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Abstract

We propose a new parametric regression model, Hybrid Linear Regression Model
(or simply HLRM), which has partially additive and multiplicative covariate struc-
ture. In an ordinary linear regression model or generalized linear model, it is
assumed that the covariates have either an additive or multiplicative effect on the
response. A family of HLRM includes an ordinary linear regression model, logarith-
mic linear model and generalized linear model with normal errors as special cases.
In analysis of HLRM, estimating unknown parameters or searching for the best
fitting optimal model, we assume the log-normal distribution. Some illustrative
analyses applying HLRM to actual data sets are also demonstrated.

Key Words and Phrases: Additive structure, Generalized linear model, Multiplicative structure,

Log-normal distribution, Parametric regression model.

1. Introduction

Since the ordinary linear model and the generalized linear model take the simple
and convenient forms of their covariates for ease of mathematical treatment, they are
universally applicable (see e.g., McCullagh and Nelder (1989)). As these models assume
that all of the covariates have either additive or multiplicative effects on the response, we
can not analyze data when at the same time some covariates have an additive and others
have a multiplicative contribution. However, a common structure for all covariates are
not always the best way to express the response value. Actually, on a housing price data
in Takahashi et al. (2000), we had better consider that the lot size or a size of building
contribute additively on the price, on the other hand, a distance from city center or an
age of building contribute multiplicatively on the price. Therefore, we propose a new
parametric regression model that has a partially additive and multiplicative structure
in the covariates. Let a response variable Y be transformed to a positive value by a
known positive non-decreasing function g(·) and a transformed response variable g(Y )
have p explanatory variables (X1, . . . , Xp) with an additive contribution and q explana-
tory variables (Z1, . . . , Zq) with a multiplicative contribution. Then independent sets of
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observed data (yi, xi, zi) i = 1, . . . , n, where n is the sample size, can be expressed as

g(yi) = µ
(
1 + β′xi + τi

)
eγ′zi+εi , (i = 1, . . . , n), (1)

where µ is the general mean parameter and β and γ are the p × 1 and q × 1 vectors,
respectively, of unknown parameters. The covariates xi and zi are assumed standardized
beforehand, i.e.,

x̄·j =
1
n

n∑

i=1

xij = 0, s2
x̄·j =

1
n− 1

n∑

i=1

(xij − x̄·j)2 = 1,

z̄·j =
1
n

n∑

i=1

zij = 0, s2
z̄·j =

1
n− 1

n∑

i=1

(zij − z̄·j)2 = 1,

where xij and zij are the jth elements of xi and zi, respectively. Moreover, it is assumed
that an additive error τi and a multiplicative error εi are independent, and identically
and independently distributed with following means and variances.

E[τi] = 0, E[εi] = 0,
Var[τi] = ζ2, Var[εi] = σ2.

Each error is not only a measurement error but also a structural inexpressible one by
covariates in an each structure. However, in this model, even if each error is assumed
to be distributed as the normal distribution, it is difficult to obtain an explicit form
of the distribution of g(yi). Therefore, we consider that the mixed distribution of two
errors can be expressed in the one distribution. If we assume that εi ∼ N(0, σ2) and
τi

D→ N(0, ζ2) (ζ2/(1+β′xi)2 → 0), the following normal approximation can be obtained
from the Taylor expansion.

log g(yi) ≈ log µ + log(1 + β′xi) + γ′izi + εi +
τi

1 + β′xi

.

Note that g(yi) has always positive value. Therefore, we assume that g(yi) is distributed
as the log-normal distribution with location parameter ηi and dispersion parameter ψ2

i ,
where

ηi = log µ + log(1 + β′xi) + γ′zi − 1
2

log
{

1 +
ζ2

(1 + β′xi)2

}
,

ψ2
i = σ2 + log

{
1 +

ζ2

(1 + β′xi)2

}
.

