
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

PRIMITIVE DYNAMIC PROGRAMMING

Iwamoto, Seiichi
Departmetn of Economic Engineering, Graduate School of Economics, Kyushu University

https://doi.org/10.5109/12585

出版情報：Bulletin of informatics and cybernetics. 36, pp.163-172, 2004-12. Research
Association of Statistical Sciences
バージョン：
権利関係：

PRIMITIVE DYNAMIC PROGRAMMING

by

Seiichi Iwamoto

Reprinted from the Bulletin of Informatics and Cybernetics
Research Association of Statistical Sciences,Vol.36

- r¾ ¾- r¾-

FUKUOKA, JAPAN
2004

Bulletin of Informatics and Cybernetics, Vol. 36, 2004

PRIMITIVE DYNAMIC PROGRAMMING

By

Seiichi Iwamoto∗

Abstract

1 What is dynamic programming? This paper is concerned with the class of
all dynamic programmings — with or without optimization. Where is an origin
in the class? What is it? The paper is a travel which leads to the origin. We
present a primitive form of dynamic programming. It is a non-deterministic dy-
namic programming, which generates stochastic dynamic programming, which in
turn reduces to deterministic dynamic programming. Thus we propose the non-
deterministic dynamic programming as a primitive dynamic programming.

Key Words and Phrases: dynamic programming, nondeterministic, stochastic, deterministic

1. INTRODUCTION

Since R. Bellman (1957) has originated dynamic programming (DP), there has
been a controversy on “What is DP?” by Aris (1964), Bellman (1968, 1981, 1984, 1986),
Denardo (1982), Iwamoto(1987), Nemhauser (1966), Sniedovich (1992) and others. It
has at least state, decision, objective function and dynamics. The basic principle is
Principle of Optimality (POP). There has been many discussions on POP by Denardo
(1982), Nemhauser (1966) and Sniedovich (2002). In general, DP has two types of
dynamics: deterministic (Denardo (1982), Iwamoto(1987) and Nemhauser (1966)) and
stochastic (Bellman (1958), Howard (1960), Hinderer (1970) and Puterman (1994)).

On the other hand, the conventional DP method, which is strongly related to
invariant imbedding method, can also solve a class of non-optimization problems in
Bellman (1968, 1986), Bellman and Denman (1971) and Iwamoto (1991).

In this paper, we climb a mountain — DP — at the base of which both stochastic
DP and deterministic DP lie. The moutain commands a view of optimization and
non-optimization problems here and there. We see at the top a primitive DP without
dynamics, which yields both stochastic and deterministic DPs. The primitive DP is
non-deterministic. It is neither stochastic nor deterministic. However, it generates
both. The primitive DP also solves not only the optimization problems but also the
non-optimization problems.

In Section 2, we present a non-deterministic DP. It consists of four components:
horizon, state, decision and objective function. It has no dynamics. A recursive equation
for multiple sums is derived. Two universal rules are derived from the recursive equation
for a two-stage DP. One is on optimization. The other is on summation.

∗ Department of Economic Engineering, Graduate School of Economics, Kyushu University, Fukuoka
812-8581, Japan. tel +81–92–642–2488 iwamoto@en.kyushu-u.ac.jp

1 This paper was presented at Euro/Informs 2003 (Istanbul).

164 S. Iwamoto

In Section 3, we introduce a stochastic transition law into the non-derministic DP,
which generates a stochastic DP. By incorporating the probability function into the
objective function, we derive a recursive equation for expected values. In Section 4, a
deterministic DP is derived as a “degenerate” stochastic DP. Thus the deterministic DP
is a special form of primitive DP.

We state the contents within a simple framework — disctere and finite state, deci-
sion and horizon. However, the objective function is one of the most general functions.
It depends on the total history. It has neither separability nor monotonicity.

