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NOTES ON OPTIMAL ALLOCATION FOR FIXED
SIZE CONFIDENCE REGIONS OF THE

DIFFERENCE OF TWO MULTINORMAL MEANS

By

Hiroto Hyakutake∗ and Hidefumi Kawasaki†

Abstract

We consider the problem of constructing a fixed-size confidence region of the
difference of two multinormal means when the covariance matrices have intraclass
correlation structure. When the covariance matrices are known, we derive an op-
timal allocation. A two-stage procedure is given for the problem with unknown
covariance matrices.

Key Words and Phrases: fixed-size confidence interval, intraclass correlation, semi-infinite pro-

gramming problem, two-stage procedure.

1. Introduction

Let xi1, xi2, · · · be independent and identically distributed (i.i.d.) random vec-
tors having p-variate normal distribution with mean µi and covariance matrix Σi,
Np(µi, Σi), (i = 1, 2). We assume that the covariance matrices have the structure

Σi = σ2
i {(1− ρi)Ip + ρi1p1′p}, (i = 1, 2), (1)

where σi > 0, 1 > ρi > −1/(p − 1), Ip is the p × p identity matrix, and 1p : p × 1 =
(1, · · · , 1)′. The eigen values of Σi are τi1 = σ2

i {1 + (p − 1)ρi} and τi2 = σ2
i (1 − ρi).

Here ρi is called the intraclass correlation coefficient. This structure, which is called
an intraclass correlation model or equi-variance and equi-correlation model, is applied
to MANOVA for repeated measurements, see e.g. Vonesh and Chinchilli (1997). Let
yn = x̄1,n1 − x̄2,n2 and µ = µ1 −µ2, where x̄i,ni is the usual sample mean based on ni

observations (i = 1, 2).
The problem is to determine the sample sizes satisfying

P{|a′(yn − µ)| ≤ d, for all a such that a′a = 1} ≥ 1− α, (2)

where d > 0 and α (0 < α < 1) are given. For one sample problem, Hyakutake,
Takada and Aoshima (1995) solved the problem by a two-stage procedure and a purely
sequential procedure. Aoshima (1997) and Hyakutake (1998) considered the problem
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of constructing the fixed-size spherical confidence region of the difference of two multi-
normal means by a two-stage procedure. However their procedures may not be optimal
as stated in Hyakutake (1998), when the covariance matrices are known. For example,
when σ2

1 = 1.0, ρ1 = 0, σ2
2 = 2.5, ρ2 = 0.6, d = 1.0, and α = 0.05, the required sample

sizes are n1 = 17.97 and n2 = 35.95 by Hyakutake (1998), which improves Aoshima
(1997). Based on these sample sizes, the coverage probability is 0.971. This suggests
that the procedure would be improved. We determine a pair of the sample sizes n∗1 and
n∗2 that minimizes n1 + n2 under the constraint (2).

If the covariance matrices are known, it is easy to see that

1− α = P [(yn − µ)′(Σ1/n1 + Σ2/n2)−1(yn − µ) ≤ χ2
p(α)]

= P [max
b6=0

{b′(yn − µ)}2
b′(Σ1/n1 + Σ2/n2)b

≤ χ2
p(α)]

= P [b′µ ∈ b′yn ±
√

χ2
p(α)b′(Σ1/n1 + Σ2/n2)b, for all b 6= 0],

where χ2
p(α) is the upper 100(1 − α)% point of χ2

p, which is a chi-square distribution
with p degrees of freedom. Hence the confidence intervals of b′µ for all b 6= 0 are

b′yn ±
√

χ2
p(α)b′(Σ1/n1 + Σ2/n2)b,

which are equivalent to

a′yn ±
√

χ2
p(α)a′(Σ1/n1 + Σ2/n2)a, (3)

for all a such that a′a = 1. It is not easy to derive the optimal sample sizes directly by
(2). We consider the confidence intervals (3), say the problem is to determine n∗1 and
n∗2 such that

√
χ2

p(α)a′(Σ1/n1 + Σ2/n2)a ≤ d, for all a (a′a = 1). (4)

In Section 2, we give the optimal sample sizes, when σi and ρi are known. When
σi and ρi are unknown, (4) is changed to

√
cma′(Σ̂1/n1 + Σ̂2/n2)a ≤ d, for all a (a′a = 1), (5)

where Σ̂i is an estimator of Σi and cm is a 100(1− α)% point of a distribution which is
discussed in Section 3. We propose a two-stage procedure satisfying (5) and investigate
its property in Section 3.

