W (n)q) = 0 (n ∈ N, p, q ∈ N∗).

(xi) E(W (0)2p0+1W (1)p1W (2)p2 · · ·W (n)pn) = 0 (n ∈ N, p0, p1, . . . , pn ∈ N∗).

Immediately from Theorem 6.1(iii), (iv), (v) and (x), we have

Theorem 6.2 The stochastic process W is a white noise in a broad sense.

In order to investigate the problem of coexistence of order and chaos for the stochas-
tic process W associated with the tent map ψ, similarly as in the previous section, we
introduce a two-dimensional stochastic process W(0,1) = (W(0,1)(n); n ∈ N∗) defined on
the probability space ([0, 1],B([0, 1]), ν) by

W(0,1)(n) ≡ t(W (n),
√

5
2

(W 2(n)− 1)) (n ∈ N∗). (84)

It follows from Theorem 6.1(iii) that the stochastic process W(0,1) is a weakly
stationary process with mean vector 0. We shall calculate the covariance matrix function
R(W(0,1)) = (R(W(0,1))(n); n ∈ Z) for the stochastic process W(0,1).

Theorem 6.3 The stochastic process W(0,1) is a weakly stationary process whose co-
variance matrix function R(W(0,1)) is given by



98 Y. Okabe and M. Matsuura

(i) R(W(0,1))(0) = I2,

(ii) R(W(0,1))(1) =
(

0 −
√

15
4

0 1
4

)
,

(iii) R(W(0,1))(n) = 1
4R(W(0,1))(n− 1) = 1

4n−1 R(W(0,1))(1) (n ≥ 2).

Proof. From Theorem 6.1(iv), (v), (vi), (ix) and (x), we see that (i) and (ii) are proved.
In order to prove (iii), we shall show the following relation.

E((W (0)2 − 1)W (n)) =
1
4
E((W (0)2 − 1)W (n− 1)) (n ≥ 2). (85)

It follows from Theorem 6.1 that

E((W (0)2 − 1)W (n)) = E(W (0)2W (n))

=
√

12
3
(J1 + J2),

where

J1 ≡
∫ 1/2

0

(x−1
2
)2(X(n−1)(ψ(x))−1

2
)dx and J2 ≡

∫ 1

1/2

(x−1
2
)2(X(n−1)(ψ(x))−1

2
)dx.

By the definition of the tent map ψ, we see that

J1 =
1
8

∫ 1

0

(y− 1)2(X(n− 1)(y)− 1
2
)dy and J2 =

1
8

∫ 1

0

(y− 1)2(X(n− 1)(y)− 1
2
)dy.

Therefore

E((W (0)2 − 1)W (n)) =
√

12
3

4

∫ 1

0

(y − 1)2(X(n− 1)(y)− 1
2
)dy

=
√

12
3

4

∫ 1

0

((y − 1
2
)2 − (y − 1

2
− 1

4
))(X(n− 1)(y)− 1

2
)dy

=
√

12
3

4
{E((X(0)− 1

2
)2(X(n− 1)− 1

2
))−

−E((X(0)− 1
2
)(X(n− 1)− 1

2
)) +

1
4
E(X(n− 1)− 1

2
)}

=
1
4
E(W (0)2W (n− 1)),

which implies that (85) holds.
Similarly as in the proof of (85), we can show the following relation.

E((W (0)2 − 1)(W (n)2 − 1)) =
1
4
E((W (0)2 − 1)(W (n− 1)2 − 1)) (n ≥ 2). (86)

Thus, it follows from Theorem 6.1(iv), (x), (85) and (86) that (iii) holds. (Q.E.D.)
Next, we shall calculate the system of the minimum KM2O-Langevin matrices for

the stochastic process W(0,1) associated with the tent map. Similarly as in the logistic
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map, for any fixed natural number N , we restrict the time domain of the stochastic
process W(0,1) to the set {0, 1, . . . , N} and define a two-dimensional flow Z = (Z(n); 0 ≤
n ≤ N) in the real inner product space L2([0, 1],B([0, 1]), ν) by

Z(n) ≡ W(0,1)(n) (0 ≤ n ≤ N). (87)

Lemma 6.4 The stochastic process W(0,1) is degenerate.

