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Abstract

A skewness is a measure of symmetry of a distribution and appears in an Edge-
worth expansion of a standardized or studentized statistic. It has been found in
simulation studies that jackknife estimators of the skewness have downward bi-
ases. Fujioka and Maesono (2000) have obtained a normalizing transformation
with residual term o(n™!) and they pointed out that in order to construct the
normalizing transformation, we need an asymptotic representation of a skewness
estimator. Maesono (1998) has obtained the asymptotic representation of the jack-
knife skewness estimators and discussed their biases. In this paper we propose an-
other skewness estimator of a U-statistic and obtain asymptotic representations of
both estimators with remainder term o,(n~') and discuss the biases theoretically.

Key Words and Phrases: Jackknife estimator, Hoeffding decomposition, Skewness, Studentized
U-statistics, Unbiased estimator.

1. Introduction

Let X1,---, X, be independently and identically distributed random variables with
distribution function F and h(xy,---,x,) be a real valued function which is symmetric
in its arguments. For n > r let us define U-statistic by

-1
n
Un = (T> CZh(Xm---,Xir)

where ) denotes that the summation is taken over all integers iy, - -, i, satisfying
1<iy <--- <14, <n. For a standardized U,,, Hoeffding (1948) proved the asymptotic
normality, and Callaert, Janssen and Veraverbeke (1980) and Bickel, Goetze and van
Zwet (1986) obtained an Edgeworth expansion for the distribution of the standardized
U-statistic 0,1 (U, — 0), where § = E[h(X1,---,X,)] and 02 = Var(U,). Based on
these approximations, we can construct confidence intervals. But, as pointed out by
Hall (1992, Chap.3), both convergence rates of coverage probabilities of those intervals
are O(n’l/ 2). Thus we cannot improve the convergence rates. To improve the rates,
we have to construct the confidence interval based on the Edgeworth expansion of a
studentized U-statistic
Sp= U, —0)/6x
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92 Y. MAESONO
where 62 is an estimator of the variance o2. The properties of the jackknife variance
estimator 62 are precisely studied. Arvesen (1969) has obtained the exact representation
of 62, and Efron and Stein (1981) have showed that 62 has a positive bias. Further
Maesono (1997) has obtained an asymptotic representation and an Edgeworth expansion
with remainder term o(n=1/2).

Maesono (1997) has obtained the Edgeworth expansion of the studentized U-
statistic substituting a jackknife variance estimator 62. The expansion includes the
asymptotic skewness k3 of S,. The skewness k3 depends on the main terms of the
variance and the third moment of the U-statistic U,,. There are also some papers which
studied properties of a jackknife estimator of the third moment of the U-statistic. Tu and
Gross (1994) discussed bias reduction of the estimator. Maesono (1998a) has obtained
an asymptotic representations of the jackknife variance and third moment estimators
and then got an asymptotic representation of the jackknife skewness estimator £3. On
the other hand, Fujioka and Maesono (2000) proposed a higher order normalizing trans-
formation which improve the convergence rates of the probabilities of the confidence
intervals. They pointed out that if we want to use a higher order normalizing transfor-
mation, we need the asymptotic representation of the skewness estimator k3.

In this paper we will discuss asymptotic properties of skewness estimators based
on the jackknife estimators and an unbiased estimator of the main term of the asymp-
totic skewness k3. Using the Hoeffding (1961) decomposition (H-decomposition), the
asymptotic representations of the skewness estimators k3 are established, and the biases
of &3 are studied theoretically. In Section 2, we review the H-decomposition and the
asymptotic representation of the jackknife variance estimator ng2. In Section 3, the
asymptotic representations and the biases of the estimators 43 are established. Finally,
in the case of variance estimation, we study the biases of the estimators #3 in Section 4.

It is desirable to study asymptotic mean squared errors of the skewness estimators
k3. But to calculate the errors, we should obtain more precise representations of the
estimators. So, it may be studied in the future. Hereafter for the sake of simplicity,
we will consider the kernel of degree 2. The generalization to the kernel with arbitrary
degree will be obtained with notational complications and tedious calculations.

