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Srabashi Basu∗ and J. Richard Landis†

Abstract

Threshold-specific population attributable risk measures are developed to ac-
count for ordinal disease classifications. A cumulative logit model is utilized to
formulate the threshold-specific risks as functions of the underlying model param-
eters. Covariate-adjusted and overall attributable risk measures are proposed to
quantify the impact of exposure to an ordinal risk factor on an ordinal disease clas-
sification, in the presence of a confounding variable. These methods are developed
under prospective and cross-sectional sampling designs. The asymptotic dispersion
matrices of the risk estimates are obtained using multivariate Taylor series expan-
sions which incorporate the sampling variation of the estimated model parameters
and the appropriate estimates of risk factor prevalences. These methods are illus-
trated within the context of a health examination data, investigating the potential
influence of body mass index, adjusted for race, on the prevalence distribution of
diastolic blood pressure among adult women in the U.S.

Key Words and Phrases: cumulative logit modeling, implicit function theorem, ordinal data,

population attributable risk.

1. Introduction

Measures of relative risk (RR) and population attributable risk (PAR) are two
major etiologic concepts used to quantify the association between a putative risk factor
and a selected disease in a target population. Quite frequently, both the risk factor
and the disease response are reported on an ordinal measurement scale. Even when the
underlying response variable is continuous, (e.g. an individual’s blood pressure measure-
ments indicating his/her hypertension status) it is a common practice to categorize the
response variable for clinicians’ benefits (Archives of Internal Medicine 1993). Consider
situations where the disease classification includes J > 2 ordered response categories,
(e.g., none, mild, moderate and severe stages of disease) and the risk factor has I ≥ 2
ordinal levels, (e.g., none, low, medium and high exposure). The important concern
here is to quantify the extent of disease reduction in the target population, relative to
each increasing level of the ordinal classification, which (theoretically) could be realized
if the risk factor were eliminated.

To date, the methods in the research literature for quantifying PAR are limited
to binary disease classifications (Levin 1953; Walter 1975, 1976, 1978, 1980; Walker
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1981; Whittemore 1982, 1983; Greenland 1984, 1987; Kuritz and Landis 1987, 1988a,
1988b). Several authors have proposed logistic model-based approaches to estimate
PAR, but keeping it limited to binary disease levels (Deubner et al 1980; Bruzzi et al
1985; Benichou and Gail 1989, 1990; Drescher and Schill 1991; Greenland and Drescher
1993; Basu and Landis 1995). In contrast to such methods, measures of relative risk and
population attributable risk for ordinal disease outcomes require special consideration
to accomodate multiple levels of disease. A naive approach to this problem is to collapse
the I × J contingency table at each of the J − 1 thresholds and then estimate the risk
parameters assuming a binary disease classification at that threshold. In this article
we propose a more efficient method based on a cumulative logit modeling to formulate
estimates of RR and PAR directly for the ordinal disease classifications. Modeling
ordinal response data, in contrast to analyzing J−1 separate binary partitions, provides
considerable gains in efficiency when an appropriate model is specified, as well as a
simplified parametrization and ease of interpretation.

The new estimates of PAR are compared against classical estimates obtained by
collapsing the disease levels at each ordinal threshold. It is empirically observed that
the former have smaller asymptotic variances as well as smaller MSEs in finite samples.

In the next section, the threshold-specific relative risks and attributable risks are
defined and formulated in terms of the parameters of a cumulative logit model. In
Section 3 maximum likelihood estimation procedure is described and the asymptotic
dispersion matrices of the threshold-specific risk estimators are obtained. In Section 4
a series of simulation studies are described to demonstrate the efficacy of model-based
estimation over the estimation procedure based on collapsing. In Section 5 a second set
of simulation studies is considered to show validity of the asymptotic procedures. In the
final section, the model-based procedure is applied to a health survey data to study the
effect of body mass index on hypertension in the presence of a covariate.

2. Measures of threshold-specific risk

Consider the disease to be present at J levels in the target population, 0, . . . , J−1.
At each increasing threshold indexed by j, let D(j) be the observed number of individuals
classified as diseased. For example, suppose J = 4, corresponding to disease levels
labeled as none, mild, moderate and severe. At threshold level 1, all ordinal levels
of mild, moderate and severe are classified as diseased; whereas, at threshold level 2,
only moderate and severe are classified as diseased. Threshold-specific measures of both
relative risk and attributable risk are defined in such a way that, for each threshold,
these parameters for the 2× J table are identical to the ordinary risk measures for the
2× 2 table, obtained by collapsing the original 2× J table at that threshold.

Let xl, l = 1, . . . , v be a row vector having the primary risk factor for the disease,
other covariates associated with the risk factor and their product terms as its constituent
elements. Further let zl, l = 1, . . . , v be another vector corresponding to xl, such that zl

is the value of the predicting variables a subject with actual predicting value xl would
have if not exposed to the primary risk factor. Further, let z0 = x0 be the baseline
value of the covariate combinations, so that a subject having z0 value of the predicting
variables is at the lowest risk of having the disease.