Proof. By noting R(W(0,1))(0) = I2, we can let w tend to 0 in (37) to see that
δ0
+(W(0,1))(1) = −R(W(0,1))(1) and δ0

−(W(0,1))(1) = −R(W(0,1))(−1), which with
Theorem 6.3(ii) implies that

δ0
+(W(0,1))(1) = −

(
0 −

√
15
4

0 1
4

)
, (88)

δ0
−(W(0,1))(1) = −

(
0 0

−
√

15
4

1
4

)
. (89)

On the other hand, it follows from Theorems 3.1(ii), 6.3(i), (88) and (89) that

V+(W(0,1))(1) =
1
16

(
1

√
15√

15 15

)
, (90)

V−(W(0,1))(1) =
(

1 0
0 0

)
. (91)

In particular, we have

detV+(W(0,1))(1) = det V−(W(0,1))(1) = 0, (92)

which implies that the stochastic process W(0,1) is degenerate. (Q.E.D.)
Since it follows from Lemma 6.4 that the flow Z is degenerate, we shall apply the

weight transformation to it and obtain the system LM(Z) of the minimum KM2O-
Langevin matrices associated with the flow Zw.

For simplicity of the notation, we adopt the same notation as in (68) and (66) with
Z in (65) replaced by Z in (87). It follows from Theorem 6.3 that

Lemma 6.5 For any n(1 ≤ n ≤ N),

R(Z)(n) = Rn,

where the matrix R of order 2 is given by

R =
(

0 −
√

15
4

0 1
4

)
.

Proof. We have only to note that R2 = 1
4R and R = R(1). (Q.E.D.)

It follows from Lemma 2.2(i), Theorem 6.3 and Lemma 6.5 that

Lemma 6.6 For any w > 0,
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(i) Rw(0) = (1 + w2)I2,

(ii)
{

Rw(n) = Rn (1 ≤ n ≤ N),
Rw(−n) = ( tR)n (1 ≤ n ≤ N).

Using (32), we shall show

Lemma 6.7 For any w > 0 and any n (1 ≤ n ≤ N − 1),

(i) δw
+(n + 1) = w2δw

+(n)RV w
− (n)−1,

(ii) δw
−(n + 1) = w2δw

−(n) tRV w
+ (n)−1.

Proof. It follows from (37), Lemmas 6.5 and 6.6 that

δw
+(n + 1)V w

− (n) = −(Rn+1 +
n−1∑

k=0

γw
+(n, k)Rk+1)

= −(Rw(n) +
n−1∑

k=0

γw
+(n, k)Rw(k)− w2δw

+(n))R.

Therefore, applying (32) to the first term of the right-hand side of the above equation,
we see that (i) holds. We note that the matrix V w

− (n) is invertible, because the stochastic
process Zw is non-degenerate. Similarly, (ii) can be proved. (Q.E.D.)

By a direct calculation, we can show from (37), Theorem 3.1(ii), Lemmas 6.6 and
6.7 that

Lemma 6.8 For any w > 0,

(i) V w
+ (0) = V w

− (0) = (1 + w2)I2,

(ii)
{

δw
+(1) = − 1

1+w2 R,

δw
−(1) = − 1

1+w2
tR,

(iii)





V w
+ (1) = 1

16(1+w2)

(
16(1 + w2)2 − 15

√
15√

15 16(1 + w2)2 − 1

)
,

V w
− (1) = 1

1+w2

(
(1 + w2)2 0

0 (1 + w2)2 − 1

)
,

(iv)

{
δw
+(2) = − 1

4(2+w2)R,

δw
−(2) = − 1

4(2+w2)
tR.

We shall show

Lemma 6.9 For any w > 0 and any n (1 ≤ n ≤ N), there exists a real number
αn(w) 6= 0 such that

{
δw
+(n) = (

∏n
k=1 αk(w))R (1 ≤ n ≤ N),

δw
−(n) = (

∏n
k=1 αk(w)) tR (1 ≤ n ≤ N).

