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Abstract

Power of epidemiologic studies can be studied via simulation, but simulations
can require substantial computational effort and time. We describe a method
for estimating power in matched and nested case-control studies using the non-
central Chi-square approximation to the distribution of the log-likelihood ratio test
statistic. The non-centrality parameter is estimated by computing the likelihood
ratio statistic using the expected values of the parameters under the null and
alternative hypotheses. The method is compared to simulation results from an
actual study evaluating various numbers of matched controls. There was reasonably
close agreement between simulated and calculated values of the mean likelihood
ratio test statistics, but the power estimates differed, perhaps due to small sample
failure of the asymptotic distribution assumption.

1. Introduction

A goal of epidemiologic research is to investigate so-called risk factors, the causes
of disease or death (the outcome). A major part of this is the evaluation of confounding
and/or effect modification by factors other than the risk factor of interest, for which
Professor Yanagawa provided useful mathematical descriptions (Yanagawa, 1979). Due
to rarity of disease occurrence and/or difficulty obtaining covariate information on all
members of a large follow-up (cohort) study, it is often more practical to study risk
factors using a sample of subjects selected from the cohort (Breslow, 1996; Sato, 1992).
Although cases can be sampled, we focus on the situation where all cases are used and
a subset of non-cases is selected.

Several study designs are available for sampling from a cohort. These include the
retrospective matched case-control (Breslow and Day, 1980), nested case-control (Bres-
low et al, 1983; Langholz and Thomas, 1990), case-cohort (Prentice, 1986; Barlow et al,
1999), and two-stage (Zhao and Lipsitz, 1992; Breslow and Chatterjee, 1999) designs.
The matched case-control design utilizes the conditional likelihood in its analysis. The
nested case-control design utilizes a partial likelihood, analogous to that used for Cox
regression. The latter two designs utilize pseudo likelihoods or missing data likelihood
methods. In this paper we focus on the case-control designs because their corresponding
likelihoods have tractible asymptotic properties—particularly, asymptotic Chi-square
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distributions of the likelihood ratio test statistic under both null and alternative hy-
potheses, which is useful for estimating power.

The classical retrospective case-control design uses cases identified up to the end of
follow-up and selects as controls a subset of persons who are free of outcome (cumulative
incidence proportion sampling). The controls may be matched to the cases on important
risk factors, such as age and gender, which leads to use of the conditional likelihood.
The nested case-control design involves sampling controls from the risk sets, the persons
who are at risk—free of outcome but still under observation—at each time a case occurs
(incidence density sampling). Controls are selected using random or stratified sampling.
In the nested case-control design, sampling is performed within risk sets, so a subject
can be selected in more than one risk set and a case can serve as a control at times prior
to becoming a case, analogous to the cohort.

The planning of a study—i.e., determining the required sample size—should involve
an assessment of statistical power. Simulation studies of power can be time consuming,
especially if there is time-dependent weighting as arises with stratified sampling in the
nested case-control design (Langholz and Borgan, 1995). A more direct method of
estimating power is therefore desirable. Recently Professor Yanagawa and his colleagues
studied the asymptotic power of the Kudô-Tarumi test for the risk ratio in 2× 2 tables
and compared it with the Fisher exact test for the odds ratio (Makinosumi et al, 2003).
Methods for the analysis of matched case-control studies include, but are not limited to,
stratified 2× 2 data (Breslow and Day, 1980). We describe and implement a method for
estimating power in case-control studies using the non-central Chi-square distribution
for the log-likelihood ratio test based on the likelihood (matched case-control studies) or
partial likelihood (nested case-control studies), following methods proposed by Brown
et al (1999) and Holford (2002).

2. Likelihood ratio test

Let l(θ; y) be the log likelihood under parameter θ ∈ Ω for observed outcome
variable y. The likelihood ratio statistic for testing the null hypothesis H0 : θ ∈ Ω0 ≡ θ0

(i.e., θ = θ0) is

V = 2
[
l(θ̂; y)− l(θ0; y)

]
, (1)

where θ̂ is the maximum likelihood estimate of θ [i.e., l(θ̂; y) = supθ∈Ωl(θ; y)]. For
y = i.i.d. {yk}, (1) has asymptotically a Chi-square distribution with ν degrees of
freedom under H0, where ν is the difference in dimension between Ω and Ω0, and is
asymptotically equivalent to the score and Wald test statistics (Rao, 1973, pages 417-8).