(2)

The model (1) includes not only the ordinary linear regression model and the logarithmic
linear model with normal error, but also the generalized linear model with the normal
error as special cases. So, we call the model (1) the Hybrid Linear Regression Model (or
simply HLRM). The best model assigning covariates to additive and multiplicative struc-
ture can be selected, using an information criterion based on the estimators obtained. In
the following, we regard as g(yi) ≡ yi, that is the identity function, to simplify notation.

This paper is organized in the following way. In Section 2, we discuss a log-normal
distribution as the distribution of yi. In Section 3, we consider the method for estimating
the unknown parameters. In Section 4, we given some illustrative applications of HLRM
to actual data sets such as data on housing price in Hiroshima city and its vicinity (
Takahashi et al. (2000)), the cost of constructing nuclear power plants (Mooz (1978))
and crime rates in 47 states of the US (Vandaele (1978)).
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2. The Log-normal Distribution

2.1. Validity of Distribution

Here, we discuss the validity of the log-normal distribution as the distribution of
yi, especially, the ordinary linear model and logarithmic linear model are included in
HLRM as the special cases.

From a great amount of literature on the distribution theory (see Johnson, Kotz
and Balakrishnan (1994), pp. 207-258, etc.), if yi is distributed as LN(ηi, ψ

2
i ), that is

the log-normal distribution with location parameter ηi and dispersion parameter ψ2
i as

in (2), the density function of yi is written as

f(yi, ηi, ψ
2
i ) =

1√
2πψiyi

exp
{
− (log yi − ηi)2

2ψ2
i

}
,

and the mean and variance of yi are given by

E[yi] = µ(1 + β′xi)eγ′zi+σ2/2,

Var[yi] =
{

µ(1 + β′xi)eγ′zi+σ2/2
}2

{(
1 +

ζ2

(1 + β′xi)2

)
eσ2 − 1

}
.

(3)

Further, using the coefficients aj(·) given in Barakat (1976) and hj(·) the quasi-Hermite
polynomials, the characteristic function of yi is obtained as

Cyi(t) = eiλite−λ2
i ψ2

i t2/2
∞∑

j=0

(iψi)j

j!
aj(iλjt)hj(λjψjt),

where λi = eηi .
If ζ2 = 0, µ = 1 and β = 0, i.e., covariates do not have an additive effect on

the response, yi is distributed as the log-normal distribution with location parameter
ηi = γ′zi and dispersion parameter ψ2

i = σ2. Therefore, the mean and variance of yi is
rewritten as

E[yi] = eγ′zi+σ2/2, Var[yi] =
(
eγ′zi+σ2/2

)2 (
eσ2 − 1

)
.

These results mean that in the case ζ2 = 0, µ = 1 and β = 0, yi becomes the ordinary
logarithmic linear model with normal error.

Moreover, if σ2 = 0, µ = 1 and γ = 0, i.e., the covariates do not have a multiplica-
tive effect on the response yi, the mean and variance of yi are written as

E[yi] = 1 + β′xi, Var[yi] = ζ2.

Let ∆2
i = ζ2/(1 + β′xi)2, then

λi = exp

{
(1 + β′xi)

(
1 +

ζ2

(1 + β′xi)2

)−1/2
}

= 1 + β′xi + O(∆2
i ),

ψ2
i = log

{
1 +

ζ2

(1 + β′xi)2

}
= ∆2

i + O(∆4
i ).
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Therefore,
λ2

i ψ
2
i = ζ2 + O(∆4

i ).

Using these results and a0(s) = 1, a1(s) = 0, h0(s) = 1 and h1(s) = s, the characteristic
function of yi can be given by

Cyi
(t) = exp

{
i(1 + β′xi)t− 1

2
ζ2t2

}
+ O(∆2

i ).

This means that yi converges to the normal distribution with mean 1+β′xi and variance
ζ2 as ∆2

i tends to 0. Namely, if σ2 = 0, µ = 1, γ = 0 and ζ2 is sufficiently small compared
with (1 + β′xi)2, then we regard the distribution of yi as N(1 + β′xi, ζ

2). Because yi

is always positive, it is the valid condition to be the normal distribution that ζ2 is very
small compared to (1 + β′xi)2.