2. NON-DETERMINISTIC DYNAMIC PROGRAMMING

We consider a primitive form of DP. A non-deterministic DP is specified by four
tuple (N, X,U, g) :

N ≥ 2 is an integer; the total number of stages
X = {s1, s2, . . . , sl} is a finite state space
U = {a1, a2, . . . , ak} is a finite decision space
g : HN → R1 is an objective function

where
Hn := X×U×X×U×· · ·×U×X (2n + 1)-factors

is a subhistory space up to n-th stage. Its element

hn = (x0, u0, x1, u1, . . . , un−1, xn) ∈ Hn

is a subhistory up to there. Further, for each n = −1, 0, 1, . . . , N − 1, the direct product
space

XN−n := X×X×· · ·×X (N − n)-factors

denotes the set of all state sequences up to the final N -th stage with length (N − n) :

(xn+1, xn+2, . . . , xN) ∈ XN−n.

That is,

XN−n = Xn+1×Xn+2×· · ·×XN − 1 ≤ n ≤ N

where Xm := X.

We denote the non-deterministic DP by N (N,X, U, g) or simply by N .
Now let us introduce a large class of policies for the non-deterministic DP N , which

depend on history up to date. A mapping νn : Hn → U is called n-th primitive decision
function, whose sequence ν = {ν0, ν1, . . . , νN−1} is a primitive policy. The set of all
primitive policies Πp is called primitive class.

Now we see that any primitive policy ν ∈ Πp defines a function

gν : XN+1 → R1

through

gν(x0, x1, . . . , xN) := g(x0, u0, x1, u1, . . . , uN−1, xN) (1)

Primitive Dynamic Programming 165

where the sequence of decisions u0, u1, . . . , uN−1 is substituted successively and repeat-
edly in (1) :

u0 = ν0(x0), u1 = ν1(x0, u0, x1),
(2)

. . . , uN−1 = νN−1(x0, u0, x1, u1, . . . , xN−1).

For instance, the cases N = 2 and N = 3 yield

gν(x0, x1, x2) = g(x0, ν0(x0), x1, ν1(x0, ν0(x0), x1), x2)

and

gν(x0, x1, x2, x3) = g(x0, ν0(x0), x1, ν1(x0, ν0(x0), x1), x2,

ν2(x0, ν0(x0), x1, ν1(x0, ν0(x0), x1), x2) , x3),

respectively.
We evaluate any primitive policy ν ∈ Πp at an initial state x0 ∈ X by the multiple

sum of the function gν : XN+1 → R1 over the direct product space XN of the last N
state spaces :

Mν
x0

[g] :=
∑∑

· · ·
∑

(x1,x2,...,xN)∈XN

gν(x0, x1, x2, . . . , xN). (3)

Thus the non-deterministic DP N (N, X, U, g) generates an optimization problem on
primitive class. This problem is expressed as follows :

P0(x0) Maximize Mν
x0

[g] subject to ν ∈ Πp.

Which policy is optimal at any initial state x0 ∈ X?
Let v0(x0) be the maximum value of P0(x0). Then our problem is to find the

maximum value function v0 : X → R1 and an optimal policy ν∗ ∈ Πp :

Mν∗
x0

[g] = Max
ν∈Πp

Mν
x0

[g] x0 ∈ X. (4)

2.1. Imvariant Imbedding

Now let us solve the problem through invariant imbedding. Our aim is to find the
maximum value funxtion v0 and an optimal policy ν∗ in primitive class Πp. First for
any primitive policy ν = {ν0, ν1, . . . , νN−1} ∈ Πp, we let ν(n) := {νn, νn+1, . . . , νN−1}.
It is called a primitive policy from n-th stage on. The set of all such policies Πp(n) is
called primitive class from there. Needless to say, ν(0) = ν and Πp(0) = Πp.

Second we see that any primitive policy from n-th stage on
ν = {νn, νn+1, . . . , νN−1} ∈ Πp(n) defines

gν : Hn×XN−n → R1

through

gν(hn, xn+1, xn+2, . . . , xN)
(5)

:= g(hn, un, xn+1, un+1, . . . , uN−1, xN)

166 S. Iwamoto

where un, un+1, . . . , uN−1 is substituted one by one in (5) :

un = νn(hn), un+1 = νn+1(hn, un, xn+1),
(6)

. . . , uN−1 = νN−1(hn, un, xn+1, un+1, . . . , xN−1).