Let x be a factor taking on either continuous or discrete values. Our interest is in
ascertaining whether x increases the risk of suffering the outcome (y = 1) — i.e., testing
whether x is a risk factor. The quantity of interest in epidemiologic studies is often the
relative risk (risk ratio) RR(x), or its analog in the retrospective case-control design, the
odds ratio OR(x). In relative-risk analyses based on cohort follow-up or sampling from
the cohort risk sets, the relative risk is frequently modelled as a log-linear function,

RR(x) =
λ(t|x)
λ(t|0)

= eβRRx , (2)
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where λ(t|·) is the instantaneous hazard (rate of disease or death), so βRR = log{RR(x =
1)}. In the retrospective case-control study, the log odds are often modelled with a linear
function, so the odds ratio is

OR(x) =
Pr(y = 1|x)/[1− Pr(y = 1|x)]
Pr(y = 1|0)/[1− Pr(y = 1|0)]

=
eη+βORx

eη
= eβORx (3)

and βOR = log{OR(x = 1)}. Other models may be used, such as the excess relative risk
model ERR(x) = RR(x)− 1 = βERRx.

The quantities λ(t|0) and η generally involve further parameters ψ reflecting effects
of age, birth cohort, gender, etc., so θ = (ψ, β). We consider all elements of ψ to be
nuisance parameters subsumed in the nonparametrimetric estimation of λψ(t|0) or that
covariates corresponding to ηψ are matched. Then Ω = {ψ, β} with β ∈ (−∞,∞). We
typically test the null hypothesis of no effect of x, H0 : β = β0 = 0 (Ω0 = {ψ, 0}) versus
the general alternative HA : β 6= 0 (ΩA = Ω \ β0). To evaluate power, one specifies a
specific alternative hypothesis, β = βA for some βA 6= 0.

Suppose we have a cohort of individuals indexed by k ∈ {1, . . . , N}, each observed
until time Tk (for the kth individual, the time when outcome occurs or the end of follow-
up, whichever is first), with time-dependent outcome variable yk(t) (yk(t) = 1 if the
outcome has occurred by time t, 0 otherwise). Note that yk(Tk) = 1 for the cases and
0 for the non-cases. Denote the times that the cases occur (the failure times) by τi

(i = 1, . . . C). Let R(i) represent the risk set, the indices of all subjects who are at
risk just prior to time τi (R(i) = {k : Tk > τi}), including the person who suffers the
outcome at time τi (the case). The retrospective matched design matches to each case i
mi controls from among those who did not suffer the outcome during the entire follow-up
period [yk(Tk) = 0]. The nested case-control design selects for each case i mi individuals
from among those who are in R(i). Typically, mi ≡ m.

The conditional likelihood for the matched case-control design has an exponential
family form in the conditionally sufficient statistic (McCullagh and Nelder, 1989, p.
253). Under an exponential family,

l(θ; y) = [yθ − b(θ)] /a(σ) + c(y, σ) (4)

for known scale parameter σ and known functions a(·), b(·), and c(·) (McCullagh and
Nelder, 1989). Define S(i) to be the set of indices of individuals in matched set i. The
yk are conditionally sufficient given

∑
yk (the total number of cases), the canonical

parameter is θ = log{µ/(1− µ)} = βx, where µ = E(y), and the log likelihood is

lc(β; y) =
∑

i


 ∑

j∈S(i)

yjβxj − log
∑

j∈S(i)

eβxj


 . (5)

The likelihood ratio test statistic for the conditional likelihood is

Vc = 2
[
lc(β̂; y)− lc(0; y)

]
. (6)

The partial likelihood for the nested case-control study is similar (Breslow and Day,
1987; Goldstein and Langholz, 1992), except that S(i) is replaced by the set of indices
of subjects sampled from the risk sets, R∗(i) ⊂ R(i), and yj is replaced by yj(τi), the