From the results mentioned above, it seems that this hybrid linear regression model
includes the ordinary linear model and logarithmic linear model with normal error as
special cases.

2.2. Outline of Derivation

Here, we outline of derivation on the log-normal distribution in HLRM. For the
purpose of simplicity, we assume that εi ∼N(0, σ2) or eεi ∼LN (0, σ2). Then r-th
moment of eεi can be written as

E [(eεi)r] = er2σ2/2.

Under the condition that τi and εi are independent, the mean and variance of yi are
given by (3). Using these equations, we consider the distribution of yi as a log-normal
distribution with location parameter ηi and dispersion parameter ψ2

i . Each parameter
can be defined as follows. If yi is distributed as LN(ηi, ψ

2
i ), the mean and variance of yi

satisfy as

E[yi] = miω
1/2
i , Var[yi] =

(
miω

1/2
i

)2

(ωi − 1),

where mi = log ηi and ωi = log ψ2
i . Therefore the parameters can be expressed as

ηi = log

{
(E[yi])2√

(E[yi])2 + Var[yi]

}
ψ2

i = log
{

(E[yi])2 + Var[yi]
(E[yi])2

}
,

and we can obtain the log-normal distribution with parameters (2)

3. Estimation of HLRM

3.1. Estimation of θ

When yi is distributed as the log-normal distribution having a location and dis-
persion parameters given by (2), the log-likelihood for θ = (α, β′, γ′, ζ2, σ2)′ is given
by

`(y;θ) = −n

2
log(2π)−

n∑

i=1

log yi − 1
2

n∑

i=1

log ψ2
i −

1
2

n∑

i=1

(log yi − ηi)2

ψ2
i

, (4)
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where α = log µ. The maximum likelihood estimator (MLE) of θ, θ̂, can be obtained by
maximizing this log-likelihood. We use the SPIDER algorithm (Ohtaki and Izumi (1999))
to obtain the value of θ̂.

We must pay attention to the case where the true parameter values that are on the
boundary of the parameter space. On this issue, see, Moran (1971), Lehmann (1983)
and Self and Liang (1987), etc. So, we calculate θ̂ in three cases:

(i) ζ2 6= 0 and σ2 6= 0, (Dual),
(ii) ζ2 6= 0 and σ2 = 0, (Additive),
(iii) ζ2 = 0 and σ2 6= 0, (Multiplicative),

where we call the case (i) Dual, case (ii) Additive and case (iii) Multiplicative variance
structures, respectively. We choose the optimized θ̂ whose AIC (Akaike (1973)) is the
smallest among the three cases. AIC is defined by

AIC = −2`(y; θ̂) + 2× (the number of independent parameters), (5)

where `(y; θ̂) is given by substituting θ̂ into (4). Moreover, AIC is used to determine if
the covariates have an additive contribution on their response or multiplicative The can-
didate model with the smallest AIC is regarded as the best model among all candidate
models.

3.2. Confidence Intervals of θ

Next, we consider confidence intervals for the unknown parameters of the HLRM.
Let θ0 denote the true parameter. Namely, θ0 is defined by

θ0 = arg max
θ

1
n

n∑

i=1

∫ ∞

−∞
fi(yi;θ) log fi(yi; θ)dyi.

Then √
n(θ̂ − θ0)

D−→ Np+q+3

(
0, J(θ0)

−1
)

, (n →∞)

where

J(θ0) = − 1
n

n∑

i=1

E
[

∂2

∂θ∂θ′
log fi(yi; θ)

]∣∣∣∣
θ=θ0

.