2. Optimal sample sizes

In this section, we asuume that the covariance matrices are known, that is, σi and
ρi are known. The following lemma gives the optimal sample sizes n∗i (i = 1, 2) that
minimize n1 + n2 under the constraint (4).
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Lemma 2.1. A sample size (n∗1, n
∗
2) is a minimum if and only if there exists a unit

eigen vector a1(∈ Rp) of Σ1/n∗1 + Σ2/n∗2 such that

χ2
p(α)a′1(Σ1/n∗1 + Σ2/n∗2)a1 = d2 (6)

and

n∗i =
χ2

p(α)
d2

ξi(ξ1 + ξ2), (i = 1, 2) (7)

where ξ2
i = a1Σia1. Furthermore, when a′11p 6= 0, the corresponding eigen value equals

τ11/n∗1 + τ21/n∗2. When a′11p = 0, it holds that ξ2
i = τi2 (i = 1, 2).

Proof. It follows from the necessary optimality condition for a semi-infinite pro-
gramming problem that there exist a number 1 ≤ ` ≤ 2 (2 is the number of the variables
n1 and n2), multipliers λj ≥ 0, and vectors aj ∈ Rp (1 ≤ j ≤ `) such that

∂L

∂ni
(n∗1, n

∗
2) = 0, (i = 1, 2) (8)

and

χ2
p(α)a′j

(Σ1

n∗1
+

Σ2

n∗2

)
aj = d2, (1 ≤ j ≤ `), (9)

where L is the Lagrange function

L(n1, n2) := n1 + n2 +
∑̀

j=1

λj

{
χ2

p(α)a′j
(Σ1

n∗1
+

Σ2

n∗2

)
aj − d2

}
, (10)

see, e.g., Theorem 3.2 in Ben-Tal et al (1979) or Theorem 10.13.1 in Kawasaki (2004).
It is not hard to show that either n∗1 or n∗2 is negative when ` = 2, so ` = 1. Then

(8) and (9) reduce to

λ1χ
2
p(α)ξ2

i /n∗2i = 1 (i = 1, 2) (11)

and

χ2
p(α)(ξ2

1/n∗1 + ξ2
2/n∗2) = d2, (12)

respectively. Solving (11) and (12) with respect to (n∗1, n
∗
2, λ1), we get (7). On the other

hand, a1 is a maximum of χ2
p(α)a′(Σ1/n1 + Σ2/n2)a subject to a′a = 1. Hence there

exists a Lagrange multiplier η ≥ 0 such that ∂M/∂a = 0, where

M(a) = χ2
p(α)a′(Σ1/n1 + Σ2/n2)a− η(a′a− 1),

that is,

χ2
p(α)(Σ1/n∗1 + Σ2/n∗2)a1 − ηa1 = 0. (13)
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Hence a1 is an eigen vector of Σ1/n∗1 + Σ2/n∗2 and its eigen value is equal to η/χ2
p(α).

Multiplying (13) by a1, we see that the eigen value equals

ξ2
1/n∗1 + ξ2

2/n∗2. (14)

Multiplying (13) by 1p, we have

χ2
p(α)(1′pΣ1a1/n∗1 + 1′pΣ2a1/n∗2)− η1′pa1 = 0. (15)

Since 1′pΣi = τi11′p, we get

{χ2
p(α)(τ11/n∗1 + τ21/n∗2)− η}1′pa1 = 0. (16)

Hence, when 1′pa1 6= 0, the eigen value equals τ11/n∗1 + τ21/n∗2. When 1′pa1 = 0, we get
ξ2
i = τi2 (i = 1, 2) from the form of (1).

On the other hand, since the present semi-infinite programming problem is a convex
programming problem, the necessary optimility condition turns out to be a sufficient
condition for a miniimum.

In Lemma 2.1, it is easy to see that min(τi1, τi2) ≤ ξ2
i ≤ max(τi1, τi2) by a′1a1 =

1. The vector a1 would depend on the parameters σi and ρi, so we write a1 =
a1(σ1, σ2, ρ1, ρ2), (i = 1, 2), which implies that a1 is a function of τij .