22 J. Cologne and S. Izumi

failure status of individual j at time τi [yj(τi) = 0 for all members of the risk set except
the case]:

lp(β; y) =
∑

i


 ∑

j∈R∗(i)
yj(τi)βxj − log

∑

j∈R∗(i)
eβxj


 . (7)

Unlike the conditional likelihood (5), the terms of the partial likelihood (7) are not in-
dependent, because subjects can appear in more than one sampled risk set. However,
the partial likelihood has asymptotic properties similar to those of the conditional like-
lihood; in particular, its distribution is Chi-square under both H0 and HA (Anderson et
al, 1993). The same for nested case-control sampling can be inferred from consistency
and asymptotic normality of maximum partial likelihood estimates in the nested case-
control study (Goldstein and Langholz, 1992). The likelihood ratio test statistic for the
partial likelihood is

Vp = 2
[
lp(β̂; y)− lp(0; y)

]
. (8)

3. Estimating Power

Suppose that βA 6= 0 is presumed to be the true effect of x. In practice we might
estimate power by simulation: 1) generate many Monte Carlo data sets assuming βA,
2) maximize the likelihood under the null and unconstrained models to compute the
likelihood ratio statistic, and 3) examine the simulation distribution of the test statistic.
In our experience, obtaining a reasonable estimate of this distribution generally requires
many hundred simulations. In the case of the partial likelihood when there are risk-set
dependent variables, such as stratified sampling weights, these simulations can take a
great deal of time. We therefore describe an alternative approach based on the noncentral
Chi-square approximation to the sampling distribution of the conditional or partial
likelihood ratio test statistic under HA.

Asymptotically the test of H0 under HA is trivial (has power 1) because the likeli-
hood ratio test is consistent. However, for alternatives β

(N)
A such that

(β(N)
A − β0) = O

(
1√
N

)
, (9)

the asymptotic distribution of the likelihood ratio test of H0 is non-central Chi-square
(Cox and Hinkley, 1974, p. 318). Thus, we can approximate the power of the likelihood
ratio test of H0 under a specific alternative hypothesis HA using the non-central Chi-
square distribution, as long as HA is close to H0.

We estimate the noncentrality parameter by using the expected value of (6) or (8)
given the yk. Because β̂ consistently estimates βA, we substitute βA for β̂ (note that
the conditional and partial likelihoods do not depend on ψ).

We must also specify the distribution of the exposure variable x. For categorical x,
Holford proposed specifying the risk parameter and the distribution of cases and controls
among the categories of x (Holford, 2002). This approach does not work for continuous
x; we therefore input the mean value of x given case/control status—i.e., in place of x
we substitute E(x|y). The case-control ratio in the sample is fixed by design, and we
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do not need to further specify η. Then, since E
[
χ2(δ; ν)

]
= ν + δ for a non-central

Chi-square variable with ν degrees of freedom and noncentrality parameter δ,

δ = 2 [l(βA; x̃, y)− l(0; x̃, y)]− ν

is the noncentrality parameter. Brown et al noted that it made little difference whether
or not ν was subtracted (Brown et al, 1999).

We can estimate the power to reject H0 : β = 0, based on a level α test when β = βA,
by calculating the probability that a non-central Chi-square distributed variable V with
non-centrality parameter δ, V ∼ χ2(δ; 1), is greater than the (1 − α) quantile of the
central Chi-square distribution with one degree of freedom:

power = Pr
[
V > χ2

1−α(0; 1)
]

. (10)

For example, if we are testing at level α = 0.05, the estimated power is the proba-
bility that the non-central Chi-square is greater than 3.8415. Thus, the problem of
estimating power based on the likelihood ratio test statistic is reduced to calculating the
noncentrality parameter for a large-sample approximating Chi-square distribution. This
non-centrality parameter is estimated by calculating the likelihood ratio statistic based
on the hypothetical parameter values and the distribution of the risk factor conditional
on the outcome status.