We evaluate any primitive policy ν ∈ Πp(n) at subhistory hn ∈ Hn by the multiple
sum of the function gν : Hn×XN−n → R1 over the direct product space XN−n of the
remaining (N − n) spaces :

Mν
hn

[g] :=
∑ ∑

· · ·
∑

(xn+1,xn+2,...,xN)∈XN−n

gν(hn, xn+1, xn+2, . . . , xN). (7)

The non-deterministic DP N (N, X, U, g) generates the family of optimization problems
:

Pn(hn) Maximize Mν
hn

[g] subject to ν ∈ Πp(n)

hn ∈ Hn, 0 ≤ n ≤ N.

We note that the case h0 = x0 ∈ X, n = 0 yields the original P0(x0). This is the first
step of imbedding.

The second is to derive a relation among adjacent problems. Let vn(hn) be the
maximum value of Pn(hn) :

vn(hn) = Max
ν∈Πp(n)

Mν
hn

[g] hn ∈ Hn (8)

where
vN (hN) := g(hN) hN ∈ HN .

Then we have a recursive formula between a current value vn(hn) and the next value
function vn+1 = vn+1(hn+1) :

Theorem 2.1. (Primitive Recursive Equation)

vn(h) = Max
u∈U

∑

y∈X

vn+1(h, u, y) h ∈ Hn, 0 ≤ n ≤ N−1 (9)

vN (h) = g(h) h ∈ HN . (10)

Further, let ν∗n(h) denote a maximizer. Then ν∗ = {ν∗0 , ν∗1 , . . . , ν∗N−1} is an optimal
policy in primitive class Πp.

Proof. It is straightforward.

2.2. Non-optimization dynamic programming

Let us take any decision-free objective function

g : XN → R1.

Then Theorem 2.1 claims that
∑∑

· · ·
∑

(x1,x2,··· ,xN)∈XN

g(x1, x2, · · · , xN) =
∑

x1∈X

∑

x2∈X

· · ·
∑

xN∈X

g(x1, x2, · · · , xN). (11)

Primitive Dynamic Programming 167

2.3. Two universal rules

First let us consider a two-stage model N = 2 for non-deterministic DPN (N, X, U, g).
Then the objective function is

g : X×U×X×U×X → R1.

For any primitive policy ν = {ν0, ν1} ∈ Πp we see that

gν(x, y, z) = g(x, u, y, v, z) where u = ν0(x), v = ν1(x, u, y),

namely,

gν(x, y, z) = g(x, ν0(x), y, ν1(x, ν0(x), y), z).

Then Theorem 2.1 claims that

Max
ν

∑ ∑

(y,z)∈X×X

gν(x, y, z) = Max
ν0

∑

y∈X

[
Max

ν1

∑

z∈X

gν(x, y, z)

]
. (12)

Now let us show that Eq.(12) yields two universal rules. By reducing the decision
space, we have a decision-free function of (y, z)

g : X×X → R1.

Then Eq.(12) claims one universal rule
∑ ∑

(y,z)∈X×X

g(y, z) =
∑

y∈X

∑

z∈X

g(y, z). (13)

On the other hand, let us take a state-free function g = g(u, v) : U×U → R1. Then
Eq.(12) becomes

Max
(u,ν)

g(u, ν(u)) = Max
u

[
Max

ν
g(u, ν(u))

]

where ν : U → U. Here we note that

Max
ν

g(u, ν(u)) = Max
v

g(u, v) ∀ u ∈ U

Max
(u,v)

g(u, v) = Max
(u,ν)

g(u, ν(u)).

