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Yoshinori Fujii∗

Abstract

Let X and Y be two independent random variables. It is important in practical
situations to evaluate the difference between the distributions of X and Y . We
focus on the inference based on θ = P (X < Y )/P (X > Y ). θ is an extension of
the odds ratio in 2×2 tables. An unbiased estimating function for θ is proposed by
using the pairwise estimating functions. The variance of the proposed estimating
funciton can be estimated unbiasedly. We present methods for stratified data and
examplify them in a practical example.

Key Words and Phrases: Wilcoxon test, Mantel-Haenszel procedure, Estimating functions,

Stratified analysis, Ordered categorical data.

1. Introduction

Let X and Y be two independent random variables. It is important in practical
situations to evaluate the difference between the distributions of X and Y . The dif-
ference of means is famous to be one of indices to measure the difference between two
distributions. The confidence interval of the difference of means under the normal as-
sumption and t test are basic statistical methods. For nonparametric situations the shift
in location is well investigated, see Lehmann (1975) and Yanagawa (1982).

In this paper we are interested in the probability P (X < Y ). P (X < Y ) is intutively
interpreted since P (X < Y ) = 1/2 if X and Y have same continuous distribution. A
nonparametric estimator for P (X < Y ) based on the sample is given by

R =
∫

Fn(x)dGm(x)

where Fn(x), Gm(x) are the empirical distributions of X and Y , respectively. R is
called Wilcoxon-Mann-Whitney statistic. The confidence interval based on R and the
asymptotic properties of R were developed (see Reiser and Guttman,1986). In parametic
situations the inference of P (X < Y ) are also discussed. Especially when X and Y are
normal,

P (X < Y ) = Φ
(

µY − µX

(σ2
Xσ2

Y )1/2

)
,

where Φ(·) is the standard normal cumulative distribution function and µX , σ2
X , µY and

σ2
Y are the mean and variance of the X and Y variables, respectively. Downton(1973)
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discussed the estimation in the normal setting. However when X and Y are not con-
tinuous, P (X = Y ) may be nonzero. So P (X < Y ) 6= 1/2 enen if X and Y have same
distribution. Hochberg (1981) noted that P (X < Y )−P (X > Y ) is prefer to P (X < Y )
in categorical data. Also Wellek and Hampel (1999) used

θ = P (X < Y )/P (X > Y )

to construct equivalent test. In this paper θ is an interesting parameter. θ is an extension
of the odds ratio in 2 × 2 tables since θ is equivalent to the odds ratio if X and Y are
binary random variables with same two values. The parameter θ can be interpreted as
follows. Consider a situation that we can choose one of two treatments A and B. Then
it may be important which treatment has better results. The parameter θ gives us such
information. Suppose X and Y are the results corresponding to the treatments A and
B, θ > 1 means that the choice of the treatment B tends to have better results than the
choice of A. Also θ is easy to assume that homogeneity for stratified data because it is
less constrained than P (X < Y )− P (X > Y ).

In this paper we propose an unbiased estimating function for θ based on the pairwise
estimating functions. An unbiased estimator for the variance of the proposed estimator
are obtained in section 2 in order to construct the confidence interval and testing the
hypothesis for θ. Especially we show methods in the ordered categorical data and
compare them with the methods proposed before. In section 3 summary statistics and
hypothesis tests are consider in stratified data. The proposed methods are considered to
be extensions of Mantel-Haensel procedures and include an extension of Wilcoxon test
in stratified data. We examplify the proposed methods to apply the practical data in
section 4. Some discussions are given in the last section.

2. Estimation

2.1. General situations

Let X1, X2, · · · , Xn be an independent sample from distribution F (x) and Y1, Y2, · · · ,
Ym be from distribution G(x). In this paper θ = P (X < Y )/P (X > Y ) is of interest
and other structures of the distributions are treated to be nuisance. Fujii and Yangi-
moto(2004) showed that pairwise conditional estimating functions are useful to remove
the effect of nuisance paremeters in estimating the canonical parameter in exponential
families. In this setting we can remove the effects of other structures of the distributions
by using pairwise estimating functions. For any pair (Xi, Yj), we define two variables

Sij =
{

1 Xi < Yj

0 otherwise,
Tij =

{
1 Xi = Yj

0 otherwise

The joint distribution of (Sij , Tij) is given by

P (Sij = s, Tij = t) = P (Xi < Yj)sP (Xi > Yj)1−s−tP (Xi = Yj)t

= exp{s log θ + t log ψ − log(1 + θ + ψ)}.

where ψ = P (Xi = Yj)/P (Xi > Yj). It belongs to two parameter exponential fami-
lies. Andersen (1970) recommended the inference based on the conditional distribution
given by the sufficient statistic for the nuisance parameter. In this case the conditional
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probability is given by

P (Sij = s|Tij = t) =
θs

(1 + θ)1−t
,

and does not depend on the nuisance paremeter ψ. We construct a log likelihood by
summing up log of above pairwise conditional probabilities. It is

` =
n∑

i=1

m∑

j=1

{Sij log θ − (1− Tij) log(1 + θ)}.