Suppose the model is multidimensional with parameters (γ, β) and only β is to be
tested. The method of substituting expected values of the parameters under HA to derive
the Chi-square noncentrality parameter is not strictly correct because the maximum
likelihood estimates of the other parameters (γ̂) do not converge to γ when the reduced
model is fit, as described by Self et al (1992). They decomposed the likelihood ratio
statistic as:

2
[
l(γ̂, β̂)− l(γ̂0, β0)

]
= 2[l(γ̂, β̂)− l(γ, β)]

− 2[l(γ̂0, β0)− l(γ∗0 , β0)]
+ 2[l(γ, β)− l(γ∗0 , β0)] (11)

where γ∗0 is the limiting value of γ̂0. In other words, if HA is true, γ̂0 is generally not
consistent for γ (Self and Mauritsen, 1988). However, Self et al (1992) showed that in
exponential families the third term of (11) is

2
n∑

i=1

{b′(θi)[θi − θ∗i ]/ai(σ)− [b(θi)− b(θ∗i )]}

which is the computed estimate of the likelihood ratio test statistic using expected val-
ues, and the other terms cancel when (γ∗0 , β0) = (γ, β), the true parameter value. Thus,
under assumption (9), the calculated Chi-square noncentrality parameter computed us-
ing expected values of y under HA should be close to the noncentrality parameter of the
true asymptotic Chi-square distribution.

Interest may be in estimating the effect of x only, or in estimating the effect of x
with adjustment for confounding by another risk factor, z, or in testing whether there is
effect modification by a factor z of the risk due to x (biological interaction). In the first
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case, we need only specify β0 and βA. In the latter two instances, there are parameters
other than β that must be accounted for. We additionally specify what their values are
under the null and alternative models. For example, if we are interested in the effect of
x with adjustment for possible confounding by another risk factor z, a possible model is

RR(x, z) = exp{γz + βx} . (12)

Then we must specify γ∗0 , the value of γ estimated under the constrained model with
β = 0 when HA is true, and γA, the value of γ for the full model when β = βA. Or,
we may be interested in possible effect modification between two factors z1 and z2, and
consider the multiplicative interaction model

RR(z1, z2) = exp{γz1 + φz2 + βx} ,

where x = z1z2. Now we must specify two sets of values: {γ∗0 , φ∗0}, the maximum
likelihood estimates of γ and φ under the constrained model fit with β = 0 (when HA is
true) and {γA, φA} when β = βA.

If we are calculating power in a situation where one covariate (z1, say) is already
measured in the cohort, it is convenient to treat z2 by centering it at its population
mean (z∗2 = z2 − z̄2) so that we can use the information already available to specify γA

[γAz1 = RR(z1|z2 = z̄2)], which can be used in the case-control analysis if z1 and z2 are
independent (Land et al, 1994).

4. Example

This example is based on studying the risk of an additional factor measured in a
case-control study. Power was previously assessed by simulation (Cologne et al, 2004).
We illustrate the method for the test of a main effect using the model (12).

A nested case-control study was planned to investigate the joint risk of radiation
and the endogenous hormone estradiol on pre-menopausal breast cancer. Radiation ex-
posure (z) was known for all individuals in the cohort, but measuring estradiol (x) is
costly and requires the use of precious, limited stored serum specimens. Eighty cases
were diagnosed during the follow-up period among women for whom stored serum spec-
imens were available; there were 5,644 cancer-free subjects with stored serum. Controls
selected within risk sets were to be matched to cases on age and time of serum collection.
The investigators wanted to know whether a small number of matched controls would
be sufficient, to avoid consuming many serum specimens. Because the probability of
repeated selection is small, we estimated power based on the conditional likelihood for
a retrospective matched case-control design.

Information about γ was available from the cohort (i.e., based implicitly on un-
measured z, so that the cohort estimate of γ may be assumed to represent the effect of
z for the average value of x, x̄). Some information about β was available from a small
previous study where controls were matched to cases on radiation dose (Kabuto et al,
2000). Given the known cases and the distribution of z among cases and controls, as
well as the distribution of x from the previous study, we simulated case-control samples
with values of x randomly generated according to a log-normal distribution with mean
2.19 among cases and 2.04 among controls, and β = 2.393. Five hundred simulations
were run with 1, 2, 4, or 8 controls matched to each case. We fit the model (12) to the
simulated data using the conditional likelihood (PECAN; Epicure software, HiroSoft
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Table 1: Estimated power for the matched case-control study of interaction.