2. Preliminaries

At first we prepare the H-decomposition of U-statistic. The H-decomposition or
ANOYV A-decomposition is a basic tool of the analysis of variance, the jackknife inference,
etc. Under the assumption that E|h(X7, X2)| < oo, let us define

g1(z) = E[h(z, X2)] — 0, g2(z,y) = h(z,y) — 0 — g1(x) — g1(y)

A1 = Zgl(Xl) and A2 = Z gg(XZ,Xj)
i=1 Ch,2

Then we have
2

n(n — 1)A2'

2
U,—0=—-A; +
n

Note that
Elga(X1,X2)|X1] =0 a.s.
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If one of {i1,i2} is not contained in {j1,- -, j¢}, for £-variate function 7 which satisfies
E|mgs| < oo, we get

E[gk(Xil ) Xiz)ﬂ—(le’ T 7Xje)] =0.
Using this equation we have the variance o2 of U,

2 4o 2 L
On = ngl + n(n _ 1)52
where

& = Elgi(X1)]  and & = E[g5 (X1, Xo)].

Let U,(Li) denote U-statistic computed from a sample of n — 1 points with X; left
out. Then the jackknife variance estimator 62 is given by

n—1«

oy = > U -U (1)

n :
=1

Maesono (1997) has obtained an asymptotic representation of ng2 as follows. To discuss
asymptotic properties of a statistic, it is convenient to obtain an asymptotic represen-
tation with remainder term o,(n~!) which means
P{lop(n™")| = n~ (logn) ™"} = o(n™").
From Maesono (1997), we have the following lemma.

LEMMA 2.1. If E|h(X1, X2)|**¢ < 0o for some e > 0, an asymptotic representation
of the jackknife variance estimator né?2 defined by (1) is given by

no?2 :n02—|—22n:f (X)—|—L2f (X; X')+L£%+0 (n™1)
" " (et 1\ n(n—l)cn2 202y n P
where
fi(x) = 2[gi(x) — &7 + 4E[g1(X2)g2 (2, X))
and
folzy) = —dg1(x)g1(y) +4E[g2(x, X3)g2(y, X3)]

+4g2(z, y){91(2) + 91(y)} — 4E{g2(2, X3) + g2(y, X3) }91(X3)].
PROOF. See Maesono (1997).

3. Skewness estimator

We will consider the asymptotic skewness k3 of the studentized U-statistic S,,.
Maesono (1997) has proved an asymptotic representation of S,,. Let us define

261 267’
- a{i@a@ -
+ (Bl (. Xo)or (X2)) = 1)) + Eloa(ar Xa) (X)) .

p = E[f1(X1)g1(X1)],

m(z) = 1g1(z)

mle.9) = (o) = 2 [@00) + A0
1
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and

_L
3

401 @) [105) = G AODAE)] +0:0)[foe.2) ~ ZAE1)

m(,9,2) = = { 1@)920,2) + [1(0)g2 (2, 2) + f1 ()92 (2, y)

4 () [a(e) = S A@AG] |

Then we have the following lemma.

LEMMA 3.1. If E|h(X1,X2)|” < 0o and € > 0, for the studentized U-statistic
Sp = (U, — 0)/6y, we have

Sy = /nU} — LA 0p(nh)

né;
where
O N, m(Xa)
U, = T&;{gl(le =)
2 2
T S m(Xi, X)) + Y e 7 3 (X0, X5, Xa).

Cnyg Cn,3

PROOF. See Maesono (1997).

Since S,, is an asymptotic U-statistic, the asymptotic skewness k3 = n?*E(U})3
follows from Maesono (1998a). Let us define

e1 = Elgi(X1)], ez = E[g1(X1) f12(X1)], e3 = Elg1(X1)g5(X1, X2)],
eq = Elg2(X1, X2)92(X1, X3)92(X2, X3)], es = Elgi(X1)],

e6 = Elgi(X1) f12(X1)], er = E[ff5(X1)), es = Elg}(X1)],

eo = E[g7 (X1)g7(X2)g2(X1, Xo)], e10 = Elg} (X1) f12(X1)],

enn = E[g7 (X1)g2(X1, X2) f12(X2)], e12 = E[g1(X1) fTa(X1)],

€13 = E[gz(XhX2)f12(X1)f12(X2)]

where
fi2(z) = Elg1(X2)g2(z, X2)].

From direct computations, we have an asymptotic skewness k3.