The first derivative of ` is

∂`

∂θ
=

1
θ(1θ)

n∑

i=1

m∑

j=1

{Sij − θ(1− Sij − Tij)}

and we can get the estimator θ̂ to solve the equation ∂`
∂θ = 0.

Here we put

g(θ) =
n∑

i=1

m∑

j=1

gij(θ) (1)

where gij(θ) = Sij − θ(1 − Sij − Tij). Hochberg (1981) gave an unbiased estimator for
the variance of g(1). We can lead an unbiased estimator in the general case.

Lemma 2.1.

V ar[g(θ)] = mn
{
(n− 1)(πXY Y − 2θπY XY + θ2πY Y X)

+ (m− 1)(πXXY − 2θπXY X + θ2πY XX) +(πXY + θ2πY X)
}

(2)

where
πXY = P (X1 < Y1), πY X = P (X1 > Y1)

πXY Y = P (X1 < Y1, X1 < Y2)
πY XY = P (Y1 < X1 < Y2)
πY Y X = P (Y1 < X1, Y2 < X1)
πXXY = P (X1 < Y1, X2 < Y1)
πXY X = P (X1 < Y1 < X2)
πY XX = P (Y1 < X1, Y1 < X2).

An unbiased estimator V̂ (θ) for the variance is obtained by replacing each probability
in the formula (2) with its unbiased estimator. For example, an unbiased estimator for
πXY is given by

π̂XY =
1

nm
#{(i, j)|Xi < Yj}.

When n amd m tend to infinite, the asymptotic distribution of g(θ)/
√

V̂ (θ) is the
standard normal distribution. So we can construct an asymptotic confidence interval
and hypothesis test for θ.
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2.2. Ordered categorical data

We consider ordered categorical data for a special case. Assume that Xi and Yj

take only K values c1 < c2 < · · · < cK . fk and gk are frequencies of observations with
value ck in Xi’s and Yj ’s, respectively. In this case we have

g(θ) =
K−1∑

k=1

K∑

l=k

(fkgl − θflgk).

The estimating function is rewritten by

g(θ) =
K−1∑

k=1

(
fk

K∑

l=k

gl − θgk

K∑

l=k

fl

)

and this expression shows that g(θ) is also an unbiased estimating function for common
odds ratio under the assumption of homogeneity in continuation-ratio logits model (see
Agresti, 1990). Note that we can interpret θ as P (X < Y )/P (X > Y ) without the
homogeneity assumption. The unbiased estimator V̂ (θ) for the variance of g(θ) is given
by

V̂ (θ) = V1 − 2θV2θ
2V3

where

V1 =
K−1∑

k=1

fk(
K∑

l=k

gl)2
K∑

l=2

gl(
l−1∑

k=1

fk)2 −
K−1∑

k=1

K∑

l=k

fkgl

V2 =
K−2∑

k=1

K−1∑

l=k

K∑

h=l

(fkglfhgkflgh)

V3 =
K−1∑

k=1

gk(
K∑

l=k

fl)2
K∑

l=2

fl(
l−1∑

k=1

gk)2 −
K−1∑

k=1

K∑

l=k

gkfl

When K = 2, we have
g(θ) = f1g2 − θg1f2.

It leads the estimator θ̂ = f1g2/f2g1 which is equivalent to the ordinary odds ratio. The
estimation problem of the variance of this estimating functions are discussed in the sit-
uations of estimate the variance of the Mantel-Haenszel estimator. Robins et al. (1986)
emphasized that the unbiasedness of estimators is important to keep the consistency
for sparse data. Phillips and Holland (1987) and Sato (1991) proposed other estimators
with unbiasedness and invariance when replacing the rows and coloumns in 2×2 tables.
The estimator for the variance given in this section,

V̂ = f1g2(f1 + g2 − 1)θ2f2g1(f2 + g1 − 1),

is different from those estimators but it has the unbiasedness and invariance.
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3. Stratified Analysis