We propose a cumulative logit model for the ordinal frequency data under the
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assumption of proportional odds by letting

Lj(x) = log
Pr(D(j)|x)

1− Pr(D(j)|x)
= αj + xB′. (1)

αj ’s are the intercept parameters at the j-th threshold of disease. Define θ(j) to be the
vector (αj ,B). Subsequent development of the method is based on this model albeit
as an example. Note that the method is completely general and may be used with any
sensible model. Rewriting (1), the conditional probability of disease at threshold j can
be expressed as

Pr(D(j)|x) =
exp((1, x)θ(j)′)

1 + exp((1,x)θ(j)′)
= expit((1, x)θ(j)′).

Let nl be the number of subjects observed at combination xl and n be the row vector
with l-th element nl. Moreover define r(j)

z and r(j)
x to be the row vectors with the l-th

elements expit((1, zl)θ(j)′) and expit((1, xl)θ(j)′) respectively. Also let t
(j)
z = nr(j)′

z

and t
(j)
x = nr(j)′

x , j = 1, . . . , J − 1 be the expected total number of diseased individuals
in the population under the reference and observed covariate levels, as defined at the
j-th threshold of disease.

Hence the threshold-specific relative risk at the j-th threshold is defined as

R(j)(xl) =
Pr(D(j)|xl)
Pr(D(j)|z0)

, j = 1, . . . , J − 1. (2)

R(j)(xl) compares the probability that a randomly selected individual exposed to the
risk factor combination denoted by xl has the disease as defined at the j-th threshold,
relative to the probability that a randomly selected individual exposed to the baseline
combination only has the disease. Further the population attributable risk at the j-th
threshold of disease is defined as

λ(j) = 1− t
(j)
z

t
(j)
x

. (3)

Let us now consider the case of a single ordinal risk factor, a binary covariate and
an ordinal disease response in detail. This simple model is chosen on account of its
applicability and easy derivation of model-based threshold-specific risk parameters. Ex-
tension of the formulation of threshold-specific risk parameters to more complex models
is straightforward. Let E denote exposure assumed to be present in I ordinal levels and
C denote a binary covariate assumed to be associated with the risk factor. Under this
simplistic assumptions the model in (1) reduces to

Lc
j(i) = αj + iβ + cγ , i = 0, . . . , I − 1, c = 0, 1, (4)

where Lc
j(i) is the j-th cumulative logit at exposure level i and covariate level c, αj is

the intercept of the j-th cumulative logit, β is the trend coefficient of the risk factor and
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γ is the coefficient for the covariate. The probability of disease at the j-th threshold is
given by

Pr(D(j)|CcEi) =
exp(αj + iβ + cγ)

1 + exp(αj + iβ + cγ)
. (5)

Hence the relative risk at the j-th threshold of disease at covariate level c and exposure
level i is

R
(j)
ci =

Pr(D(j)|CcEi)
Pr(D(j)|C0E0)

= exp(iβ + cγ)
[

1 + exp(αj)
1 + exp(αj + iβ + cγ)

]
. (6)

Walter (1976) and Whittemore (1982) introduced a covariate-adjusted PAR, λA,
when one or more confounding factors are present in the target population and the
disease is binary. This definition is easily extended to a target population where, at
each level of the covariate C, the risk factor is present in I levels and the disease is
present in J levels. The attributable risk at the j-th threshold of disease, adjusted for
the covariate, is

λ
(j)
A = 1−

∑1
c=0 Pr(D(j)|CcE0) Pr(Cc)∑1

c=0

∑I−1
i=0 Pr(D(j)|CcEi) Pr(CcEi)

. (7)

Walter (1976) also defined an overall PAR, λO, when the risk factor has multiple
levels, which can be extended readily to the present situation. Therefore, the overall
PAR at the j-th threshold of disease may be formulated as

λ
(j)
O =

∑1
c=0

∑I−1
i=0 (R(j)

ci − 1)Pr(CcEi)

1 +
∑1

c=0

∑I−1
i=0 (R(j)

ci − 1)Pr(CcEi)
. (8)

Parametric formulations of λ
(j)
A and λ

(j)
O are obtained easily utilizing (5) and (6).

As defined in (7), λ
(j)
A is the measure of the theoretical reduction in the disease

prevalence (or incidence, if the design is prospective) at the j-th threshold, adjusted for
the covariate, presuming that the risk factor is completely eliminated from the popula-
tion. This will be achieved only if subjects exposed to any of the multiple levels of the
risk factor revert to the baseline risk corresponding to no exposure. On the other hand,
λ

(j)
O measures the overall proportionate reduction in the disease rate at the j-th thresh-

old, theoretically possible only if the risk factor and all the covariates are eliminated
from the target population. The underlying assumption here is that the higher category
of the risk factor, as well as the presence of the covariates, increase the probability of
disease at each threshold.