In particular,

α1(w) = − 1
1 + w2

and α2(w) =
1 + w2

4(2 + w2)
.
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Proof. We shall show Lemma 6.9 by mathematical induction with respect to n. It
follows from Lemma 6.8(ii) and (iv) that Lemma 6.9 holds for n = 1, 2. For any fixed
natural number n0 (2 ≤ n0 ≤ N − 1), let us assume that Lemma 6.9 holds for any
natural number n (1 ≤ n ≤ n0). It follows from Lemma 6.7(i) and Theorem 3.1(ii) that

δw
+(n0 + 1) = δw

+(n0)(w2R)V w
− (n0)−1

= δw
+(n0)(w2R)((I2 − δw

−(n0)δw
+(n0))V w

− (n0 − 1))−1

= δw
+(n0)(w2R)V w

− (n0 − 1)−1(I2 − δw
−(n0)δw

+(n0))−1.

Using the hypothesis in mathematical induction and Lemma 6.7(i), we have

δw
+(n0 + 1) = αn0(w)δw

+(n0 − 1)(w2R)V w
− (n0 − 1)−1(I2 − δw

−(n0)δw
+(n0))−1

= αn0(w)δw
+(n0)(I2 − δw

−(n0)δw
+(n0))−1

= αn0(w)(
n0∏

k=1

αk(w))R(I2 −
n0∏

k=1

(α2
k(w)) tRR)−1.

Noting the matrix R in Lemma 6.5, we see from a direct calculation that

R(I2 −
n0∏

k=1

(α2
k(w)) tRR)−1 =

1
1−∏n0

k=1 α2
k(w)

R.

Therefore, using the hypothesis in mathematical induction again, we have

δw
+(n0 + 1) = αn0(w)(

n0∏

k=1

αk(w))
1

1−∏n0
k=1 α2

k(w)
R

=
αn0(w)

1−∏n0
k=1 α2

k(w)
(

n0∏

k=1

αk(w))R

=
αn0(w)

1−∏n0
k=1 α2

k(w)
δw
+(n0).

Similarly, we have

δw
−(n0 + 1) =

αn0(w)
1−∏n0

k=1 α2
k(w)

δw
−(n0).

Therefore, putting αn0+1(w) ≡ αn0 (w)

1−
∏n0

k=1
α2

k
(w)

, we see that Lemma 6.9 holds for n =

n0 + 1.
By mathematical induction, we have proved Lemma 6.9. (Q.E.D.)
We can see from the proof of Lemma 6.9 that

Lemma 6.10 For any w > 0 and any n (2 ≤ n ≤ N − 1),

αn+1(w) =
αn(w)

1−∏n
k=1 α2

k(w)
.

We shall show
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Lemma 6.11 For any w > 0 and any n (3 ≤ n ≤ N − 1),

1
αn+1(w)

+ αn(w) =
1

αn(w)
+ αn−1(w).

Proof. It follows from Lemma 6.10 that

αn+1(w) =
αn(w)

1− α2
n(w)

∏n−1
k=1 α2

k(w)
(2 ≤ n ≤ N − 1). (93)

Using Lemma 6.10 again, we see that for any natural number n (3 ≤ n ≤ N − 1),

αn(w)(1−
n−1∏

k=1

α2
k(w)) = αn−1(w).

Therefore
n−1∏

k=1

α2
k(w) = 1− αn−1(w)

αn(w)
. (94)

Substituting (94) into (93), we have

αn+1(w) =
αn(w)

1− α2
n(w) + αn(w)αn−1(w)

,

which implies that Lemma 6.11 holds. (Q.E.D.)
Using Lemmas 6.9 and 6.10, we see from a direct calculation that

Lemma 6.12 For any w > 0,

1
α3(w)

+ α2(w) =
32 + 17w2

4(1 + w2)
.

It follows from Lemmas 6.11 and 6.12 that

Lemma 6.13 For any w > 0 and any n (2 ≤ n ≤ N − 1),

αn+1(w) =
1

32+17w2

4(1+w2) − αn(w)
.