LEMMA 3.2. If E|h(Xy, -+, X,)|° < 0o and &2 > 0, we have

1
k3 = nEU? = 5—3(—261 — 3e9)
1
1 39 3
+ n71{§<—§€1 — 562 — 363 — 264)
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1 3 3
|: 352 (61 + 262) — —eg+ —eg — 3e190 — 3e11 — 9e12 — 6613:|

51 %7

o [3e1 (65 n geﬁ + %w) + 3e2(%5 +10e + 1267)}

1

221 (61 + 62) } +0(n™?). (2)

PROOF. See Maesono (1998a).

Let U,gi’j) denote U-statistic computed from a sample of n — 2 points with X; and
X left out. The jackknife skewness estimator A3 of k3 is given by

Un

where
20— 1) N 3
Up = ———— ;(Un Un) (4)
—1)2 ) . ) ) .
3021 S U - 0,) U - Ul — (0 — DO + U + U],

n ;
i#]

The skewness k3 is a coefficient of n~1/2 term in an Edgeworth expansion of S,,. So,
the estimator of the skewness plays an important role when obtaining an approximate
upper a-quantile or constructing a confidence interval based on the Edgeworth expan-
sion. Beran (1984), and Hinkley and Wei (1984) have discussed the jackknife estimation
of the skewness. The simulation studies by Beran (1984), Schemper (1987), and Tu and
Zhang (1992) show that the jackknife skewness estimators have large downward biases.
Beran (1984) further has found that the biases in skewness estimators have a significant
impact on the accuracy of the jackknifed Edgeworth approximation and the correctness
of confidence intervals based on this approximation.

Using Lemma 4 and 5 in Maesono (1998a), we can obtain the asymptotic represen-
tation of ,. Let us define

M (z) = —8{g}(z) — e1} — 24{g1 (2) E[g1 (X2)ga2(z, X3)] — €2}
—24E[g7 (X2)g2(x, X2)] + 246791 () — 24E[g1(X2)g2(x, X3) g2 (X2, X3)],

Ao(z,y) = —24{91( )91(Y)g2(2, y) + €2

—E[(g1(z)g2(x, X2) + 91(y)92(y, X2))g1(X2)]}
+24{g7(x)g1(y) + ¢ ()91 (x) — E1 g1 () — E191(y)}
—24{[g7 () + g7 (W)g2(x, y) — Elg? (X2){g2(x, X2) + g2(y, X2)}]}
+48&3 g2 (x,y) + T2E[(91(2)g2(y, X3) + 91(y)92(, X3))g1(X3)]
—48Eg1(X3)g2(z, X3)92(y, X3)]
—24{E[(g1(x) + 91(y))g2(z, X3)g2(y, X3)

+91(X3)92(z,y)(92(x, X3) + g2(y, X3))]

—2E[(g2(x, X3) + g2(y, X3))91(X2)g2(X2, X3)]}

—24E(g2(z, X3)92(y, X4)g2(X3, X4)]
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and
0= 661 + 1262 - 1263 - 364.

Similarly as né2, Maesono (1998a) obtained the following asymptotic representa-
tion of 7y,.

LEMMA 3.3. If E|h(X1, X2)[67¢ < 0o for some e > 0, an asymptotic representation
of Uy, defined by (4) is

. 2 2 80 .
Uy = 8(—261 — 362) + ﬁ Z/\l(XZ) + m CZ )\Q(Xi,Xj) + ; + Op(’fl )

PROOF. See Maesono (1998a).

Using Lemma 2.1, 3.2 and 3.3, we can obtain the asymptotic representation of i3 .

THEOREM 3.4. If E|h(X1, X2)|'T¢ < 0o for some e > 0 and 2 > 0, an asymptotic
representation of the jackknife skewness estimator sy in (3) is given by

Raj = K3 + 3ZC1 53 ZC2 XuX)*'nLgl;),‘f‘Op(n_l)
i=1 1
where
Gi(z) = éAl(x) - 3(6182%362)f1(x),
(1) = Phalrs) = o { AN+ A @)
3(e1 + 3e2) 5(e1 + 3ez)
—ng(x,y) + Tfl(x)fl(y)
and

I5E[ff(X1)] 363 } 3
32¢1 4t teed

PROOF. See Maesono (1998a).

d=68+ (e +362){ E[fi(X1)A(X1)]-

It is possible to construct another type estimator of the asymptotic skewness k3.
Substituting an unbiased estimator to e; and ey, we propose new skewness estimator.
From the definition of ey, e, g1 (x) and g2 (z,y), we have

e1 =71 — 310 + 273 and ey =Ty — 279 + T3
where
= E[h(XhXQ)h(Xl)X3)h(X17X4>]7
7o = FE[h(X1,X2)h(Xs3, X4)h(X3, X5)],

™3 = FE[h(X1, X2)h(X3, X4)h(X5, X6)]
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74 = E[h(X1, X2)h(X3, X4)h(X1, X3)].