3. Estimation procedure

In this section the maximum likelihood estimates for the threshold-specific covariate-
adjusted PAR and the overall PAR, together with their asymptotic variances, under the
model given in (4), are derived in detail. These results are directly extendable to the
general model given in (1). A cross-sectional sampling design is assumed for variance
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formulations. Results under the prospective sampling design follow very easily from
those under the cross-sectional survey and they have been indicated wherever appropri-
ate. Under the cross-sectinal sampling scheme, n individuals are cross-classified into a
2×I×J table according to their covariate status, risk factor exposure and ordinal disease
levels. Our goal is to derive maximum likelihood estimates of ΛA =

(
λ

(1)
A , . . . , λ

(J−1)
A

)

and ΛO =
(
λ

(1)
O , . . . , λ

(J−1)
O

)
and their asymptotic variance–covariance matrices.

Maximum likelihood estimates of the logit model parameters can be obtained read-
ily from any standard software package (e.g. PROC LOGIST in SAS) that fits cu-
mulative logit models. Let the resulting estimated parameter vector be denoted by
b = (α̂1, . . . , α̂J−1, β̂, γ̂) and its estimated asymptotic variance–covariance matrix by V̂b,
which is an estimate of the inverse information matrix. The covariate–exposure preva-
lences are estimated by the observed cell proportions, which are the maximum likelihood
estimates of the theoretical probabilities. Note that the exposure rates in different cat-
egories of the risk factor do not change with the thresholds of disease. Replacing the
parameters by their maximum likelihood estimates in (7) and (8), the MLEs of ΛA and
ΛO are obtained. Let the estimates be denoted by Λ̂A and Λ̂O respectively.

The multivariate delta method is used to derive the asymptotic dispersion matrices
of Λ̂A and Λ̂O, denoted by ∆̂r(Λ̂A) and ∆̂r(Λ̂O), the subscript r denoting cross-sectional
sampling. Since it is more convenient to work with the complements of λ̂

(j)
A on the natural

logarithm transform, let

Λ̄A =
(
1− loge(λ

(1)
A ), . . . , 1− loge(λ

(J−1)
A )

)

and, define

Λ̄O =
(
loge(λ

(1)
O ), . . . , loge(λ

(J−1)
O )

)
.

Also note that, under this sampling scheme, the vector of estimated covariate-adjusted
and overall threshold-specific risk parameters are functions of two dependent sets of
random variables, b, the estimated logit model parameters and p, the sample propor-
tions. Define JA and JO to be the Jacobian matrices of ̂̄ΛA and ̂̄ΛO with respect to the
elements of b. Similarly, define BA and BO to be the Jacobian matrices of ̂̄ΛA and ̂̄ΛO

with respect to the elements of p = (p1,I−1,J−1, . . . , p1,I−1,0, p1,I−2,J−1, . . . , p000), where
pcij denotes the observed proportion in the c-th level of the covariate, i-th level of the
risk factor and j-th level of the ordinal disease classification.

Following Benichou and Gail (1989, 1990), the covariance matrix between p and b
is obtained as

C = V̂bHΣ̂ , (9)

where Σ̂ is the estimated dispersion matrix of p and H is the Hessian matrix under
the cross-sectional sampling scheme. Σ̂ is the estimated variance-covariance matrix of a
single multinomial random vector p. The (k, l)–th element of H is given by ∂2(l)

∂(bk)∂(pl)
,

where l is the log likelihood under the cross-sectional sampling design, bk is the k–th
element of b and pl is the l–th element of p. The whole thing is evaluated at the MLEs
of the parameters. Define ĀA and AO to be diagonal matrices with j–th diagonals given

by ∂(1−λ
(j)
A

)

∂ log(1−λ
(j)
A

)
and ∂(λ

(j)
O

)

∂ log(λ
(j)
O

)
, respectively. Thus, applying the delta method twice in
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succession
∆̂r(Λ̂A) = ĀA

[
JAV̂bJ

′
A + BAΣ̂B′

A + 2BAC ′J ′A
]
Ā′A (10)

and
∆̂r(Λ̂O) = AO

[
JOV̂bJ

′
O + BOΣ̂B′

O + 2BOC ′J ′O
]
A′O . (11)

When the sampling design is prospective, the covariance–exposure prevalences are
not estimable from the data. To get an estimate of the covariate-adjusted and overall
threshold-specific PAR parameters, the prevalences must be presumed to be known
from some other source. The ML estimates of the logit model parameters are the same
under both prospective and cross-sectional designs. However, since in this case the risk
estimates are functions of b only (and not of p any more), the asymptotic variance–
covariance matrices have simplified forms. These are obtained by equating BA and BO

to null matrices in (10) and (11). Specifically

∆̂s(Λ̂A) = ĀA

[
JAV̂bJ

′
A

]
Ā′A

and
∆̂s(Λ̂O) = AO

[
JOV̂bJ

′
O

]
A′O ,

where the subscript s denotes the prospective sampling design.