Thus we have another universal rule

Max
(u,v)

g(u, v) = Max
u

[
Max

v
g(u, v)

]
. (14)

Finally we comment on optimization and summation separately. Both operations
for any real-valued function yield real values, respectively. Each operation has two-
types : in one and one by one. As for optimization, simultaneous versus sequential.
Summation is multiple versus iterative. We remark that a simultaneous/multiple oper-
ation is equivalent to sequential/iterative operation. Both are universal rules (13),(14).
Eq.(14) claims that the simultaneous optimization reduces to the repeated optimization
in Hardy, Littlewood and Pólya (1952). Two more sophisticated optimization variants
are Maximax Theorem in Iwamoto (1985), Bimax Theorem in Iwamoto (1993, 1994)
and Principle of Conditional Optimization in Sniedovich (1992). Eq.(13) claims that
the multiple sum reduces to the iterative sum (Iwamoto (1991)).

168 S. Iwamoto

3. STOCHASTIC DYNAMIC PROGRAMMING

Throughout this section, we impose an additional data, stochastic dynamics, on
the primitive DP N (N, X,U, g). Let p = {pn}N−1

0 be a stochastic dynamics. Here
pn = pn(·|·, ·) is an n-th stochastic transition law :

pn(y|h, u) ≥ 0, ∀(h, u, y) ∈ Hn×U×X,
∑

y∈X

pn(y|h, u) = 1, ∀(h, u) ∈ Hn×U.

Hereafter we use the notation y ∼ pn(· |h, u), which denotes that a next state y con-
ditioned on a history h up to n-th stage and a decision u on n-th stage appears with
probability pn(y|h, u).

Let an N -stage controlled stochastic process {(Xn, Un)} on the finite state space X
and the finite decision space U be under the stochastic transition law p. Then stochastic
DP on the controlled stochastic process is specified by the five components N,X, U, g, p.
It is denoted by S(N, X,U, g, p) or S.

Now we consider the expected value of the random variable

g = g(X0, U0, X1, U1, . . . , XN−1, UN−1, XN)

over the stochastic process governed by primitive policy ν ∈ Πp. First we remark that
the probability P (hN) that the process experiences a history hN is

P (hN) = p0(x1|x0, u0)p1(x2|h1, u1) · · · pN−1(xN |hN−1, uN−1). (15)

Thus we have the probability function over the history space

P : HN → [0, 1]. (16)

Second we take the multiplicative function g ·P :

g ·P : HN → R1. (17)

Third we see that the expected value at initial state x0 ∈ X, Eν
x0

[g], under the stochastic
process governed by primitive policy ν ∈ Πp is the multiple sum of the multiplicative
function g ·P over the direct product space XN :

Eν
x0

[g] := Mν
x0

[g ·P]. (18)

Then the stochastic DP S(N, X,U, g, p) expresses the optimization problem :

S0(x0) Maximize Eν
x0

[g] subject to ν ∈ Πp.

Let v0(x0) denote the maximum value. Now let us find the maximum value function v0

and an optimal policy ν∗ in primitive class Πp.

3.1. Two Imbeddings

Now we propose two types of invariant imbedding. First we take the primitive DP
N (N, X, U, g ·P). Then Theorem 2.1 reduces to the backward relation :

Primitive Dynamic Programming 169

Corollary 3.1. (Primitive Recursive Equation)

vn(h) = Max
u∈U

∑

y∈X

vn+1(h, u, y), h ∈ Hn, 0 ≤ n ≤ N−1, (19)

vN (h) = g(h)P (h), h ∈ HN . (20)

Let ν∗n(h) denote a maximizer in (19). Then the policy ν∗ = {ν∗0 , ν∗1 , . . . , ν∗N−1} is
optimal in Πp.