In this case, the maximum likelihood estimator is not distributed identically but indepen-
dently. Takeuchi (1976) described the asymptotic normality of the maximum likelihood
estimator in such a case. Modifying this result, we can prove the asymptotic normality
of θ̂. The partial derivatives with respect to θ up to the second order are shown in the
Appendix. Substituting E[log yi − ηi] = 0 and E[(log yi − ηi)2] = ψ2

i into the equations
in the Appendix yields

J(θ0) = [Jab]|θ=θ0
, (a = 1, . . . , 5, b = 1, . . . , 4),

where Jab = J ′ab and

J11 =
n∑

i=1

1
ψ2

i

, J12 =
n∑

i=1

1
ψ2

i ρi

(
ζ2

ρ2
i + ζ2

+ 1
)

x′i,
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J13 =
n∑

i=1

1
ψ2

i

z′i, J14 = −1
2

n∑

i=1

1
ψ2

i (ρ2
i + ζ2)

, J15 = 0,

J22 =
n∑

i=1

1
ψ2

i ρ2
i

{
2ζ4

ψ2
i (ρ2

i + ζ2)2
+

(
ζ2

ρ2
i + ζ2

+ 1
)2

}
xix

′
i,

J23 =
n∑

i=1

1
ψ2

i ρi

(
ζ2

ρ2
i + ζ2

+ 1
)

xiz
′
i,

J24 = −1
2

n∑

i=1

1
ψ2

i ρi(ρ2
i + ζ2)

{
2ζ2

ψ2
i (ρ2

i + ζ2)
+

(
ζ2

ρ2
i + ζ2

+ 1
)}

xi,

J25 = −
n∑

i=1

ζ2

ψ4
i ρi(ρ2

i + ζ2)
xi, J33 =

n∑

i=1

1
ψ2

i

ziz
′
i,

J34 = −1
2

n∑

i=1

1
ψ2

i (ρ2
i + ζ2)

zi, J35 = 0q,

J44 =
1
4

n∑

i=1

1
ψ2

i (ρ2
i + ζ2)2

(
2
ψ2

i

+ 1
)

,

J45 =
1
2

n∑

i=1

1
ψ4

i (ρ2
i + ζ2)

, J55 =
1
2

n∑

i=1

1
ψ4

i

,

where 0q is a q-dimensional vector all of whose elements are 0. Let uα be the α-level
standard normal quantile given by Φ(uα) = α, where Φ(x) is the distribution function
of N(0, 1). Then, one and two sided α-level confidence intervals for θ0 can be expressed
respectively as

I1 =
[
−∞, θ̂ − 1√

n
u(1−α)J(θ̂)−1/21p+q+3

]
,

I2 =
[
θ̂ − 1√

n
u(1+α)/2J(θ̂)−1/21p+q+3, θ̂ − 1√

n
u(1−α)/2J(θ̂)−1/21p+q+3

]
,

where J(θ̂) is defined by substituting θ̂ into J(θ) and 1p+q+3 is a p + q + 3 dimensional
vector all of whose elements are 1. Needless to say, in case (ii) we omit Ja4 (1 ≤ a ≤ 4)
and J45 from J(θ) and similarly in case (iii) we omit Ja5 (1 ≤ a ≤ 5). Then 1p+q+3 is
rewritten as 1p+q+2 in each case.

4. Illustrative Real Data Analyses

In this section, we apply HLRM to several real data sets using “HLREG” which
we developed. The HLREG is a free software. Everybody can download it from the web
site, http://apollo.rbm.hiroshima-u.ac.jp/cdrom/index.htm#house. This software can
be used for fitting HLRM to regression data and diagnosing the goodness of fit. Q-Q
plot of total log-normal residuals may be useful for detecting lack of fit of HLRM.
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Table 1. Notation for data on price of detached house.

Notation
Price : in units of 10 The price of the house

thousand yen
Area : m2 The lot size
Size : m2 Size of building
Age : years Age of building
JR : 1 if train is available Degree of commuting convenience

conveniently, 0 else
Distance : km Distance from city center of Hiroshima
Period : 0 if May 1998, The period of investigation

1 if June 1999

Table 2. Estimates of variance parameters and AIC with the optimal, fully additive,
fully multiplicative and intuitive models by variance structure for the house data.