4. Advantages of modeling

Note that the j-th threshold-specific attributable risk, as defined in Section 2,
coincides with that of PAR in the binary disease situation if the I×J contingency table
is collapsed at the j-th threshold, j = 1, . . . , J − 1. In this section, we attempt to put
forward the advantages of the model-based procedures through a set of Monte Carlo
simulations designed to show improvement due to modeling ordinal response data with
small to moderate cell sizes.

It is well known that model-based estimation leads to increased asymptotic pre-
cision when the assumed model adequately describes the data (Bishop, Fienberg and
Holland 1975; Altham 1984). The simpler the model, the better the performance of
the model-based estimator. Note, however, that in order to have improved precision,
the assumed model has to fit the data. If the model gives a poor fit to the data, the
model-based estimates still have lower asymptotic variance but the bias does not go to
0 with increasing sample size. In this article, a p-value for the lack-of-fit statistic that is
greater than 0.05 is used as evidence that the model is adequate for the data. However,
in the model building process a higher p-value, e.g. 0.20 or 0.25 may be preferred.

Comparable improvements are also possible in small samples when the stipulated
model holds. A set of simulation studies is described next to illustrate that the model-
based estimates of threshold-specific PAR can outperform the estimates of PAR from
collapsed tables in terms of a smaller mean square error. We consider three different
scenarios – (i) a 2× 4 contingency table with the disease at 4 ordinal levels and a single
binary risk factor; (ii) a 4×4 contingency table with both the risk factor and the disease
at 4 ordinal levels; and (iii) a 2 × 4 × 4 contingency table where in addition a binary
covariate is present.

Consider a multinomial frequency distribution of dimension C × I × J which can
be modeled by (4). When the values of the model parameters, and consequently the
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underlying multinomial probabilities, are known, the true values of the threshold-specific
covariate-adjusted and overall PAR parameters may be directly determined.

Random samples of size n were generated from the multinomial distribution with
C × I × J known cell probabilities using the IMSL random number generator RNMTN
in FORTRAN. A cumulative logit model was fitted to each of the observed contin-
gency tables. MLEs of the logit model parameters were estimated in PROC LOGIST in
SAS. These MLEs in turn were used to obtain MLEs of the threshold-specific covariate-
adjusted and overall PARs.

Alternatively, the observed contingency table was collapsed at each increasing
threshold of the disease and covariate-adjusted and overall PAR were estimated cor-
responding to each binary disease response, as defined at that threshold. Let these
estimates be called classical estimates. The complete procedure was repeated 5000
times and the MSE of the classical and the model-based estimates were calculated as
the average of the squared deviation of the estimates from the true value of the PAR
parameters. These results are presented in Tables 1–3. The last columns of these tables
are Ratio = Model-based MSE

Classical MSE .

Case I
Consider a sample distributed in a 2 × 4 contingency table, where the risk factor

is present at 2 levels, 0 (not exposed) and 1 (exposed), and the disease is present at 4
ordinal levels. Disease risk at the j-th threshold is given by

Pr(D(j)|i) = [exp(αj + iβ)] [1 + exp(αj + iβ)]−1
, i = 0, 1 and j = 1, 2, 3.

α1 = −1.2, α2 = −2.8 and α3 = −3.5 are effects for increasing threshold levels and
β = 1.25 is the exposure effect. The risk factor prevalence is assumed to be 25% in the
population. In the absence of any covariate and multiple levels of risk, only one set of
threshold-specific relative risks and corresponding PARs are defined. The true values of
the threshold-specific PAR are

λ(1) = 0.233, λ(2) = 0.339, λ(3) = 0.360 .

Table 1 presents a series of cross-sectional study simulations from this population.

Case II
Now consider a sample distributed in a 4× 4 contingency table with the risk factor

at 4 ordinal levels, 0, 1, 2 and 3 and the disease at 4 ordinal levels also. Disease risk at
the j-th threshold is given by

Pr(D(j)|i) = [exp(αj + iβ)] [1 + exp(αj + iβ)]−1
, i = 0, 1, 2, 3 and j = 1, 2, 3.

α1 = −1.4, α2 = −2.9 and α3 = −4.3 are effects for increasing threshold levels and
β = 1.5 is a trend effect for exposure. The risk factor prevalence is assumed to be 35%,
30%, 20% and 15% at levels 0, 1, 2 and 3 respectively. The threshold-specific relative
risk at each of the i = 1, 2, 3 levels of the risk factor is defined compared to the baseline
exposure. In absence of any covariate, only threshold-specific overall PARs are defined
and they are

λ(1) = 0.631, λ(2) = 0.830, λ(3) = 0.909 .
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Table 2 presents a series of cross-sectional study simulations from this population.