We next consider the stratified data case. Let Xk
1 , Xk

2 , · · · , Xk
nk

be a sample of size
nk from distribution Fk and Y k

1 , Y k
2 , · · · , Y k

mk
be a sample of size mk from distribution

Gk for k = 1, 2, · · · ,K. We assume that P (Xk
i < Y k

j )/P (Xk
i > Y k

j ) does not depend
on k and set the common value as θ. An estimating function gk(θ) for k-th stratum
is defined by the similar way to getting the function (1). The weighted sum of these
estimating functions,

∑
wkgk(θ), is an unbiased estimating function for θ. We apply

the Godambe’s criteria (Godambe, 1991),

M(
K∑

k=1

wkgk(θ)) =
V ar[

∑
wkgk(θ)]

E[ ∂
∂θ

∑
wkgk(θ)]2

,

to get optimum weights. One of the optimum weights , which minimise the Godambe’s
criteria, is given by

wk =
E[ ∂

∂θ gk(θ)]
V ar[gk(θ)]

. (3)

However wk depends on the distributions Fk and Gk. If we used the weight which de-
pended on samples, the unbiasedness of the estimating function could not be guranteed.
Yanagimoto (1990) noted that the unbiasedness is kept if we use the optimum weights
in a special situation. The optimum weights in the case that Fk = Gk are given by the
following lemma. We call them the locally optimum weights.

Lemma 3.1. Let X, Y and Z be independent random variables with same distribu-
tion Fk. The optimum weight wk in the case that Fk = Gk is given by

wk =
−1

(nk + mk)− (nk + mk − 2)α

where α = P (X < Y < Z)/P (X < Y ).

Proof. Note that

P (X < Y ) = 3P (X < Y < Z)(X < Y = Z)(X = Z < Y ).

Using the above formula, we can easily lead the following equations.

V ar[gk(θ)] = nkmk [(nk + mk − 2) {P (X < Y, X < Z)− 2P (X < Y < Z)
(X < Z, Y < Z))P (X < Y )}]

= nkmk {(nk + mk)P (X < Y )− (nk + mk − 2)P (X < Y < Z)}

E[
∂gk(θ)

∂θ
] = −nkmkP (X > Y ) = −nkmkP (X < Y )

The lemma is shown from these equations.

If we assume that Fk and Gk are continuous distributions, the optimum weights are
wk = −3

2(nk+mk) . If we assume that Fk and Gk are binary distiributions with same values,
wk = −1

nk+mk
. Unfortunately the locally optimum weights depend on the structure of
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the distributions Fk and Gk in general. One of the choice of the weights is that we use
1/(nk + mk + 1) if the number of ties in the samples is small and wk = 1/(nk + mk)
for other cases. We set the weights as w̃k. An estimator θ̂ is defined as the solution of∑

w̃kgk(θ) = 0. The variance of θ̂ can be estimated by
∑K

k=1 w̃2
kV̂ k(θ̂){∑

w̃k
∂gk(θ̂)

∂θ

}2

where V k(θ) is defined as similar way to getting formula (2). When Fk = Gk for all k,
∑k

k=1 w̃kgk(1)√∑K
k=1 w̃2

kV̂ k(1)

follows the standard normal distribution asymptotically. We can test the hypethesis
Fk = Gk from this result.

In this analysis we assume that θ is homogeneous for all stratum. We need to verify
the assumption in practice. When the number of strata is fixed and nk,mk tend to be
large, we can apply the homogeneity test by Fujii (1994). The test statistic is given by

K∑

k=1

gk(θ̂)2

V̂ k(θ̂)
−

[∑K
k=1 gk(θ̂)E

{
∂
∂θ gk(θ̂)

}
/V̂ k(θ̂)

]2

∑K
k=1 E

{
∂
∂θ gk(θ̂)

}2

/V̂ k(θ̂)

and under the homogeneity assumption it follows chi-square distribution with (K − 1)
degree of freedom asymptotically.