Since 711, 79, 73 and 74 are estimable parameters, we can make unbiased estimators based
on the theory of U-statistics. The kernel of the U-statistic should be symmetric in its
arguments and so, considering every combination of the indices, let us define

and

h’Tl (mla T2,x3, 1'4)

1
Z{h(xl’ xo)h(xy,x3)h(x1,24) + h(z1, T2) (22, T3)h(T2, 24)

+h(z, x3)h(22, x3)h(23, 24) + W21, v4)R(22, Ta) D (23, 534)}7

hry (21, 22, 23, T4, T5)

1
%{h(ﬁﬁl, 1‘2)/1(.133, $4)h(1‘3, .1‘5) + h(1‘1, .TQ)h(ZIJg,, 334)}1(1‘4, 335)

hT3 ($1,$2,£L’3,1’4,5E5,.’E6)

—5{h(x1, xo)h(xs, x4)h(xs, 26) + h(21, x2) (23, 25)h(T4, T6)

Then unbiased estimators 71, 7o, 73 and 74 of 7,72, 73 and 74 are given by

1
R n
1 <4) Zth(Xilv"'7Xi4)7

Cn,4

-1
N n
T2 <5> Zth(Xilv"'7Xi5)7
Chs
n -1
7/;3 (6) Zth(Xila"'7Xi6)
Cn,6



98 Y. MAESONO

and )
) n
T4 = (4> th(Xiu"'aXM)'
Cn,4
Let us define
ﬂnZS{—Q(fl—37A'2+7A'3)—3(7A'4—27A'2+7A'3)}. (5)

Then the estimator of the skewness k3 based on the unbiased estimation is given by

Ry = _
U ez
Since 71, T2, 73 and 74 are U-statistics, we can apply the H-decomposition and obtain an

asymptotic representation as follows.

LEMMA 3.5. If E|h(X1, X5)|%7¢ < 0o for some e > 0, an asymptotic representation
of fin, defined by (5) is

fin = 8(—2e1 — 3ea) + %Z (X)) + Z Ao (Xi, Xj) 4 op(n™h).

-1
n(n C?L,Z

PRrROOF. See Appendix.

Thus, similary as A3, we can obtain an asymptotic representation of the estimator
k3y as follows.

THEOREM 3.6. If E|h(X1, X2)['°F¢ < 0o for some ¢ > 0, we have

ou
kau = K3 + 53 ZCl 753 Z G(Xi, X;) + nes +op(n7h)  (6)

n 2

where
39 3
oy = 61-‘1- —ey + 3e3 + 2e4
51 2
21 15
685e1 + —E&er — 1287e1 — 276 es + —es
§1 2 4
15
—?69 + 18610 + 30611 + 27612 + 24613
LD Y (R AL P
NN\ 16 16T 4T LT
_|_ Q _|_ é‘ 231 + &
32 LT g T e

40 3
e; +eg)’.
taglate)
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PROOF. #3p is an ratio statistic. For the ratio statistic, Maesono (1998b) has
obtained an asymptotic representation with residual term o,(n~1). Applying his result,
we can show the equation (6).

REMARK. The differences between the estimators <3y and A3y are the bias term,
and ¢;(z) and (o(x,y) are same. Fujioka and Maesono (2000) discussed a normalizing
transformation with remainder term o(n~!) and their transformation depends on (;(z).
In the paper Fujioka and Maesono (2000), the transformation is based on the jackknife
estimator <3y, and so we do not need to change the normalizing transformation when
we use A3y instead of k3.

REMARK. Lai and Wang (1993) have established the Edgeworth expansion for the
asymptotic U-statistic. Thus it is possible to obtain the Edgeworth expansion of the
standardized skewness estimator (kg — k3)/+v/V (R3).