Case III
Lastly, consider a sample distributed in a 2× 4× 4 contingency table with the risk

factor present at 4 levels, 0, 1, 2 and 3, a covariate present at 2 levels, 0 and 1, and the
disease present at 4 ordinal levels. Disease risk at the j-th threshold is given by

Pr(D(j)|i) = [exp(αj + iβ + cγ)] [1 + exp(αj + iβ + cγ)]−1
,

i = 0, 1, 2, 3, c = 0, 1, and j = 1, 2, 3. Let α1 = −1.4, α2 = −2.9 and α3 = −4.3 be
effects for increasing threshold levels, β = 1.5 be a trend coefficient for exposure and
γ = 0.75 be the coefficient for the covariate effect. The risk factor prevalence is assumed
to be 20%, 16%, 9% and 6% at covariate level 0 and 18%, 14%, 10% and 7% at covariate
level 1 for levels 0, 1, 2 and 3 respectively. Both the threshold-specific covariate adjusted
PAR and the overall PAR are defined for this case, and their true values are

λ
(1)
A = 0.533, λ

(2)
A = 0.771, λ

(3)
A = 0.881

and
λ

(1)
O = 0.656, λ

(2)
O = 0.847, λ

(3)
O = 0.922.

Table 3 presents a series of cross-sectional study simulations for this population.

Several features of these three sets of empirical studies are noteworthy. The most
important feature is that the Ratio is always less than 1, implying that even in small
samples the model-based method performs better than the classical method. When the
model is appropriate for data, the point estimates obtained under both methods are very
close, as is evident from the columns called ‘Classical Mean’ and ‘Model-based Mean’.
However, the classical MSE is always greater than the Model-based MSE, implying
that the true variance of model-based estimates are always lower than that of classical
estimates.

Secondly, the amount of savings, defined as 1−Ratio, is increasing at each increasing
threshold. This could be easily explained by the structure of the C × I × J contingency
tables. Typically as disease threshold increases, the disease prevalence (or incidence)
rate as defined at that threshold decreases. This in turn makes the classical estimates
of the thresold-specific population attributable risks less stable at the higher thresholds.
Application of model-based inference procedure guards against that disadvantage of the
classical estimation methodology by borrowing strength from the overall distribution of
disease prevalence, not merely from the disease prevalence at that threshold.

Moreover, note that the amount of savings at each threshold is increasing with the
number of cells in the contingency table. For a 2 × 4 table, the maximum amount of
savings is approximately 76%, obtained at threshold level 3. For a 4 × 4 contingency
table, the maximum savings is approximately 86% and for a 2 × 4 × 4 table it is over
90%. This apparently overwhelming performance of the model-based methodology is
due to the sharply increasing ratio of number of parameters in the saturated model for
the contingency table over that in the specific model in use. In the 2×4 table number of
parameters in the saturated model is 8 and the number of parameters in the cumulative
logit model adopted is 4. In Case II, the ratio is 16:4, and in Case III the ratio is 32:5.
The improvement due to modeling is a function of the number of parameters. When the
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data are generated from a stipulated model the relevent information is contained only
in the parameters of the model, rendering the extra parameters in the saturated model
totally superfluous.

However, in case of real data the savings may not be as high. It is highly unrealistic
to presume that all information regarding an observed contingency table is contained
solely in the model parameters, even when the model does fit the data.

5. Empirical validity of asymptotic procedures

In this section a set of simulations are presented paralleling those given by Benichou
and Gail (1990) and Greenland and Drescher (1993) to demonstrate the validity of
asymptotic model-based procedures. The sampled distribution is obtained based on a
study of hypertension, described in detail in the next section. To keep things simple, a
single risk factor at four levels and an ordinal disease outcome at four levels are assumed.
The scenario considered here is identical to that of Case II described in Section 4.

The results of the Monte Carlo study are presented in Table 4, each column of
which summarizes 5000 simulation trials on a series of cross-sectional studies. Two
maximum likelihood confidence intervals are considered: the untransformed interval is
given by λ̂(j) ± 1.96ŝe(λ̂(j)) and the log transformed interval is given by exp

(
log λ̂(j) ±

1.96ŝe(log λ̂(j))
)
.

Contrary to the previous observations (Benichou and Gail 1990, Greenland and
Drescher 1993) the threshold-specific population attributable risk estimates are not
downwardly biased even at a moderate sample size. The average estimate of ŝe(λ̂(j))
is within 10% of the sample standard deviation of λ̂(j) in each case. Both the un-
transformed and the log transform confidence intervals report slight undercoverage for
considerably large sample sizes. Moreover, both intervals are equivalent in terms of the
mean length.

6. Examples and results

National health examination survey data are used to illustrate the parallel meth-
ods developed for prospective and cross-sectional study designs fitting a cumulative logit
model. The data in Table 5, obtained from the second National Health and Nutrition
Examination Survey (NHANES II), conducted from 1976–1980 (DHHS 1976-1980), were
selected for illustration due to keen public health interest in the potentially confounding
roles of race and body mass index, defined as (weight in kg.)