Mean Variance Estimates

Structure Structure
√

ζ̂2
√

σ̂2 AIC

Dual .08099 .17170 2195.8
Intuitive Additive .19590 .00000 2201.7

Multiplicative .00000 .19226 2194.7
Dual .09841 .15763 2194.4

Fully additive Additive .19455 .00000 2203.5
Multiplicative .00000 .19299 2195.9
Dual .14237 .14438 2212.7

Fully multiplicative Additive .20434 .00000 2210.7
Multiplicative .00000 .20226 2210.7

4.1. Price of Detached House

Takahashi et al. (2000) studied the relationship between price of detached houses
located in the suburbs of Hiroshima and their environmental condition. One hundred
and fifty eight sets of house data were collected from advertising in newspapers on May
1998 and June 1999. The notation for this house data is explained in Table 1. In this sub-
section, we ascertain an our question that the lot size or a size of building contribute
additively on the price, on the other hand, a distance from city center or an age of
building contribute multiplicatively on the price. The price of the house, Price, was
used as the response variable and the others were used as explanatory variables. Further,
the identity function was assumed for the link function g since a price of house is always
positive. All possible combinations of sets of additive and multiplicative explanatory
variables and errors were examined. Our intuitive model is expressed as
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Table 3. Estimates of regression coefficients with several models for the house data.

[ Intuitive model ]
Para- 95% Confidence bounds
meter Variable Coefficient Lower Upper T P

µ 3186.1 ( 3087.2 3288.0 ) 501.734 .000
β1 Area .14716E-02 ( .63432E-03 .23089E-02 ) 3.445 .001
β2 Size .72264E-02 ( .51813E-02 .92715E-02 ) 6.926 .000
γ1 Period -.86740E-01 ( -.15154 -.21938E-01 ) -2.624 .009
γ2 JR .17355 ( .87697E-01 .25941 ) 3.962 .000
γ3 Age -.17737E-01 ( -.21916E-01 -.13557E-01 ) -8.318 .000
γ4 Distance -.23214E-01 ( -.31024E-01 -.15405E-01 ) -5.826 .000

R2 = .6953,
√

ζ̂2 = .00000,
√

σ̂2 = .19226, AIC = 2194.7

[ Fully additive model ]
Para- 95% Confidence bounds
meter Variable Coefficient Lower Upper T P

µ 3248.8 ( 3122.2 3380.5 ) 398.742 .000
β1 Period -.73447E-01 ( -.15201 .51152E-02 ) -1.832 .067
β2 Area .90459E-03 ( -.30952E-04 .18401E-02 ) 1.895 .058
β3 Size .64104E-02 ( .40837E-02 .87370E-02 ) 5.400 .000
β4 JR .14611 ( .40261E-01 .25197 ) 2.705 .007
β5 Age -.15535E-01 ( -.20345E-01 -.10725E-01 ) -6.330 .000
β6 Distance -.17176E-01 ( -.26689E-01 -.76627E-02 ) -3.539 .000

R2 = .6898,
√

ζ̂2 = .09841,
√

σ̂2 = .15763, AIC = 2194.4

[ Fully multiplicative model ]
Para- 95% Confidence bounds
meter Variable Coefficient Lower Upper T P

µ 3113.2 ( 3016.6 3213.0 ) 499.861 .000
γ1 Period -.74887E-01 ( -.14286 -.69105E-02 ) -2.159 .031
γ2 Area .10182E-02 ( .21421E-03 .18222E-02 ) 2.482 .013
γ3 Size .67919E-02 ( .48044E-02 .87795E-02 ) 6.698 .000
γ4 JR .16894 ( .78393E-01 .25949 ) 3.657 .000
γ5 Age -.18952E-01 ( -.23090E-01 -.14814E-01 ) -8.976 .000
γ6 Distance -.20854E-01 ( -.29070E-01 -.12637E-01 ) -4.975 .000

R2 = .6953,
√

ζ̂2 = .00000,
√

σ̂2 = .20226, AIC = 2210.7

[ Intuitive model: ]

Price = µ(1 + β1Area + β2Size + τ) exp(γ1Period + γ2JR

+γ3Age + γ4Distance + ε). (6)