3. Two-stage procedure

When σi and ρi are unknown, there is no fixed sample size procedure. We give a
two-stage procedure satisfying (5). Let the first low of a p×p orthogonal matrix Q defined
by (1/

√
p, · · · , 1/

√
p), and define zir = (zir,1, · · · , zir,p)′ = Q(xir − µi), r = 1, 2, · · · and

i = 1, 2. Then zir’s are i.i.d. according to Np(0, D), where Di = diag(τi1, τi2, · · · , τi2).
First take the initial sample size m(> p) from each population and compute

τ̂i1 =
1

m− 1

m∑
r=1

(zir,1 − z̄i,1)2 and τ̂i2 =
1

(p− 1)(m− 1)

p∑

j=2

m∑
r=1

(zir,j − z̄i,j)2, (17)

where (z̄i,1, · · · , z̄i,p)′ =
∑m

r=1 zir/m. Then τ̂i1 and τ̂i2 are independent and are unbiased
estimators of τi1 and τi2, respectively, see e.g., Hyakutake, Takada and Aoshima (1995).
The estimator of Σi is Si = Q′D̂iQ, where D̂i = diag(τ̂i1, τ̂i2, · · · , τ̂i2), say Si is used
in Σ̂i of (5). Hence ξ̂2

i = â1Siâ1 is an estimator of ξ2
i , where â1 = a1(σ̂1, σ̂2, ρ̂1, ρ̂2),

which is expressed by τ̂i1 = σ̂2
i {1 + (p− 1)ρ̂i} and τ̂i2 = σ̂2

i (1− ρ̂i). It would hold that
min(τ̂i1, τ̂i2) ≤ ξ̂2

i ≤ max(τ̂i1, τ̂i2) as in Section 2.
The total sample sizes are defined by

Ni = max
{

m,
[
cm

ξ̂i(ξ̂1 + ξ̂2)
d2

]
+ 1

}
, (i = 1, 2), (18)

where [q] denotes the greatest integer less than q and cm is a solution of an equation
H(cm) = 1− α. H(cm) is a cummulative distribution function (c.d.f.) of
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ν1v01/ min(v11, v21) + ν2v02/ min(v12, v22), (19)

where v1i and v2i are independently distributed as χ2
νi

with ν1 = m−1 and ν2 = (p−1)ν1,
and the conditonal distributions of v01 and v02 given ξ̂1, ξ̂2 are χ2

1 and χ2
p−1, respectively.

Next we take Ni −m additional observations from each population and compute
the sample mean x̄i,Ni (i = 1, 2). Then we have the following theorem.

Theorem 3.1. If N1 and N2 are determined by (17), then (5) is satisfied.

Proof. If it is shown that

P [(yN − µ)′(S1/n1 + S2/n2)−1(yN − µ) ≤ cm] ≥ 1− α, (20)

where yN = x̄1,N1 − x̄2,N2 and Σ̂i = σ̂2
i {(1 − ρ̂i)Ip + ρ̂i1p1′p}, then (5) is satisfied by

Lemma 1.
Since u = (u1, u

′
2)
′ = Q(yN − µ) is distributed as N(0, D1/N1 + D2/N2) given

(N1, N2), the conditional distributions of v01 = u2
1/(τ11/N1 + τ21/N2) and v02 = u′2u2/

(τ12/N1 + τ22/N2) are χ2
1 and χ2

p−1, respectively. Hence we have

P{(yN − µ)′(S1/N1 + S2/N2)−1(yN − µ) ≤ cm}

= P
{ u2

1

τ11/N1 + τ21/N2

τ11/N1 + τ21/N2

τ̂11/N1 + τ̂21/N2
+

u′2u
′
2

τ12/N1 + τ22/N2

τ12/N1 + τ22/N2

τ̂12/N1 + τ̂22/N2
≤ cm

}

= P
{ v01

q1τ̂11/τ11 + (1− q1)τ̂21/τ21
+

v02

q2τ̂12/τ12 + (1− q2)τ̂22/τ22
≤ cm

}

= P{ν1v01/(q1v11 + (1− q1)v21) + ν2v02/(q2v12 + (1− q2)v22) ≤ cm},

where qj = (τ1j/N1)(τ1j/N1+τ2j/N2) (j = 1, 2). Since qjv1j+(1−q1)v2j ≥ min(v1j , v2j),
we have

P{ν1v01/(q1v11 + (1− q1)v21) + ν2v02/(q2v12 + (1− q2)v22) ≤ cm}

≥ P{ν1v01/ min(v11, v21) + ν2v02/ min(v12, v22) ≤ cm}

= 1− α,

which completes the proof.

Next we discuss an asymptotic property of the procedure. It is easy to see that
vij/νj → 1 (i, j = 1, 2) almost surely as m →∞ by τ̂ij → τij almost surely as m →∞,
see e.g., Hyakutake, Takada and Aoshima (1995). Then the limiting distribution of (19)
is χ2

p, say cm → χ2
p(α) as m →∞. Under the assumption that m →∞ and d2m → 0 as

d → 0, we have
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lim
d→0

E(N1 + N2)
n∗1 + n∗2

= 1,

that is the two-stage procedure based on (18) is asymptotic efficient. This can be shown
by the same method as in Takada (1988), so the proof is omitted.
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