We shall show

Lemma 6.14 (i) limw→0 α1(w) = −1;

(ii) For any n (2 ≤ n ≤ N), there exists a limw→0 αn(w) with | limw→0 αn(w)| < 1.
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Proof. (i) comes from Lemma 6.9. We shall show (ii) by mathematical induction with
respect to n. It follows from Lemma 6.9 that (ii) holds for n = 2. For any fixed natural
number n0 ≥ 2, let us assume that (ii) holds for n = n0. Since it follows that

| lim
w→0

(
32 + 17w2

4(1 + w2)
− αn0(w))| = |8− lim

w→0
αn0(w)|

≥ 8− | lim
w→0

αn0(w)| > 7,

we see from Lemma 6.13 that there exists a limw→0 αn0+1(w) and it satisfies the follow-
ing:

| lim
w→0

αn0+1(w)| = 1
| limw→0( 32+17w2

4(1+w2) − αn0(w))| < 1,

which implies that (ii) holds for n = n0 + 1. By mathematical induction, we see that
(ii) holds. (Q.E.D.)

After the above preparations, we shall show the following theorem.

Theorem 6.4 The minimum KM2O-Langevin partial autocorrelation matrices can be
obtained according to the following algorithm:

(i) δ0
+(W(0,1))(n) = tδ0

−(W(0,1))(n) (n ≥ 1),

(ii) δ0
+(W(0,1))(1) =

(
0

√
15
4

0 − 1
4

)
,

(iii) δ0
±(W(0,1))(n) = αnδ0

±(W(0,1))(n− 1) (n ≥ 2),
where {

α2 = 1
8

αn = 1
8−αn−1

(n ≥ 3).

Proof. By virtue of Lemma 6.14, we can define αn ≡ limw→0 αn(w). It then follows
from Lemmas 6.9 and 6.13 that Theorem 6.4 holds. (Q.E.D.)

7. Discussion

We have treated the logistic map and the tent map in Section 5 and Section 6,
respectively. These dynamical systems whose initial distributions are governed by their
unique invariant probability measures have strictly stationarity property from the view-
point of stochastic processes (Theorems 5.1 and 6.1). In particular, the weakly station-
arity property of these stochastic processes W can be characterized as the fluctuation-
dissipation theorem, which is represented as the relation among the system of the min-
imum KM2O-Langevin matrices associated with the stochastic process (Theorem 3.1).

By taking out 18 kinds of two-dimensional stochastic processes W(0,j) (1 ≤ j ≤ 18)
from 19 kinds of stochastic processes of rank 6 of the generating system of polynomial
type for non-linear information spaces of the stochastic process W associated with the
logistic map, we have calculated covariance matrix functions: Theorems 5.3 and 5.7 -
5.23 for the logistic map. On the other hand, for the tent map, we have used a two-
dimensional stochastic process W(0,1) taken out from the generating system of rank 6
of polynomial type, and have calculated its covariance matrix function: Theorems 6.3.
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Further, in order to obtain a mathematical representation for a philosophical con-
cept of the coexistence of order and chaos for the chaotic maps above from the theory of
KM2O-Langevin equations, we have found certain new relations—Theorem 5.4 for the
logistic map and Theorem 6.4 for the tent map—besides the fluctuation-dissipation the-
orem. In fact, as stated in the last paragraph of Section 5, we have found that all the co-
variance matrix functions for two-dimensional stochastic processes W(0,j) (1 ≤ j ≤ 18)
have the same structure as that of the moving average processes, but the minimum
KM2O-Langevin partial autocorrelation matrix functions δ0

±(W(0,j)) except j = 4, 10
have the same structure as that of the autoregressive processes.

On the other hand, also for j = 4, 10, by taking the proof of Theorem 6.4 for
the tent map into deep consideration, we can show that the minimum KM2O-Langevin
partial autocorrelation matrix functions δ0

±(W(0,j)) for j = 4, 10 have the same structure
as that of W(0,1) for the tent map. In fact, we can show the following theorem.