4. Example

This section presents an application of our methods to the data from Liu and
Agresti (1996). Table 1 shows data from a duble-blind, parallel-group clinical study
conducted at a large number of centers. The purpose of the study was to compare an
active drug with placebo in the treatment of patients suffering from asthma. Patients
were randomly assigned to the treatments. Investigators described their perception of
the patients’ change in condition using the ordinal scale. Let’s use the notation + for
”better”, = for ”unchanged” and – for ”worse”. Liu and Agresti (1996) analysed the
data using the cumulative logit model(see Agresti,1990). The log cumulative odds ratio
is -1.153 and the standard error of the estimator is 0.571. In our methods log θ = −1.306
with standard error 0.501 when w̃k = 1/(nk+mk). The proposed methods shows smaller
estimate and smaller standard error. In the view of pairwise comparison the difference
comes from that Liu and Agresti (1996) twice used the pairwise estimating functions
which compared column 1 with column 3. In general Liu and Agresti (1996) tends to
lay emphasis on pairs with large difference. Liu and Agresti (1996) also assume the
homogeneity with respect to the choice of base column. It needs to check the homoneity
and the meaning of the parameter is difficult to understand even if we can assume the
homogeneity. On the other hand the parameter θ is based on P (X < Y ), so it is easy
to understand and we don’t have to need the homogeneity asumption. Of course our
methods assume homogeneity of θ over all strata. In this case it is difficult to check it
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Table 1: Evaluations of patients suffering from asthma from Liu and Agresti (1996)

Response Response
Center Drug = – Center Drug = –

1 Placebo 0 2 1 2 Placebo 0 1 0
Active 1 1 0 Active 1 1 0

3 Placebo 1 1 0 4 Placebo 1 0 0
Active 0 1 0 Active 1 1 0

5 Placebo 1 0 0 6 Placebo 1 0 0
Active 1 0 0 Active 2 1 0

7 Placebo 0 1 0 8 Placebo 0 0 1
Active 2 1 0 Active 0 1 0

9 Placebo 1 1 0 10 Placebo 0 2 0
Active 1 1 0 Active 1 0 0

11 Placebo 2 0 0 12 Placebo 0 1 0
Active 1 0 1 Active 1 0 0

13 Placebo 1 0 0 14 Placebo 0 1 0
Active 1 0 0 Active 2 0 0

15 Placebo 1 0 0 16 Placebo 0 1 0
Active 1 0 0 Active 1 0 0

17 Placebo 0 2 0 18 Placebo 0 1 0
Active 1 1 0 Active 1 0 0

19 Placebo 1 0 0 20 Placebo 1 0 0
Active 1 0 0 Active 1 0 0

21 Placebo 0 3 0 22 Placebo 0 2 0
Active 0 1 0 Active 1 0 0

23 Placebo 1 0 0 24 Placebo 1 1 0
Active 1 0 0 Active 1 0 0

25 Placebo 1 0 0 26 Placebo 0 1 1
Active 1 0 0 Active 1 0 0

26 Placebo 0 1 0 28 Placebo 1 0 0
Active 0 2 0 Active 1 1 0
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because the sample sizes of each stratum is small. But one might still use θ̂ to summarise
the association if the degree of heterogeneity is mild.

We can also test the hypothesis θ = 1. The test statistic is -2.470 with p-value
0.014. The Mantel’s generalized test with equally spaced score has 4.84 with p-value
0.028. These results are very similar. However Mantel’s generalized test need to choose
the column scores and the choice is sometimes plausible. On the other hand the proposed
method does not need to choose them. It is one of the merits of the proposed method.
But we have to note that there is another opinion about this issue if we are just interested
in testing independent. Graubard and Korn (1987) recommended to assign reasonable
column scores whenever possible and to consider equally spaced score when the choice
is not apparent.

5. Discussions

Recently there are many clinical trials conducted in multiple centers. However
some of studies did not use the information for the strata appropriately. The stratified
analysis for 2 × 2 tables is well-known and the importance of stratification for sparse
data was studied in many articles. But methods for other situations are not enough to
be constructed. For example, Wilcoxon test is one of the basic analysis in two sample
problems, but it is difficult to apply it for stratified data. In this paper we tried to
construct a version of Wilcoxon test for stratified data based on probability P (X < Y ).
The method for binary data is equivalent to the Mantel-Haenszel procedures. We can
apply it for the ordered categorical data. For ordered cagtegorical data Wilcoxon test
is known to be equivalent to the trend test if we choose appropriate scores. Another
extension of Wilcoxon test may be considered to be the extended Mantel’s test with the
scores. Unfortunately it is not easy since the scores may be changed between strata.

The proposed methods can be extended for more general problems. Let Xi be an
outcome which depends on a covariate vector, Zi. If we assume that

logit
P (Xi < Xj |Zi, Zj)
P (Xi > Xj |Zi, Zj)

= βT (Zi − Zj) (4)

where T denotes the transposed operator and β is a vector of parameters with same
dimension to Zi, we can construct the methods based on pairwise estimating functions.
Two sample problems are equivalent to the cases that Zi is binary data. In other cases
if we can assume

P (Xi < x|Zi) = F (x)eβT Zi
,

we have the model ( 4 ). But the model is plausible in general. The analysis may need
to check the model assumption. The methodology needs more study.
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