4. Example

Let us consider the unbiased sample variance which is a U-statistic with kernel
h(z,y) = (x —y)?/2. It is easy to see that

2
U, = — = X; - X;)
n(n—l)CZn:22(

ELE

Thus U, is the unbiased estimator of § = 02 = V(X7). Applying the H-decomposition,
we have

0(@) = {@ =P o)} and  galey) = —(@ - p)y— ).

where ;1 = F(X71). For the sake of simplicity, let us assume that the distribution F(z)
is symmetric about origin. Let us define

mi = B[(X) - w)],

and then if & is a odd number, my, = 0. Since fi2(x) = 0, from direct computation, we
have

& = i(mzx —dt), G=d' ea= é(mﬁ — 30°my +20°),
ea =0, e3= %(02m4 —0%), e4=-0°

e5 = 116(m8—40 me + 60 my — 30%),

eg = 312(m10 — 50%mg + 100*mg — 106my + 40'°),

e =er =eg = ejg = e11 = e12 = e13 = 0.

For the normal, logistic and double exponential distributions, we have the following
table.
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Table
K3 6,/6 | ou/€}
Normal —5.66 —n—1146.37 209.22 425.32
Logistic —10.22 —n~1923.78 | 1517.35 | 3510.74
Double exp. | —13.24 — n~11922.95 | 3168.54 | 7421.82

The order of the biases §;/&F and 0y /&5 are O(n~!) and all biases are downward.

5. Appendix

Let us review the H-decomposition of the U-statistic with kernel degree r. Let us
define

ag(xy, - 2,) = Eh(Xy, -, X)) X1 =21, -, Xx = 2] — E(h)
hi(zy) = ai(x1),
ho(z1,22) = as(x1,x2) — hi(x1) — hi(z2),
r—1
hT(xla"'a:ET) == a?"(xla"'7x7") _Zzhk(xila"'7zik)
k:lChk

and
Ap = hi(Xiy, -, X)),
Chn.k

Then we have

U, — E(U,) = (Z) - ]; <7;_ :) Ay (7)

and

E[hk(Xl,'~-7Xk)‘X17~”,Xk,1]:0 a.s. (8)
Let us consider ¢-variate function 7(z1, - - -, 2¢), which satisfies F[|gi7|] < oo, and the set
of indecies {41, -+, }. If there exists an index i,, € {i1, -+, i} and i, € {j1, -+, e}

It follows from (8) that

E[hk(Xh y T 7X73k)7T(Xj thz)] =0.

1

Further, using the moment evaluations of a martingale by von Bahr and Esséen
(1965) and Dharmadhikari, Fabian and Jogdeo (1968), we have the following inequalities:
If El|hi(X1,---, Xk)|P] < oo for 1 < p < 2, we have

E(|AlP) < Cpnt.
If E[|hr (X1, , Xk)|P] < oo for 2 < p, we have
E(|ALP) < Cn'z .
C}, is a constant and does not depend on n. Thus for k£ > 3 and € > 0, we have

() ()

24

E =O0(n3%/2),
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Therefore it follows from (7) that

r r(r—1
Un = B(Un) = ﬁA1+ n((n—l)

A +o,(n7h). 9)
Using H-decomposition for the U-statistic, we will prove Lemma 3.5.

Proof of Lemma 3.5.
We will obtain an asymptotic representation of 74 and the others are similarly obtained.

Let us define

Then, from H-decomposition of the U-statistic, we obtain
E[th (Xla X27 Xg, X4)|X1 - Jj]
1
= { B, Xa)h(w, Xo)h(w, Xa)] + Elh(z, Xa)h(Xa, Xs)h(Xe, X))

+E[h(z, X3)h(X2, X3)h(X3, X4)] + E[h(fﬂvX4)h(X27X4)h(X3,X4)]}

_ ib?’(w + %E[h(w,sz"‘(Xzﬂ-

Further from the definition of g; and g5, we have
b(x) =gi(x) +0 and h(z,y) = g2(x,y) + g1(x) + 0.

We also have
71 = Elh,, (X1, X2, X3, X4)] = €1 + 3067 + 6°.