Theorem 7.1 For the logistic map, the minimum KM2O-Langevin partial autocorrela-
tion matrix functions δ0

±(W(0,j)) for j = 4, 10 can be obtained according to the following
algorithm:

(i) (a) δ0
+(W(0,4))(1) =

(
0 4√

17

0 − 4
17

)
and δ0

−(W(0,4))(1) =
(

0 0
4√
17

− 4
17

)
,

(b) δ0
+(W(0,4))(2) =

(
0

√
17

0 16

)
and δ0

−(W(0,4))(2) =
(

0 0
1√
17

0

)
,

(c) δ0
±(W(0,4))(n) = βnδ0

±(W(0,4))(n− 1) (n ≥ 3),
where {

β3 = − 2
17

βn = − 2
17+2βn−1

(n ≥ 4).

(ii) (a) δ0
+(W(0,10))(1) =

(
2 −√5
4√
5

−2

)
and δ0

−(W(0,10))(1) =
(

0 0
− 1√

5
0

)
,

(b) δ0
±(W(0,10))(n) = γnδ0

±(W(0,10))(n− 1) (n ≥ 2),
where {

γ2 = − 1
5

γn = − 1
5+γn−1

(n ≥ 3).

We shall in Table 7.1 show the results that the covariance matrix functions and the
minimum KM2O-Langevin partial autocorrelation matrix functions for 18 kinds of two-
dimensional stochastic processes W(0,j) (1 ≤ j ≤ 18) have the same structure as that of
MA-process and that of AR-process, respectively. The “recursive” in δ0

±(W(0,j))(n) for
j = 4, 10 implies the behavior of the minimum KM2O-Langevin partial autocorrelation
matrix functions in Theorem 7.1, which is similar to the one in Theorem 6.4 for the tent
map.
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j R(W(0,j))(n) δ0
±(W(0,j))(n)

1 0 (|n| ≥ 2) 0 (n ≥ 2)
2 0 (|n| ≥ 1) 0 (n ≥ 1)
3 0 (|n| ≥ 2) 0 (n ≥ 2)
4 0 (|n| ≥ 3) recursive
5 0 (|n| ≥ 2) 0 (n ≥ 2)
6 0 (|n| ≥ 1) 0 (n ≥ 1)
7 0 (|n| ≥ 1) 0 (n ≥ 1)
8 0 (|n| ≥ 2) 0 (n ≥ 2)
9 0 (|n| ≥ 3) 0 (n ≥ 3)

j R(W(0,j))(n) δ0
±(W(0,j))(n)

10 0 (|n| ≥ 2) recursive
11 0 (|n| ≥ 1) 0 (n ≥ 1)
12 0 (|n| ≥ 3) 0 (n ≥ 3)
13 0 (|n| ≥ 2) 0 (n ≥ 2)
14 0 (|n| ≥ 1) 0 (n ≥ 1)
15 0 (|n| ≥ 2) 0 (n ≥ 2)
16 0 (|n| ≥ 4) 0 (n ≥ 4)
17 0 (|n| ≥ 3) 0 (n ≥ 3)
18 0 (|n| ≥ 1) 0 (n ≥ 1)

Table 7.1 The covariance matrix functions and the minimum KM2O-Langevin
partial autocorrelation matrix functions for 18 kinds of two-dimensional stochastic pro-
cesses W(0,j) (1 ≤ j ≤ 18) associated with the logistic map

By taking account of the form of the covariance matrix functions of 18 kinds of
two-dimensional stochastic processes W(0,j) (1 ≤ j ≤ 18) in Theorems 5.3 and 5.7 - 5.23
and their proofs, we can take out certain algorithms determining the covariance matrix
functions and show the behavior of the minimum KM2O-Langevin partial autocorrela-
tion matrix functions only from their algorithms, apart from the logistic map, which will
appear in subsequent paper Okabe and Matsuura (in preparation). As its application,
we shall treat 17 kinds of two-dimensional stochastic processes W(0,j) except j = 1 as-
sociated with the tent map. Further, we shall investigate a mathematical representation
for a philosophical concept of the coexistence of order and chaos for both the logistic
map and the tent map.
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