The following two models were compared with the optimal model:
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[ Fully additive model: ]

Price = µ(1 + β1Period + β2Area + β3Size + β4JR

+β5Age + β6Distance + τ) exp(ε). (7)

[ Fully multiplicative model: ]

Price = µ(1 + τ) exp(γ1Period + γ2Area + γ3Size + γ4JR

+γ5Age + γ6Distance + ε). (8)

The values of AIC for these models are given in Table 2. Our intuitive model is a better
one than fully additive and multiplicative ones. So, it can be said that our view is right.
Therefore, HLRM can be give a better result than ordinary models whose covariates
have either an additive or multiplicative effect on response. The estimates of regression
coefficients under these models are listed in Table 3.

4.2. Cost of Nuclear Power Plants

Next sub-section, we search the optimal model by using HLRM. The example
comes from 32 light water rector (LWR) power plants constructed in the US, on which
Mooz (1978) reported. Further, Cox and Snell (1981) analyzed these data by applying
a multivariate linear model.

The notation for this power plants data is explained in Table 4. The cost of con-
struction, C, was used as the response variable and the others were used as explanatory
variables. Further, the identity function was assumed for the link function g.

Cox and Snell (1981) analyzed these data using the following model:

[ Cox and Snell’s model: ]

log C = β0 + β1D + β2 log S + β3NE + β4CT + β5 log N + β6PT + ε. (9)

Table 4. Notation for data on cost of nuclear power plants.

Notation
C : dollars× 10−6 Cost of construction
D : Date the construction permit was issued
S : /MWe Net capacity
NE : 0 if the plant was constructed Region

in the north-east US, 0 otherwise
CT : 1 if used, 0 otherwise Use of cooling tower
N : /number Cumulative number of power plants

constructed by each architect-engineer
PT : 1 if so, 0 if not Partial turnkey plant
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Table 5. Estimates of regression coefficients with Cox and Snell’s model for the power
plant data.

Parameter Variable Coefficient Standard error
β0 -13.26 3.140
β1 D 0.2124 0.0433
β2 logS 0.7234 0.1188
β3 NE 0.2490 0.0741
β4 CT 0.1404 0.0604
β5 logN -0.0876 0.0415
β6 PT -0.2261 0.1135

R2 = .8569,
√

σ̂2 = 0.15922,

Table 6. Estimates of variance parameters and AIC with the optimal, fully additive
and fully multiplicative by variance structure for the power plant data.

Mean Variance Estimates

Structure Structure
√

ζ̂2
√

σ̂2 AIC

Dual .00000 .13835 311.71
Optimal Additive .15310 .00000 317.00

Multiplicative .00000 .13835 309.71
Dual .00000 .14589 315.10

Fully additive Additive .16355 .00000 322.30
Multiplicative .00000 .14590 313.10
Dual .10363 .10433 315.52

Fully multiplicative Additive .14763 .00000 313.52
Multiplicative .00000 .14684 313.52

The estimates of regression coefficients under this model are listed Table 5. These
estimates were obtained by using the ordinary method. This model means that all the
variables have a multiplicative contribution on C.

Next, we analyzed these data by applying the HLRM. All possible combinations of
sets of additive and multiplicative explanatory variables and errors were examined. The
following model was obtained as the optimal one, with which AIC attains the minimum
value:

[ Optimal model: ]

C = µ(1 + β1D + β2NE + β3CT + τ)exp(γ1S + γ2N + γ3PT + ε). (10)

The following two models were compared with the optimal model:

[ Fully additive model: ]

C = µ(1 + β1D + β2S + β3NE + β4CT + β5N + β6PT + τ)exp(ε). (11)
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Table 7. Estimates of regression coefficients with several models for the power plant
data.