(height in meters)2 , in affecting the distri-
bution of diastolic blood pressure. These unweighted frequency data for women, ages
18–24 years at the time of examination, summarize the distribution of diastolic blood
pressure (DBP) classified into 4 ordinal levels determined by the stages of hypertension
published as a clinical guideline by American Medical Association. For convenience, we
have defined the disease levels as DBP ≤ 89 (normal and high normal), 90 ≤ DBP ≤ 99
(mild hypertension), 100 ≤ DBP ≤ 109 (moderate hypertension) and 110 ≤ DBP (se-
vere and very severe hypertension), all measurements in mm/Hg. Collapsing of the
categories normal and high normal, and severe and very severe hypertension is done
from a clinician’s viewpoint as well as to avoid a large number of empty cells.

The primary risk factor for elevated DBP is body mass index (BMI), classified at
four ordinal levels, with race, classified as black or white, considered as a potentially
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confounding factor. A key question in cardiovascular epidemiology is the extent to which
observed racial differences in blood pressure distributions are attributable to risk factor
differences such as BMI. For women in the U.S. population, a BMI of 23 is approximately
the median, so for these purposes, BMI < 23 is considered as exposure level 0 (E0). Using
the notation developed previously in this article, race white is labeled C0 and DBP less
than 90 mm/Hg as level 0 of disease, and the higher DBP measurements labeled 1, 2
and 3, respectively, even though these ordinal thresholds of DBP are not intended to
imply ‘disease’ at any level.

Two sets of threshold-specific PAR risk measures are estimated, one for the im-
pact of BMI, adjusted for race (covariate-adjusted PAR) and the other for the combined
impact of BMI and race (overall PAR). The actual design for the NHANES II survey
utilized a complex, weighted, multi-stage cluster sampling approach, but for illustration
of these PAR estimation methods, these data in Table 5 will be analyzed assuming an
unweighted, simple random sample (SRS) design. Both the cross-sectional sample meth-
ods (corresponding to the prevalence distribution of DBP) and the prospective sample
methods (corresponding to the incidence distribution of DBP, hypothetically assum-
ing a longitudinal design) are implemented to facilitate comparisons between these two
sampling schemes. Furthermore, under the prospective sampling design the covariate–
exposure prevalences are taken to be equal to their estimates under the cross-sectional
sampling design, so that the point estimates of the covariate-adjusted and the overall
threshold-specific PARs under both sampling designs are identical.

A cumulative logit model, with equally-spaced scores (0, 1, 2, 3) assigned to the
ordinal levels of BMI, and a standard binary effect parameterization for race, was fit to
the data in SAS PROC LOGISTIC, resulting in a lack-of-fit statistic of 4.72 with 2 df
(p=0.32), suggesting that the assumption of proportional odds is acceptable for these
data. The parameter estimates are

α̂1 = 0.413, α̂2 = −1.292, α̂3 = −2.515, β̂ = 0.478, γ̂ = 0.164.

Recall that the first three parameters correspond to the three thresholds, β is the trend
effect of ordinal levels of BMI and γ is the race effect. Covariate-adjusted (for race)
threshold-specific PAR estimates for BMI are summarized in Table 6, together with
overall PAR estimates assessing the combined impact of BMI and race on DBP. It
is noteworthy, for these data in Table 5, that the race-adjusted estimates of PAR are
somewhat smaller than the overall PAR estimates at each threshold of DBP. Furthermore
it suggests that nearly 1/3 of the women with DBP exceeding 110 mm/Hg (threshold
3) may be attributable to BMI exceeding 23.

Estimated asymptotic variances also are provided in Table 6 for the threshold-
specific PARs, both under the prospective sample and cross-sectional sample assump-
tions, the primary difference related to the prevalence distribution of levels of BMI
assumed known (prospective) or estimated from the data (cross-sectional). At each
threshold of the DBP distribution, these estimated variances are slightly larger under
the cross-sectional sampling assumptions (due to the additional variability induced by
estimating the prevalence of Race × BMI levels).

It is also to be noted that no non-model based estimate for variance of covariate-
adjusted PAR is available for this scenario even when the disease is dichotomized. Hence
no comparison between classical and model-based estimates of asymptotic variances of
λ̂A is possible. We do not intend to compute an overall PAR with all the eight categories
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of exposure either as that is bound to provide a distorted picture. Instead, just as an
illustration to compare the performance of classical and model-based methods in a real
data set, let us focus our attention on white women only with two exposure groups,
namely BMI ≤ 25 and BMI ≥ 25. The estimated PARs when the table is collapsed at the
three threshold levels of the disease are respectively 6%, 17% and 24% while model-based
estimates are 5%, 17% and 30%. Under prospective sampling scheme the model-based
estimates of the asymptotic s.e.s are (0.064, 0.695, 1.618)×10−3 whereas non model-based
estimates are (0.112, 0.877, 3.709)×10−3. Similar observations are made in case of cross-
sectional sampling scheme also. The former method gives (0.080, 0.785, 1.760) × 10−3

compared to the latter which gives (0.126, 0.985, 3.936)×10−3 as estimates of asymptotic
s.e.s.