The second is through the stochastic DP S(N, X,U, g, p). It becomes as follows.
First we define

Pn(hn, un, xn+1, un+1, . . . , uN−1, xN)
:= pn(xn+1|hn, un)pn+1(xn+2|hn+1, un+1) · · · pN−1(xN |hN−1, uN−1)

0 ≤ n ≤ N − 1. (21)

We note that P0 = P. Further, let a subhistory up to n-th stage

hn = (x0, u0, x1, u1, . . . , un−1, xn) ∈ Hn

be given. Then we consider the conditional expected value, Eν
hn

[g], of

g = g(X0, U0, X1, U1, . . . , XN−1, UN−1, XN)

over the stochastic process governed by primitive policy ν ∈ Πp(n). We see that it is the
multiple sum of the multiplicative function g ·Pn over the direct product space XN−n :

Eν
hn

[g] := Mν
hn

[g ·Pn]. (22)

Now let us imbed the S0(x0) into the family of subproblems :

Sn(hn) Maximize Eν
hn

[g] subject to ν ∈ Πp(n)

hn ∈ Hn, 0 ≤ n ≤ N.

Let vn(hn) be the maximum value, where

vN (hN) := g(hN).

Then we have the backward formula :

Theorem 3.2. (Stochastic Recursive Equation)

vn(h) = Max
u∈U

∑

y∈X

vn+1(h, u, y)pn(y|h, u), (23)

h ∈ Hn, 0 ≤ n ≤ N−1,

vN (h) = g(h), h ∈ HN . (24)

Let ν̃n(h) denote a maximizer in (23). Then we have an optimal policy ν̃ =
{ν̃0, ν̃1, . . . , ν̃N−1} in primitive class Πp.

170 S. Iwamoto

Theorem 3.3.

vn(hn) = vn(hn)Pn(hn), hn ∈ Hn, 0 ≤ n ≤ N (25)

where

Pn(hn) = p0(x1|x0, u0)p1(x2|h1, u1) · · · pn−1(xn|hn−1, un−1), (26)
P 0(h0) = 1. (27)

Thus we see that both the primitive DP N (N, X,U, g ·P) and the stochastic DP
S(N,X, U, g, p) yields the common optimal value function

v0(x0) = v0(x0), x0 ∈ X.

4. DETERMINISTIC DYNAMIC PROGRAMMING

In this section, we take a deterministic dynamics f = {fn}N−1
0 in stead of the

stochastic transition law p = {pn}N−1
0 in the stochastic DP S(N, X,U, g, p). Here fn :

Hn×U → X is an n-th deterministic transition function.
Given the determinstic dynamics f , we take the the stochastic transition law p as

follows :

pn(y|h, u) := δfn(h,u)(y) ∀(h, u, y) ∈ Hn×U×X

where δa(·) is the Dirac measure :

δa(y) =

{
1 y = a

0 otherwise.

Then a deterministic DP with dynamics f is specified by the five components N, X,U, g, f .
It is denoted by D(N, X, U, g, f) or D. It represents the optimization problem :

D0(x0) Maximize Eν
x0

[g] subject to ν ∈ Πp.

where the objective value is an expected value in (22). Since the Markov transition law
p degenerates into the determistic dynamics f , we see that the expected value

Eν
x0

[g] = g(x0, u0, x1, u1, . . . , uN−1, xN) (28)

is uniquely determined through an initial state x0, a primitive policy ν and the dynamics
f. We note that the triplet (x0, ν, f) determines uniquely a history hN = (x0, u0, x1, u1,
. . . , uN−1, xN). In fact, the sequence of decisions u0, u1, . . . , uN−1 and the sequence of
states x1, x2, . . . , xN are generated altenatingly as follows :

u0 := ν0(x0), x1 := f0(x0, u0), u1 := ν1(h1), x2 := f1(h1, u1),
u2 := ν2(h2), x3 := f2(h2, u2), u3 := ν3(h3), x4 := f3(h3, u3),

(29)
...

uN−1 := νN−1(hN−1), xN := fN−1(hN−1, uN−1).

Primitive Dynamic Programming 171

Now let us imbed the D0(x0) into the family of subproblems :

Dn(hn) Maximize Eν
hn

[g] subject to ν ∈ Πp(n)

hn ∈ Hn, 0 ≤ n ≤ N.

where the objective value

Eν
hn

[g] = g(hn, un, xn+1, un+1, . . . , uN−1, xN) (30)

is uniquely determined through the triplet (hn, ν, f) as follows :

un := νn(hn), xn+1 := fn(hn, un),
un+1 := νn+1(hn+1), xn+2 := fn+1(hn+1, un+1),

(31)
...

uN−1 := νN−1(hN−1), xN := fN−1(hN−1, uN−1).