[ Optimal model ]
Para- 95% Confidence bounds
meter Variable Coefficient Lower Upper T P

µ 450.73 ( 425.62 477.33 ) 208.881 .000
β1 D .25496 ( .86223E-01 .42369 ) 2.962 .003
β2 NE .24825 ( .77538E-01 .41896 ) 2.850 .004
β3 CT .16474 ( .23769E-01 .30572 ) 2.290 .022
γ1 S .94498E-03 ( .66778E-03 .12222E-02 ) 6.682 .000
γ2 N -.11682E-01 ( -.28681E-01 .53165E-02 ) -1.347 .178
γ3 PT -.11079 ( -.54256 .32099 ) -.503 .615

R2 = .8617,
√

ζ̂2 = .00000,
√

σ̂2 = .13835, AIC = 309.71

[ Fully additive model ]
Para- 95% Confidence bounds
meter Variable Coefficient Lower Upper T P

µ 455.03 ( 388.56 532.88 ) 75.961 .000
β1 D .24256 ( -.22919E-01 .50804 ) 1.791 .073
β2 S .88618E-03 ( .43743E-03 .13349E-02 ) 3.871 .000
β3 NE .24268 ( .60546E-02 .47931 ) 2.010 .044
β4 CT .13511 ( -.15914E-01 .28613 ) 1.753 .080
β5 N -.11528E-01 ( -.51296E-01 .28240E-01 ) -.568 .570
β6 PT -.78395E-01 ( -.56402 .40723 ) -.316 .752

R2 = .8464,
√

ζ̂2 = .00000,
√

σ̂2 = .14590, AIC = 313.10

[ Fully multiplicative model ]
Para- 95% Confidence bounds
meter Variable Coefficient Lower Upper T P

µ 431.44 ( 410.04 453.96 ) 233.725 .000
γ1 D .21292 ( .12322 .30262 ) 4.652 .000
γ2 S .92893E-03 ( .64626E-03 .12116E-02 ) 6.441 .000
γ3 NE .23993 ( .10756 .37229 ) 3.553 .000
γ4 CT .14111 ( .28180E-01 .25405 ) 2.449 .014
γ5 N -.10880E-01 ( -.23658E-01 .18979E-02 ) -1.669 .095
γ6 PT -.24320 ( -.44767 -.38733E-01 ) -2.331 .020

R2 = .8442,
√

ζ̂2 = .00000,
√

σ̂2 = .14684, AIC = 313.52

[ Fully multiplicative model: ]

C = µ(1 + τ)exp(γ1D + γ2S + γ3NE + γ4CT + γ5N + γ6PT + ε). (12)

The values of AIC for these models are given in Table 6. It is shown that additive
contribution is expected for D, NE and CT . Further, the additive error term can be
negligible. The estimates of regression coefficients under these models are listed in Table
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Table 8. Notation for data on crime rate.

Notation

R Crime rate : the number of offenses reported to the police
per 1,000,000 population

Age Age distribution : the number of males aged 14-24 per 1,000 of
total state population

Ed Educational level : the mean number of years of schooling
in the population, 25 years old and over

EX0 Police expenditure : the per capita expenditure on police protection
by state and local government in 1960

U2 Unemployment rate : unemployment rate of urban males per 1,000
in the age-group 35-39

W Wealth : wealth as measured by the median value of
transferable goods and assets or family income
(unit 10 dollars)

X Income inequality : the number of families per 1,000 earning below
one-half of the median income

7. From the coefficients of determination, it seems that the optimal model is better than
Cox and Snell’s model.

4.3. Crime Rate

Finally, we deal with crime rate data for 47 states of the US collected in 1960
reported by Vandaele (1978).

The notation for this crime rate is explained in Table 8. The crime rate, R, was
used as the response variable and the others were used as explanatory variables. Further,
the identity function was assumed for the link function g.

Table 9. Estimates of variance parameters and AIC with the optimal, fully additive
and fully multiplicative by variance structure for the crime rate data.

Mean Variance Estimates

Structure Structure
√

ζ̂2
√

σ̂2 AIC

Dual .00000 .19477 543.36
Optimal Additive .20368 .00000 546.93

Multiplicative .00000 .19476 541.36
Dual .00835 .21044 551.58

Fully additive Additive .21738 .00000 554.53
Multiplicative .00000 .21044 549.58
Dual .14806 .15033 550.64

Fully multiplicative Additive .21280 .00000 548.64
Multiplicative .00000 .21044 548.64
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Table 10. Estimates of regression coefficients with several models for the crime rate
data.