Thus we can obtain the first term of the H-decomposition

hii(z) = Elhr, (X1, Xo, X3, Xg)| X1 = 2] =7
= M) - e+ 305800) €]+ BB, X))

+3¢301(w) + 0B g2(w, X2)g1(X2)] + 6691 () }.

which corresponds to hi(x)
From long but direct computation, we can show that

E[th (X13X27X33X4)|X1 =z, X2 = y}
)7 ) + 2] + 2B, Xo)h(y, Xa)h(Xs, X))

- 3{92@7 () + g3 ()] + 2092 (2, y) 91 (2) + 91 (v)] + 26%0a (2, )

+g3(x) + g3 (y) + g1(2)gi (v) + g5 (2)g1(y) + 3097 (x) + 3097 (y)
+4091(2)91 (y) + 46%g1 (2) + 4621 (y) + 26° |

+%{E[gz(év»Xs)gz(y,Xs)gl(Xa)] + 0E[g2(z, X3)g2(y, X3)]

+91(2) Elg2(y, X3)91(X3)] + 91(y) E[91(X3)g2 (7, X3)]



102

Y. MAESONO

+Elg2(x, X3)g7 (X3)] + Elga(y, X3)g7 (X3)]
+20E[g2 (7, X3)91(X3)] + 20 E[g2(y, X3)91(X3)]
+091(x)g1(y) + [6F + 691 (2) + [ + 6%]g1(y)
+eq + 3067 + 93}.

From the above equations, we have

hl;?(x7y)
Elhr, (X1, X2, X3, X4)|[ X1 =2, Xo = y| — 71 — hya(z) — h11(y)

o) (526) + 520) + 2l01() + 0 (9)] +26°)

+91(2)g7 (y) + g5 (2)g1(y) + 6091 (2)g1(y)

+2E[g2(z, X3)92(y, X3)h1(X3)] + 20E[g2(2, X3)92(y, X3)]

+291(2) E[91(X3)92(y, X3)] + 291 (y) E[91(X3)92(2, X3)]

—Elga(z, X2)91(X2)] — Elg2(y, X2)g5 (X2)] — 20E[g2(x, X2)g1(X2)]

—~20B(gu(y, X2)g1 (X2)] — g1 (&) + 1 ()] }-

Combining above equations, it follows from (9) that

71

4 & 12 B
= Tl+ﬁ§h1?1(Xi)+7Zhl2X LX)+ op(n™t).

n—1

For the other estimators 75,73 and 74, we can obtain asymptotic representations.

Let us define

ho;1(x)

h3;1(x)

h3;2(m7 y)

h4;1(55)

= {016 @) — 1+ 6601 () + 260 Elg) (Xa)ga( X2)] + 26301 (0) ).

h2§2(x7 y)
= %{992(1‘, Wg1(@) + g1(y)] + (& + 36%)g2(,y) + 11091 (2) g1 (y)

—0E[g2(x, X2)g1(X2)] — 0E[g2(y, X2)g1(X2)] + 65 ()1 (y)
+91(2)g3(y) + OE[g2(x, X3)g2(y, X3)] + 291 () E[g2(y, X2)g1(X2)]

+201 (1) Elga 2, X2)g1 (X2)] — €291 (=) + 1 ()]},
= 9291(55)7
= [P0aey) + 400 ()0 ()

= o @B (X)ea(r, X)) - o2+ 2601(2) + 0163 ) ~ &
+36%91 () + 20E[91(X2)g2 (2, Xa)]
TE[g1(X2)g2(2, X3)g2(X2, X3)] }



and

h/4;2(1'7 y)

Then we have
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& (920 9) Ell2(2, Xs) + 029, X101 (Xs)]
—2E[{g2(x, X2) + g2(y, X2) }91(X3)g2( X2, X3)]
+(267 4 36%)g2 (2, y) + 2092(2, ) [91 () + 91(y))]
+391(2) E[g1(X3)92(y, X3)] + 391(y) E[g1(X3)g2(2, X3)]
+91(2)91(y)g92(2, y) — e2 + 10091 (x) g1 (y
—20E[g1(X2){g2(z, X2) + g2(y, X2)}]
—{91(2) E[91(X2)g2(7, X2)] — €2}
—{91(¥) Elg1(X2)g2(y, X2)] — e2}
+297 (2)g1(y) + 291 ()7 (y) — 263[91(2) + 91 (y)]
+91(2) Eg2 (7, X3)g2(y, X3)] + g1(y) Elg2(x, X3)92(y, X3)]
+20E g5 (, X)g2(y, Xa)] + Elga(, X3)95 (9, X)g2( X3, X1))).

5 & 20 -
To + n Z:h2;1(Xi) t Z ha2 (X X;) + 0p(n 1),

2 n(n—l)c
N 30
T3 T3+ — Zh?)l nn—1) Zh32XuX)+0p( )
CnZ
and
12
Ty =T4+ — thu nln—1) Zh42XnX)+0p( -h.
Cn2

Combining the above decompositions, we have the asymptotic representation.
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