Let wn(hn) be the maximum value of Dn(hn), where

wN (hN) := g(hN).

Then we have the backward formula :

Corollary 4.1. (Deterministic Recursive Equation)

wn(h) = Max
u∈U

wn+1(h, u, fn(h, u)), (32)

h ∈ Hn, 0 ≤ n ≤ N−1

wN (h) = g(h), h ∈ HN . (33)

Let ν∗n(h) denote a maximizer in (32). Then we have an optimal policy ν∗ = {ν∗0 , ν∗1 ,
. . . , ν∗N−1} in Πp.

Acknowledgement
The author would like to thank anonymous referee for careful reading and some useful
comments.

References

Aris, R. (1964). Discrete Dynamic Programming, Braisdell, New York.

Bellman, R.E. (1957). Dynamic Programming, Princeton Univ. Press, New Jersey.

Bellman, R.E. (1958). Dynamic programming and stochastic control processes, Inf.
Control 1, 228–239.

Bellman, R.E. (1968). Some Vistas of Modern Mathematics, University of Kentucky
Press, Lexington, KY.

172 S. Iwamoto

Bellman, R.E. (1981). List of Publications: Richard Bellman, IEEE Transactions on
Automatic Control AC-26, No.5(Oct.), 1213–1223.

Bellman, R.E. (1984). Eye of the Hurricane: an Autobiography, World Scientific, Sin-
gapore.

Bellman, R.E. (1986). The Bellman Continuum: A Collection of the Works of Richard
E. Bellman (Roth, R.S. Ed.), World Scientific, Singapore.

Bellman, R.E. and Denman, E.D. (1971). Invariant Imbedding, Lecture Notes in Oper-
ation Research and Mathematical Systems 52, Springer-Verlag, Berlin.

Denardo, E.V. (1982). Dynamic Programming: Models and Applications, Prentice-Hall,
New Jersey.

Hardy, G.H., Littlewood, J.E. and Pólya, G. (1952). Inequalities, 2nd ed., Cambridge
Univ. Press.

Hinderer, K. (1970). Foundations of Non-Stationary Dynamic Programming with Dis-
crete Time Parameter, Lecture Notes in Operation Research and Mathematical Sys-
tems 33, Springer-Verlag, Berlin.

Howard, R.A. (1960). Dynamic Programming and Markov Processes, MIT Press, Cam-
bridge, Mass.

Iwamoto, S. (1985). Sequential minimaximization under dynamic programming struc-
ture, J. Math. Anal. Appl. 108, 267–282.

Iwamoto, S. (1987). Theory of Dynamic Program, Kyushu Univ. Press, Fukuoka, (in
Japanese).

Iwamoto, S. (1991). Iterative integral versus dynamic programming, in “Proceedings of
The Fourth BELLMAN Continuum Workshop”, Kansas State University, 1990, (E.
S. Lee, Ed.), Computers Math. Applic. 21, 23–39.

Iwamoto, S. (1993). From dynamic programming to bynamic programming, J. Math.
Anal. Appl. 177, 56-74.

Iwamoto, S. (1994). On bidecision processes, J. Math. Anal. Appl. 187, 676-699.

Nemhauser, G.L. (1966). Introduction to Dynamic Programming, Wiley, New York.

Puterman, M.L. (1994). Markov Decision Processes : discrete stochastic dynamic pro-
gramming, Wiley & Sons, New York.

Sniedovich, M. (1992). Dynamic Programming, Marcel Dekker, New York.

Sniedovich, M. (2002). Eureka! Bellman’s principle of optimality is valid! (M. Dror,
P. L’Ecuyer and F. Szidarovszky, Ed.) Modeling Uncertainty, An Examination of
Stochastic Theory, Methods, and Applications, Kluwer, 735–749.

Received October 6, 2003
Revised June 5, 2004