In summary, the developments for model-based estimation of threshold-specific
PARs, to assess the impact of a risk factor (with adjustments for another covariate) on
a disease with ordinal levels, have been illustrated for two important sampling designs.
Considerable gains in efficiency for these estimators have been demonstrated after ad-
justing for the ordinality of disease and the ordinality of the underlying risk factor in
cases where non model-based estimates of PAR are also available. Further, in situations
where no estimate of asymptotic variances of PARs had previously been proposed, we
have formulated variance estimates which are very easily obtained. Adjustment for one
or more covariates can now be easily dealt with. With appropriate use of Taylor series
expansions, and implicit function methods, the asymptotic variances of these complex
ratio estimators have been provided for two alternative sampling situations.
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Table 1: Simulation results comparing classical and model-based PAR: Cross-sectional
Study in a 2× 4 contingency table (λ(1) = 0.233, λ(2) = 0.339, λ(3) = 0.360)

Sample Thres- Classical Model-based
Size hold Mean MSE ×102 Mean MSE ×102 Ratio

1 0.234 0.495 0.234 0.470 0.948
200 2 0.340 2.283 0.342 1.010 0.442

3 0.357 4.616 0.363 1.129 0.245

1 0.233 0.192 0.233 0.182 0.951
500 2 0.339 0.896 0.340 0.399 0.445

3 0.362 1.842 0.361 0.447 0.243

1 0.233 0.132 0.233 0.126 0.954
750 2 0.342 0.628 0.340 0.277 0.441

3 0.361 1.276 0.361 0.311 0.244

1 0.233 0.096 0.233 0.092 0.956
1,000 2 0.339 0.486 0.339 0.204 0.420

3 0.362 0.980 0.360 0.230 0.234

1 0.232 0.065 0.232 0.062 0.956
1,500 2 0.339 0.306 0.339 0.138 0.449

3 0.361 0.633 0.359 0.155 0.245

1 0.233 0.050 0.233 0.048 0.955
2,000 2 0.339 0.239 0.339 0.105 0.439

3 0.355 0.465 0.360 0.118 0.255
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Table 2: Simulation results comparing classical and model-based PAR: Cross-sectional
Study in a 4× 4 contingency table (λ(1) = 0.631, λ(2) = 0.830, λ(3) = 0.909)

Sample Thres- Classical Model-based
Size hold Mean MSE ×102 Mean MSE ×102 Ratio

1 0.634 0.648 0.633 0.362 0.558
200 2 0.831 0.665 0.830 0.210 0.316

3 0.903 0.741 0.907 0.114 0.153

1 0.631 0.259 0.632 0.139 0.538
500 2 0.830 0.279 0.830 0.082 0.296

3 0.908 0.325 0.908 0.043 0.132

1 0.631 0.177 0.631 0.094 0.535
750 2 0.829 0.187 0.830 0.057 0.303

3 0.907 0.222 0.908 0.030 0.135

1 0.631 0.128 0.631 0.069 0.537
1,000 2 0.830 0.136 0.830 0.040 0.295

3 0.909 0.161 0.908 0.021 0.131

1 0.631 0.087 0.632 0.047 0.540
1,500 2 0.831 0.088 0.830 0.027 0.305

3 0.908 0.114 0.909 0.014 0.124

1 0.631 0.064 0.632 0.036 0.554
2,000 2 0.830 0.072 0.830 0.020 0.285

3 0.909 0.085 0.909 0.011 0.126
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Table 3: Simulation results comparing classical and model-based PAR: Cross-sectional
Study in a 2×4×4 contingency table (λ(1)

A = 0.533, λ
(2)
A = 0.771, λ

(3)
A = 0.881, λ

(1)
O =

0.656, λ
(2)
O = 0.847, λ

(3)
O = 0.922)

Covariate-adjusted PAR Overall PAR
Sample Thres- Classical Model-based Classical Model-based

Size hold Mean MSE Mean MSE Ratio Mean MSE Mean MSE Ratio
×102 ×102 ×102 ×102

1 0.535 0.589 0.534 0.344 0.584 0.657 1.085 0.657 0.430 0.396
200 2 0.774 0.748 0.771 0.267 0.357 0.847 0.973 0.846 0.199 0.204

3 0.880 0.889 0.879 0.150 0.169 0.916 1.020 0.921 0.091 0.090

1 0.533 0.238 0.533 0.141 0.594 0.657 0.422 0.657 0.170 0.401
500 2 0.771 0.297 0.771 0.110 0.371 0.846 0.406 0.847 0.078 0.191

3 0.881 0.336 0.880 0.060 0.177 0.919 0.397 0.922 0.035 0.088

1 0.534 0.157 0.533 0.090 0.573 0.656 0.286 0.656 0.112 0.392
750 2 0.772 0.192 0.772 0.070 0.363 0.846 0.275 0.846 0.051 0.186

3 0.882 0.227 0.881 0.039 0.172 0.921 0.271 0.922 0.023 0.085

1 0.533 0.121 0.533 0.085 0.577 0.656 0.216 0.657 0.085 0.394
1,000 2 0.772 0.144 0.771 0.039 0.372 0.846 0.205 0.846 0.039 0.189