Controls Power
per case Simulated Calculated Percent over-estimated
cohort 1.0 0.995 -

1 0.738 0.839 13.7
2 0.880 0.939 6.7
4 0.934 0.976 4.5
8 0.984 0.988 0.4

International Corporation, Seattle, WA) and calculated the likelihood ratio statistic for
testing H0 : β = 0. The distributions of simulated test values are shown in Figure 1.

We used the existing information about radiation to compute the values of γA and
γ∗0 as follows. The cohort estimate of γ (not adjusted for estradiol) was 0.638 (call this
γc). Because z and x are independent, adjusting for x should not affect γ, so γA = .638
also (the simulated value was .631).

Using these values we calculated expected values of the likelihood ratio test statis-
tic as described in section 3. (solid line in Figure 1). The calculated values are close
to the means of the simulated values. We estimated power as the proportion of sim-
ulated likelihood ratio statistics that exceeded the 95% level of the central Chi-square
distribution with 1 degree of freedom (Table 1). Power estimated according to the ex-
pected value of the likelihood ratio test statistic overestimated power compared with the
simulation results (Table 1), with overestimates ranging from more than 13% with one
control to less than 1% with 8 controls. One reason for this overestimation may be poor
approximation of the asymptotic distribution. Another reason may be the magnitude
of distance between HA and H0 in this example.

5. Discussion and conclusions

The idea of using the asymptotic non-central Chi-square distribution to estimate
power with likelihood ratio tests is not new (see, for example, Holford (2002) and Brown
et al (1999) ). We examined application of the approach to matched case-control studies
using the conditional likelihood. Because the form of the partial likelihood for a nested
case-control is identical, implementation of the method in nested case-control studies
would be the same. However, the small-sample distribution properties of the partial
likelihood under null and alternative hypotheses may differ from that of the conditional
likelihood. Further work is required to better understand what sample sizes are required
for good approximation of power using the proposed method. Further work is also needed
to examine sensitivity of the method to the magnitude of difference between HA and
H0. An alternative to power is the relative efficiency (ratio of cohort and case-control
variances). Wacholder et al (1991) described a method for estimating relative efficiency
based on cohort size and sample sizes at the risk sets.

The interpretation of power calculations can be misleading without considering the
power of a full cohort analysis, because there is little point in conducting a relatively
efficient study based on sampling if the full cohort does not have adequate power. It
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is therefore important to evaluate not only the power of the sample, but the power of
the full cohort as well. We endorse a two-step approach to planning a study involving
sampling from a cohort:

1. Determine the power of the full cohort analysis. If the cohort power is inadequate,
no further study should be contemplated. If the cohort power is adequate, then,

2. Assess the power of the sampling design relative to that of the full cohort.

The estimated relative power will aid in deciding what proportion of the cohort to
sample.

If an exposure variable is already measured in the cohort, sampling based on that
variable can improve efficiency and power. One effective method is to sample controls so
as to provide balance across exposure strata in each individual risk set (counter matching;
see Langholz and Goldstein (1996) and Cologne and Langholz (2003) ). Another—albeit
somewhat limited in generality—approach is to match controls to cases on exposure
(Land et al, 1994; Thomas and Greenland, 1985). Randomized recruitment is a design
that offers a compromise between matching and random sampling that can achieve
probability (frequency) matching on exposure without the analysis limitations caused
by matching on exposure (Weinberg and Wacholder, 1990; Weinberg and Sandler, 1991).
Power computations as described here should be feasible for any of these exposure-based
sampling designs.
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Figure 1: Likelihood ratio statistics for testing the effect of risk factor x in the matched
case-control study example. Boxplots summarize the simulated values (500 values per
sample size). The solid line connects the calculated expected values of the likelihood
ratio statistics based on the proposed method. The horizontal dotted line is the median
likelihood ratio test value for the cohort.