[ Optimal model ]
Para- 95% Confidence bounds
meter Variable Coefficient Lower Upper T P

µ 874.63 ( 729.95 1048.0 ) 73.422 .000
β1 Age .15704E-01 ( .75512E-02 .23857E-01 ) 3.775 .000
β2 U2 .92319E-02 ( .49948E-03 .17964E-01 ) 2.072 .038
β3 W .17335E-02 ( -.39891E-02 .74562E-02 ) .594 .553
β4 X .75196E-02 ( .35377E-03 .14685E-01 ) 2.057 .040
γ1 Ed .16212E-01 ( .79214E-02 .24502E-01 ) 3.833 .000
γ3 EX0 .10760E-01 ( .27718E-02 .18749E-01 ) 2.640 .008

R2 = .7708,
√

ζ̂2 = .00000,
√

σ̂2 = .19476, AIC = 541.36

[ Fully additive model ]
Para- 95% Confidence bounds
meter Variable Coefficient Lower Upper T P

µ 876.06 ( 808.39 949.40 ) 165.188 .000
β1 Age .11796E-01 ( .47225E-02 .18869E-01 ) 3.269 .001
β2 Ed .17410E-01 ( .56668E-02 .29154E-01 ) 2.906 .004
β3 EX0 .10095E-01 ( .63606E-02 .13829E-01 ) 5.299 .000
β4 U2 .77559E-02 ( -.14766E-02 .16988E-01 ) 1.647 .100
β5 W .14808E-02 ( -.42240E-03 .33841E-02 ) 1.525 .127
β6 X .75196E-02 ( .43253E-02 .10714E-01 ) 4.614 .000

R2 = .7304,
√

ζ̂2 = .00000,
√

σ̂2 = .21044, AIC = 549.58

[ Fully multiplicative model ]
Para- 95% Confidence bounds
meter Variable Coefficient Lower Upper T P

µ 832.89 ( 784.26 884.54 ) 219.079 .000
γ1 Age .13130E-01 ( .61813E-02 .20078E-01 ) 3.704 .000
γ2 Ed .18607E-01 ( .90955E-02 .28118E-01 ) 3.834 .000
γ3 EX0 .10146E-01 ( .66755E-02 .13616E-01 ) 5.730 .000
γ4 U2 .84963E-02 ( .31994E-04 .16961E-01 ) 1.967 .049
γ5 W .23188E-02 ( .45917E-03 .41784E-02 ) 2.444 .015
γ6 X .94982E-02 ( .59039E-02 .13092E-01 ) 5.179 .000

R2 = .7322,
√

ζ̂2 = .00000,
√

σ̂2 = .21044, AIC = 548.64

All possible combinations of sets of additive and multiplicative explanatory vari-
ables and errors were examined. The following model was obtained as the optimal one,
with which AIC attains the minimum value:

[ Optimal model: ]

R = µ(1 + β1Age + β2U2 + β3W + β4X + τ)exp(γ1Ed + γ2EX0 + ε). (13)
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The following two models were compared with the optimal model.

[ Fully additive model: ]

R = µ(1 + β1Age + β2Ed + β3EX0 + β4U2 + β5W + β6X + τ)exp(ε). (14)

[ Fully multiplicative model: ]

R = µ(1 + τ)exp(γ1Age + γ2Ed + γ3XE0 + γ4U2 + γ5W + γ6X + ε). (15)

The values of AIC for these models and the parameter estimates are given in Tables 9
and 10, respectively. It shown that an additive contribution is expected for Age, U2, W
and X. Further, the additive error term can be negligible.

In these analyses of real data sets, we see that models having variables with both
additive and multiplicative contributions at the same time can be better than ones
having variables with only additive or multiplicative contributions.
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