3 0.881 0.169 0.881 0.017 0.176 0.922 0.210 0.922 0.017 0.083

1 0.533 0.073 0.533 0.046 0.623 0.656 0.136 0.656 0.056 0.416
1,500 2 0.772 0.098 0.772 0.036 0.370 0.846 0.136 0.846 0.027 0.199

3 0.881 0.113 0.881 0.020 0.180 0.921 0.145 0.922 0.012 0.084

1 0.533 0.061 0.533 0.035 0.571 0.657 0.112 0.657 0.042 0.376
2,000 2 0.772 0.073 0.772 0.027 0.371 0.847 0.100 0.847 0.019 0.193

3 0.882 0.085 0.881 0.015 0.175 0.923 0.107 0.923 0.009 0.081
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Table 4: Simulation results for MLE of threshold-specific PAR: Cross-sectional Study
in a 4 × 4 contingency table, modeled by ordinal risk and ordinal disease (λ(1) =
0.631, λ(2) = 0.830, λ(3) = 0.909)

Sample Thres- Mean Sample Mean Untransformed Log Transform
size hold pt est std dev SE est coverage mean length coverage mean length

200 1 0.633 0.0601 0.0586 0.932 0.230 0.933 0.231
2 0.830 0.0458 0.0447 0.931 0.175 0.930 0.176
3 0.907 0.0337 0.0325 0.920 0.128 0.919 0.128

500 1 0.632 0.0373 0.0372 0.947 0.146 0.949 0.146
2 0.830 0.0287 0.0284 0.943 0.111 0.943 0.111
3 0.908 0.0207 0.0206 0.940 0.081 0.940 0.081

750 1 0.631 0.0307 0.0304 0.946 0.119 0.947 0.119
2 0.830 0.0238 0.0232 0.946 0.091 0.947 0.091
3 0.908 0.0173 0.0168 0.941 0.066 0.941 0.066

1,000 1 0.631 0.0263 0.0264 0.950 0.103 0.950 0.103
2 0.830 0.0200 0.0201 0.949 0.079 0.948 0.079
3 0.908 0.0145 0.0146 0.947 0.057 0.947 0.057

1,500 1 0.632 0.0217 0.0215 0.949 0.084 0.947 0.084
2 0.830 0.0164 0.0164 0.946 0.064 0.945 0.064
3 0.909 0.0119 0.0119 0.943 0.046 0.944 0.046

2,000 1 0.632 0.0189 0.0186 0.943 0.073 0.943 0.073
2 0.830 0.0143 0.0142 0.946 0.056 0.945 0.056
3 0.909 0.0103 0.0103 0.946 0.040 0.947 0.040
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Table 5: Frequency Distribution (Cumulative Row Proportions) of Ordinal Levels of
Diastolic Blood Pressure (DBP) by Ordinal Levels of Body Mass Index (BMI) and
Race: Women, Ages 18–24: NHANES II, 1976-80

Ordinal Estimated
Levels Ordinal Levels of DBP (D=d) Risk Factor

Race of BMI 3 2 1 0 Total Prevalences
Black ≥ 27 10 4 9 3 26 0.0269

(0.3846) (0.5385) (0.8846) (1.00)

[25,27) 1 2 8 2 13 0.1035
(0.0769) (0.2308) (0.8461) (1.00)

[23,25) 3 6 7 5 21 0.0217
(0.1429) (0.4286) (0.7619) (1.00)

< 23 10 10 24 29 73 0.0756
(0.1370) (0.2740) (0.6027) (1.00)

Subtotal 24 22 48 39 133 0.1377

White ≥ 27 29 24 27 13 93 0.0963
(0.3118) (0.5699) (0.8602) (1.00)

[25,27) 7 16 25 16 64 0.0662
(0.1094) (0.3594) (0.7500) (1.00)

[23,25) 8 27 40 34 109 0.1128
(0.0734) (0.3211) (0.6881) (1.00)

< 23 40 79 229 219 567 0.5869
(0.0705) (0.2099) (0.6138) (1.00)

Subtotal 84 146 321 282 833 0.8623

Total 108 168 369 321 966 1.0000
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Table 6: Threshold-Specific Race-Adjusted and Overall Population Attributable Risk
Ratios for Ordinal Levels of Diastolic Blood Pressure (DBP) by Ordinal Levels of Body
Mass Index (BMI) Obtained from a Linear Trend Effects Cumulative Logit Model:
Prospective and Cross-sectional Sampling Design

Sampling Design
Prospective Cross-sectional

Thres- PAR Estimates V̂ arp(λ̂
(j)
A ) V̂ arp(λ̂

(j)
O ) V̂ arc(λ̂

(j)
A ) V̂ arc(λ̂

(j)
O )

holds λ̂
(j)
A λ̂

(j)
O ×10−3 ×10−3 ×10−3 ×10−3

1 0.092 0.100 0.1152 0.1164 0.1343 0.1825

2 0.238 0.251 0.8487 0.9742 0.9525 1.0742

3 0.321 0.336 1.6712 1.7899 1.8382 1.9486
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